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Abstract

In this work, we developed a robust permutation test for the concordance cor-

relation coefficient (ρc) for testing the general hypothesis H0 : ρc = ρc(0). The

proposed test is based on an appropriately studentized statistic. Theoretically,

the test is proven to be asymptotically valid in the general setting when two

paired variables are uncorrelated but dependent. This desired property was

demonstrated across a range of distributional assumptions and sample sizes in

simulation studies, where the test exhibits robust type I error control in all set-

tings tested, even when the sample size is small. We demonstrated the applica-

tion of this test in two real world examples across cardiac output

measurements and endocardiographic imaging.
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1 | INTRODUCTION

Measurement of agreement is an essential task in biology and medicine. The often encountered question is whether
measurements by two different methods on the same samples produce essentially the same results. For example, it may
be of interest to evaluate whether a new assay can reproduce the results of a traditional gold-standard assay for measur-
ing tumor biomarkers in serum, or whether two pathologists have the same ratings on a set of samples for a cancer
diagnosis. The measurement of agreement consists of two aspects: accuracy and precision. Accuracy pertains to
whether the observed value agrees with the true value systematically, while precision measures the extent to which the
observed values conform.1

Specific agreement measurements have been designed for different types of data. For categorical data with two
levels, McNemar's test is typically used to assess the systematic difference between two measurements. A significant test
result would suggest two measurements deviate in a systematic manner. Cohen's κ is a single value measurement for
agreement between categorical variables, which is defined as the difference between observed and expected agreement
by chance.2 The approach can be extended to ordinal data with more than two categories by using appropriate
weighting schemes.3 For continuous data, the paired-sample t-test can be used to measure the systematic differences
between paired observations. The Bland and Altman diagram plots the difference between two measurements against
their means, so as to visualize the pattern and extent of agreement relative to the overall variation.4 The intraclass cor-
relation coefficient (ICC) can be used as single value measurement of agreement, which represents the between-pair
variance as a proportion of the total variance of the observations.5
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Lin (1989)6 proposed the concordance correlation coefficient (CCC), which is a widely used and highly cited agree-
ment index between pairs of continuous measurements. Several R packages are available for its calculation, such as
DescTools, agRee and cccrm.7-9 The CCC evaluates the agreement between two readings by measuring the variation of
their linear relationship from the 45� line through the origin (the concordance line). It can be expressed as the product
of the Pearson correlation coefficient ρ, which measures precision, and a measurement of accuracy, which is a function
of the means and standard deviations. This is an advantage of the CCC over other measurements since it evaluates pre-
cision and accuracy simultaneously in a single measure. The CCC has also been extended to be modeled as a function
of covariates10,11 and a measure of overall agreement among multiple raters.12 Nonparametric tests have also been
developed to assess the multi-rater agreements based on the CCC.13

The CCC has become a popular tool for measuring agreement. Hypothesis testing on the CCC (H0 : CCC = CCC0)
is important in assessing whether there is sufficient agreement between two measurements. The test is typically based
on the asymptotic distribution of either ρ̂c or the Z-transformed statistic.6 It has been widely used in real world
applications,14-17 and has been implemented in the Stata CONCORD module.18,19 Both asymptotic tests rely on large
sample sizes and typically fail to control the Type I error at the desired level when n is small. Under such scenarios, per-
mutation tests provide a strong alternative testing approach. To our knowledge, only limited work has been reported on
permutation test about the CCC. Williamson et al.20 proposed a permutation test for the CCC for comparing whether
two methods have equal agreement with the third, for example a gold standard. However, permutation tests for a point
null were not a part of their work.

A common and naive mistake in terms of permutation testing about the correlation coefficient or the CCC is to per-
form a simple permutation test ignoring possible dependency structures, which leads to invalid inference. Since the
CCC can be decomposed into the product of Pearson's correlation with a quantity measuring bias, inference about these
two measurements are closely related. DiCiccio and Romano have shown that the permutation distribution of Pearson's
correlation coefficient does not converge to the sampling distribution when two random variables are dependent but
uncorrelated.21 Therefore, the type I error rate will not be controlled at the desired level. They showed that this issue
can be solved by using a permutation test based on an appropriately studentized statistic.

In Section 2 we show that a naive permutation test about the CCC behaves similarly to the non-studentized permutation
test about Pearson's correlation coefficient in terms of inflated Type I error rates. To address this issue we propose a
studentized statistic for the CCC following the approach of DiCiccio and Romano.21 More importantly, we extended the
studentized permutation test to more general null hypotheses: H0 : CCC = CCC0. Studentized statistics have been widely
used in permutation tests.22,23 However, to our knowledge, this is the first work using studentized permutation test for the
CCC. We prove theoretically that the permutation test for the CCC based on studentized statistic is asymptotically valid. In
Section 3 we carry out an extensive simulation study which illustrated that studentized permutation test controls the Type I
error at its nominal level even in the small sample size settings. Finally, in Section 4 we demonstrate our methodology using
real world data from studies on cardiac output measurements and endocardiographic imaging.

2 | METHODS

2.1 | Concordance correlation coefficient

Let (X1, Y1), …, (Xn, Yn) be n pairs of samples independently selected from a bivariate population with means μ1 and μ2,
and covariance matrix

Σ=
σ21 σ12

σ21 σ22

� �
:

The CCC is based on the expected value of the squared difference of two variables, X and Y, and defined as,

ρc =1−
E X−Yð Þ2� �

σ21 + σ22 + μ1−μ2ð Þ2 =
2σ12

σ21 + σ22 + μ1−μ2ð Þ2 ,

where −1 ≤ ρc ≤ 1. Note that the CCC can be decomposed into two parts as follows:
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ρc =
2σ12

σ21 + σ22 + μ1−μ2ð Þ2 = ρC,

where ρ is the Pearson correlation coefficient, which measures linear association between X and Y, and

C=
2σ1σ2

σ21 + σ22 + μ1−μ2ð Þ2 ,

which is a measure of accuracy, and represents how far the best-fit line deviates from the 45� line through origin (con-
cordance line). The value of ρc = 1 indicates perfect agreement while the value of ρc = 0 indicates lack of agreement.
It is important to note that ρc = 0 if and only if ρ = 0.

The null hypothesis that is of interest to most researchers in the context of testing agreement is H0 : ρc = ρc(0) and
we will focus on one-sided alternative hypothesis H1 : ρc > ρc(0). In agreement testing the test H0 : ρc ≥ ρc(0) versus
H1 : ρc < ρc(0) is generally not of interest in practice. For n independent sample pairs (X1, Y1), …, (Xn, Yn), ρc can be esti-
mated by replacing the population quantities with the respective moment estimators such that

ρ̂c =
2σ̂12

σ̂21 + σ̂22 + μ̂1− μ̂2ð Þ = ρ̂Ĉ

Ĉ=
2σ̂1σ̂2

σ̂21 + σ̂22 + μ̂1− μ̂2ð Þ2 ,

where μ̂1 and μ̂2 are the sample means, σ̂21 and σ̂22 are the sample variances, for X and Y, respectively and σ̂12 is the sam-
ple covariance. Note that ρc = 0 if and only if ρ = 0. However, testing H0 : ρc = 0 and H0 : ρ = 0 are different tests in that
the estimator ρ̂ is scaled by a random variable Ĉ in ρ̂c compared with ρ̂, for the respective tests.

The test about ρ̂c can be performed based on the asymptotic normal distribution of either ρ̂c or using the Fisher's
Z transformation given as,

Ẑ= tanh−1 ρ̂cð Þ= 1
2
ln
1+ ρ̂c
1− ρ̂c

:

The variances for each test are obtained utilizing the delta method, for example, see Lin (1989)6 for details of deriving
the asymptotic distributions for both statistics, respectively. When the sample size is small, the Type I error is usually
not well controlled, even though the Z-transformed statistic converges at a faster rate to normality.6 We will illustrate
this property in our simulation study in Section 3.

2.2 | Background information

As noted earlier the CCC, ρc, may be decomposed into two components, namely ρ rescaled by a non-zero constant C.
Therefore, the tests of ρc and ρ are closely related. In this section, we start by reviewing the permutation test for
Pearson's correlation coefficient as developed by Diciccio and Romano.21 Towards this end define Gn to be the set of all
permutations π of {1, …, n}. For testing independence between two random variables X and Y, the permutation distribu-
tion of any given test statistic Tn(X

n, Yn) is defined as

R̂
Tn

n tð Þ= 1
n!

X
π�Gn

I Tn Xn,Yn
π

� �
≤t

� 	
, ð1Þ

where Yn
π represents {Yπ(1),…,Yπ(n)}. In this setting, the permutation Gn is all possible pairwise combinations between

Xn and Yn. A level α one-sided permutation test rejects if Tn Xn,Yn
π

� �
is larger than the 1− α quantile of the permutation

distribution. The permutation test is exact when exchangeability assumptions hold, that is, the distribution of (Xn,Yn) is
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invariant under the group of transformations Gn. The test using the Pearson correlation coefficient ρ̂ is exact when
using a metric of dependence for testing the null hypothesis of independence given as

H0 :P=PX ×PY ,

where PX and PY are marginal distributions. The null hypothesis of independence is not equivalent to the test about
zero correlation given as H0 : ρ = 0 with the exception of limiting assumptions such as the data are distributed as bivari-
ate normal random variables. In other words, in the general setting two random variables can be dependent but
uncorrelated. In such cases, DiCiccio and Romano21 have shown that, with finite fourth moments, the permutation dis-
tribution of ρ̂ converges to N(0, 1), but its sampling distribution converges to N(0, τ2), where

τ2 =
μ22

μ20μ02
,

and

μrs =E X1−μ1ð Þr Y 1−μ2ð Þs½ �:

Thus the test will not be level α unless τ = 1. In light of this result, DiCiccio and Romano proposed a studentized corre-
lation test statistic, which has been shown to control Type I error asymptotically at α when two random variables are
dependent but uncorrelated.21 Specifically, the studentized statistic is defined as Sn =

ffiffiffi
n

p
ρ̂n=τ̂n, where

τ̂2n =
μ̂22

μ̂20μ̂02
,

μ̂rs =
1
n

Xn
i=1

Xi− �Xð Þr Y i− �Yð Þs:

The permutation distribution and sampling distribution of Sn both converge to the standard normal distribution asymptoti-
cally. It should be noted that even though the results presented in DiCiccio and Romano21 are based on large sample approx-
imations the behavior of this test for small to moderate sample sizes is quite good as born out in their simulation results.

2.3 | Permutation concordance correlation test for H0 : ρc = 0

For the permutation test of ρc = 0, we use the same permutation scheme used for the Pearson correlation coefficient21

as described in Equation (1). That is, for each permutation we will randomly shuffle Y while keeping X fixed. Recall
that ρc = 0 if and only if ρ = 0, but we also have ρc ! 0 when σ1/σ2 ! + ∞ or 0, or when jμ1 − μ2 j ! + ∞. The lat-
ter condition implies Fx and Fy have either location or scale differences or both. Therefore, for any permutation scheme,
the exchangeability assumption does not necessarily hold under H0. In this section we show that the permutation test
using the permutation scheme by randomly shuffling Y, although not exact, will be asymptotically valid if the statistic
is properly studentized. On the other hand, the naive permutation test based on the statistic ρ̂c defined at Section 2.1
suffers a similar deficiency to that of ρ̂ for Pearson's correlation coefficient, and it does not generally control the Type I
error at the desired level.

From the result of DiCiccio and Romano,21 if E X2
1

� �
<∞,E Y 2

1

� �
<∞ and E X2

1Y
2
1

� �
<∞, then under H0,

ffiffiffi
n

p
ρ̂n ! τZ,

where Z�N(0, 1). By the strong law of large numbers, we have Ĉn !C almost surely. Therefore, by Slutsky's theorem,
we have Tc

n =
ffiffiffi
n

p
ρ̂nĈn ! τCZ in distribution under H0.

Proposition 1. Let Cn and Tn be functions of a sequence of i.i.d. random variables Xn. If Cn ! C almost surely, and

lim
n!∞

sup
t�R

j R̂Tn

n tð Þ−F tð Þ j =0

for almost every sequence of Xn, where F(t) is the CDF of Z, then for statistic T 0
n =CnTn, we have
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lim
n!∞

sup
t�R

j R̂T 0
n

n tð Þ−F 0 tð Þ j =0,

under H0 : ρc = 0, where F
0
(t) is the CDF of Z

0
= CZ.

Note that for a given sample, Ĉ Xn,Yn
π

� �
remains constant for any π, and Ĉn !C almost surely. From Theorem 2.1

of DiCiccio and Romano21 it follows that

lim
n!∞

sup
t�R

j R̂Tn

n tð Þ−F tð Þ j =0:

Therefore, by Proposition 1, we have,

lim
n!∞

sup
t�R

j R̂Tc
n

n tð Þ−ΦC tð Þ j =0

almost surely, where ΦC is the CDF of N(0, C2). We can see that the sampling and permutation distributions of Tn con-
verge to the same distribution only when τ = 1, thus the permutation test will not guarantee Type I error control at
level α under general scenarios. On the other hand, the permutation test will be asymptotically valid when it is based
on a studentized statistic. Towards this end we have the following:

Theorem 1. Let (Xn, Yn) be a sequence of i.i.d. random variables. Suppose E X4
1

� �
<∞ and E Y 4

1

� �
<∞ , and define the

studentized statistic

Scn =
ffiffiffi
n

p
ρ̂nĈn=τ̂n,

then we have

lim
n!∞

sup
t�R

j R̂Scn
n tð Þ−ΦC tð Þ j =0,

almost surely under H0 : ρc = 0, where ΦC is the CDF of N(0, C2).

The proof of Theorem 1 follows directly from the fact that Cn is constant under permutations, Theorem 2.221 and
Proposition 1. Therefore, both the sampling distribution and permutation distribution of

ffiffiffi
n

p
Scn Xn,Ynð Þ converge to the

corresponding quantiles of a N(0,C2) distribution, which in turn proves the test has asymptotic Type I error control at
level α. Note that although Ĉ remains constant under the proposed permutation scheme, the tests on the Pearson's cor-
relation coefficient and the CCC are distinctly different tests.

2.4 | Permutation concordance correlation test for H0 : ρc = ρc(0)

In a more general scenario, we may be interested in testing H0 : ρc = ρc(0) versus H0 : ρc > ρc(0). This corresponds to a
non-zero correlation under H0, which cannot be tested by a conventional permutation test. In order to bring this test
into the above framework, we rely on a statistic based on a de-correlated sample.

First, we obtain an estimated correlation under the H0:

ρ̂0 = ρc 0ð Þ=Ĉ,

which converges almost surely to ρ0 when H0 is true. We can standardize the original observations by
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U 0
i =

Xi− �X
SX

,V 0
i =

Yi− �Y
SY

,

such that the new variables will have zero means and unit standard deviations, which will then be de-correlated by

U ,Vð ÞT =A ρ̂0ð Þ U 0,V 0ð ÞT :

In this equation, the matrix A(�) is defined as

A xð Þ=
1 0
−xffiffiffiffiffiffiffiffiffiffiffi
1−x2

p 1ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p

0
@

1
A,

which satisfies

A ρð Þ 1 ρ

ρ 1

� �
A ρð ÞT = I2:

It is straightforward to show that ρ̂ U,Vð Þ! 0 under H0. The test statistic can then be defined based on U and V,

Scn =
ffiffiffi
n

p
ρ̂n U ,Vð ÞĈn=ν̂n,

where ρ̂n U ,Vð Þ is the sample Pearson correlation of U and V, and ν2n is the large sample variance of ρ̂n U ,Vð Þ. By large
sample theory, it can be readily shown that

ffiffiffi
n

p
ρ̂n U,Vð Þ!N 0,ν2n

� �
. Therefore, we have

Scn !N 0,C2
� �

:

Obviously, the pair (U, V) is asymptotically uncorrelated under H0, which means they are also asymptotically exchange-
able under normality. Therefore, under the framework by DiCiccio and Romano,21 it is legitimate to obtain the permu-
tation distribution of Scn by randomly shuffling V. Specifically, for each permutation we will calculate the statistic as

Scn U,Vπð Þ= ffiffiffi
n

p
ρ̂n U,Vπð ÞĈn:

By Theorem 1, we can see that the permutation distribution of Scn will converge to N(0,C2) when ρ(U, V) = 0, a condi-
tion will be satisfied asymptotically.

The computation of Scn relies on the estimation of ν2n , of which the analytical form is very difficult to derive. The
commonly used bootstrap method yields poor variance estimation in our case (data not shown). This is likely due to the
standardization step which tends to be unstable when there are many duplicates during the resampling, which can be
more severe when the sample size is small. On the other hand, the jackknife method provides a robust estimation. Con-
ventionally, the jackknife procedure calculates Scn ið Þ for i = 1, …, n, where Scn ið Þ is the statistic with (Xi,Yi) left out, and

the variance can be estimated by ν̂2n = n−1ð ÞV̂ar Scn ið Þ
� �

. It should be noted that this variance is estimated under ρc = ρ̂c.

However, for hypothesis testing the variance needs to be estimated under ρc = ρc(0). It is obvious that ν2n depends on ρc
and such discrepancy may lead to a reduced power. To solve this issue, we used a surrogate distribution approach used
in the work by Hutson.24

The surrogate data is obtained by a de-correlation operation followed by a re-correlation based on the correlation expected
underH0 which is ρ̂0. Specifically, let U

0
i and V 0

i be the standardized observations. They will be transformed as below
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X 0
i,Y

0
i

� �T
=

SX 0

0 SY

� �
B ρ̂0ð ÞA ρ̂ð Þ U 0

i,V
0
i

� �T
+ �X , �Yð ÞT ,

where B(�) is defined as

B xð Þ= 1 0

x
ffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
� �

:

The matrix B ρ̂0ð ÞA ρ̂ð Þ transforms U 0
i,V

0
i

� �
into a pair of standardized variables with zero means and unit standard devi-

ations. Importantly, U 0
i and V 0

i have a correlation of ρ̂0. Through the following rescale and shift operations, the final var-
iable pairs X 0

i,Y
0
i

� �
will have the same means and variances as (Xi,Yi), but a correlation of ρ̂0 instead of ρ̂. This ensures

the sample ρc of X 0
i,Y

0
i

� �
is ρc(0). Therefore, we will use (X

0
,Y

0
) for the jackknife procedure for estimating ν2n.

Occasionally, the value of ρ̂0 = ρc 0ð Þ=Ĉ could be larger than 1. This will happen when Ĉ is too small but ρc(0) too
large. In our implementation, we will set ρ̂0 = 0:99 in this scenario, which results in a large p-value. Note that a small
C implies large difference between X and Y, which already suggests a poor agreement. Therefore, in such cases it is
unreasonable to have large ρc(0).

3 | SIMULATIONS

3.1 | Test for H0 : ρc = 0 versus H1 : ρc > 0

We examined the Type I error control using distributions commonly found in the literature for examining these types
of test statistics across a wide range of settings.21,24 For our simulation, we focused on testing H0 : ρc = 0 versus
H1 : ρc > 0, with sample sizes n = 10, 25, 50, 100, 200. Each simulation utilized 10,000 Monte Carlo replications and the
number of permutations used was 1000. We compared the straight large sample approximation (Asymptotic), Fisher's
Z-transformation (Fisher's Z), naive permutation test (Perm), and studentized permutation test (Stu Perm). The Type I
error control for α = 0.05 was examined. The simulation scenarios from DiCiccio and Romano were utilized in our
study:

1. Multivariate normal (MVN) with mean zero and identity covariance.
2. Exponential given as (X, Y) = rSTu where S=diag

ffiffiffi
2

p
,1

� �
, u is uniformly distributed on the two dimensional unit

circle and r� exp(1).
3. Circular given as the uniform distribution on a two dimensional unit circle.
4. t4.1 where X = W + Z and Y = W − Z, where W and Z are i.i.d. random variables following t-distributions with

4.1 degrees of freedom.
5. Multivariate t-distribution (MVT) with location parameters (0, 0)T, identity covariance and 5 degrees of freedom.
The results show that for all distributions, both the untransformed and Z-transformed asymptotic tests have inflated

Type I error rates when n is small (Table 1). Although the error rates converge towards the nominal level of 0.05 as
n increases, they only approach 0.05 when n ≥ 100. For MVN, the error rates are well controlled by naive permutation
test, even when n is small. However, with other distributions, the test is either too conservative (circular) or too liberal
(exponential, t4.1 and MVT), and the error rates do not converge to 0.05 as n increases. For example, under the t4.1 distri-
bution, the type I error rate of naive permutation test inflates dramatically to 0.21 when n = 200. Meanwhile, for the
circular distribution, this test becomes over conservative with a type I error rate of 0.01 when n = 200. On the other
hand, the studentized test controls type I error rate robustly at 0.05 under all settings and even when the sample size is
as small as 10. The above results demonstrated the proposed studentized permutation test is a robust method for testing
H0 : ρc = 0. Although C = 1 in this setting, the test is not equivalent to H0 : ρ = 0, because the test on ρc needs to take
into account the variability of Ĉ.

In addition to the original settings, we further examined the tests' type I error control when C ≠ 1. Let μ02 and σ02 be
the mean and standard deviation of Y in the original settings. This is achieved by either introducing a shift in Y, that is
μ2 = μ02 + 2, or having Y rescaled by a factor of 2, σ2 = 2σ02. The results are shown in supporting information, which sug-
gest that the studentized permutation test is robust to shifts and different scales in underlying distributions.
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3.2 | Test for H0 : ρc = ρc(0) versus H1 : ρc > ρc(0)

Next, we evaluated the proposed test's performance on non-zero null hypotheses. The data was generated under the set-
tings of ρc = 0.3 or 0.7, μ2 − μ1 = 0.5, σ2/σ1 = 1.5. The data was first generated in a similar procedure as the previous
section, but was then standardized by the population standard deviations and correlated using B(ρc/C) = B(ρ). The cor-
related data was then scaled and shifted to have desired scale and location parameters.

The naive permutation test cannot handle a non-zero point null, thus was not examined. Table 2 shows the type I
errors for testing H0 : ρc = 0.3 and H0 : ρc = 0.7. The results are also shown graphically in Figures 1 and 2. The asymp-
totic test and the Fisher's Z test generally have inflated type I errors, where the Fisher's Z test shows a faster conver-
gence to 0.05. In fact, the asymptotic test fails to achieve satisfactory type I error control even when n is as large as
200 except for the circular scenario. The test based on Fisher's Z statistic also needs n > 50 to achieve good type I error
control in most cases. For testing H0 : ρc = 0.3 under t4.1, the Fisher's Z test fails to control type I error under 0.069 even
when n = 200. On the other hand, the studentized permutation test robustly controls the type I error at desired level
only with a few cases of slight inflation for testing H0 : ρc = 0.3 when n = 10 (Figure 1). This can be observed for expo-
nential, t4.1 and MVT distributions. However, even in these cases, its type I error control is still superior to the competi-
tors. For testing H0 : ρc = 0.7, the performance was robust for almost all cases (Figure 2).

We also investigated the power for testing H0 : ρc = 0.7 and H1 : ρc > 0.7 when the true ρc is 0.8 (Figure 3). The exact
rejection probabilities are provided in Table S3. It should be noted that in most of the cases, especially when n ≤ 50, the
powers were not comparable because Fisher's Z and asymptotic tests tend to have inflated type I errors. Especially, the
asymptotic tests have highest power in all cases, which is due to its inflated type I errors in general. To make legitimate

TABLE 1 Type I errors for tests of

H0 : ρc = 0 versus H1 : ρc > 0,

when ρc = 0

Distribution N Asymptotic Fisher's Z Perm Stu Perm

MVN 10 0.1227 0.1230 0.0489 0.0457

25 0.0848 0.0827 0.0516 0.0518

50 0.0677 0.0660 0.0519 0.0504

100 0.0599 0.0587 0.0514 0.0516

200 0.0525 0.0521 0.0479 0.0494

Exponential 10 0.1995 0.1956 0.1157 0.0608

25 0.1410 0.1317 0.1501 0.0554

50 0.1107 0.1037 0.1617 0.0544

100 0.0779 0.0736 0.1619 0.0480

200 0.0702 0.0673 0.1658 0.0517

t4.1 10 0.1665 0.1581 0.0902 0.0444

25 0.1237 0.1123 0.1313 0.0435

50 0.0999 0.0911 0.1552 0.0434

100 0.0904 0.0822 0.1851 0.0487

200 0.0788 0.0728 0.2051 0.0484

Circular 10 0.0853 0.0907 0.0184 0.0560

25 0.0589 0.0596 0.0114 0.0473

50 0.0534 0.0541 0.0101 0.0482

100 0.0510 0.0512 0.0119 0.0480

200 0.0503 0.0503 0.0117 0.0478

MVT 10 0.1579 0.1569 0.0721 0.0486

25 0.1169 0.1114 0.0987 0.0466

50 0.0878 0.0822 0.1076 0.0436

100 0.0740 0.0692 0.1175 0.0435

200 0.0703 0.0679 0.1290 0.0500

Abbreviations: MVN, multivariate normal; MVT, multivariate t-distribution.
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TABLE 2 Type I errors for tests of H0 : ρc = ρc(0) versus H1 : ρc > ρc(0), where ρc(0) = 0.3 or 0.7

ρc(0) = 0.3 ρc(0) = 0.7

Distribution N Asymptotic Fisher's Z Stu Perm Asymptotic Fisher's Z Stu Perm

MVN 10 0.1195 0.1082 0.0647 0.1219 0.0974 0.0495

25 0.0853 0.0721 0.0550 0.0888 0.0668 0.0489

50 0.0692 0.0594 0.0514 0.0757 0.0567 0.0476

100 0.0632 0.0557 0.0535 0.0638 0.0513 0.0472

200 0.0508 0.0461 0.0443 0.0572 0.0480 0.0460

Exponential 10 0.1839 0.1660 0.0840 0.1528 0.1264 0.0499

25 0.1345 0.1120 0.0707 0.1243 0.0912 0.0480

50 0.1053 0.0865 0.0620 0.0961 0.0684 0.0459

100 0.0897 0.0741 0.0628 0.0858 0.0614 0.0461

200 0.0747 0.0662 0.0567 0.0755 0.0577 0.0493

t4.1 10 0.1634 0.1491 0.0720 0.1385 0.1085 0.0464

25 0.1230 0.1061 0.0590 0.1075 0.0699 0.0424

50 0.1065 0.0880 0.0552 0.0901 0.0589 0.0389

100 0.0977 0.0813 0.0551 0.0819 0.0515 0.0401

200 0.0818 0.0690 0.0514 0.0680 0.0464 0.0399

Circular 10 0.0672 0.0606 0.0372 0.0798 0.0628 0.0354

25 0.0577 0.0511 0.0406 0.0676 0.0508 0.0430

50 0.0529 0.0464 0.0441 0.0590 0.0467 0.0460

100 0.0493 0.0455 0.0431 0.0547 0.0452 0.0449

200 0.0516 0.0480 0.0486 0.0547 0.0477 0.0503

MVT 10 0.1498 0.1334 0.0694 0.1357 0.1097 0.0473

25 0.1149 0.0968 0.0604 0.1067 0.0794 0.0445

50 0.0941 0.0773 0.0579 0.0884 0.0629 0.0424

100 0.0806 0.0684 0.0568 0.0786 0.0587 0.0452

200 0.0686 0.0595 0.0512 0.0676 0.0527 0.0436

Note: The true ρc values are 0.3 and 0.7, respectively.
Abbreviations: MVN, multivariate normal; MVT, multivariate t-distribution.

FIGURE 1 Rejection probabilities (type I error) for tests of H0 : ρc = 0.3 versus H1 : ρc > 0.3, when ρc = 0.3
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comparisons, we focus on the settings where the type I error of Fisher's Z test is <0.06. In these cases, the difference
between the power of Fisher's Z and studentized permutation tests is generally less than 3%. For example, under the cir-
cular scenarios with n ≥ 25, the two tests only show negligible difference in power. Therefore, we can conclude that the
proposed test robustly controls the type I error while maintains comparable power with Fisher's Z tests.

4 | EXAMPLE

4.1 | Cardiac output data

As an illustration of our approach, we tested H0 : ρc = ρc(0) versus H1 : ρc > ρc(0) using cardiac output estimated from
systolic time intervals based on impedance cardiography (IC) and those estimated by radionuclide ventriculography
(RV) in 12 patients. The data was originally reported by Bowling et al.25 and is obtained from the publication by Bland
and Altman.26 In the reported data, there are multiple pairs of observations per patient. Since modeling replicates
within individuals is not within the scope of our study, we took average of the replicates for each individual, such that
only one pair of averaged measurements for each individual was used for analysis. The scatter plot of the paired data is
given in Figure 4. Marginal normality of data was examined by Shapiro–Wilk test, while the bivariate normality was
examined by Henze–Zikler test. The p values of Shapiro–Wilk tests for IC and RV are 0.96 and 0.97, respectively. The
p value of Henze–Zikler test is 0.99. Therefore, there is no evidence that the data distribution is non-normal.

The estimated ρ̂c between IC and RV is 0.64. The paired-sample t-test shows cardiac outputs estimated by RV are
significantly higher than the estimates by IC (p = 0.026), suggesting there is a systematic difference between two

FIGURE 2 Rejection probabilities (type I error) for tests of H0 : ρc = 0.7 versus H1 : ρc > 0.7, when ρc = 0.7

FIGURE 3 Rejection probabilities (power) for tests of H0 : ρc = 0.7 versus H1 : ρc > 0.7, when ρc = 0.8
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techniques. The p values for ρc(0) = 0 and ρc(0) = 0.3 are shown in Table 3. Both permutation tests used 5000 resamples.
If we are testing at level α = 0.05, then we will reject H0 : ρc = 0 for all tests, and conclude there is a non-zero agreement
between IC and RV in estimating cardiac outputs (Table 3). Meanwhile, we are also interested in whether there is a
moderate agreement. Therefore, we tested H0 : ρc = 0.3 versus H1 : ρc>0.3. In this case, the naive permutation test can-
not be applied. Both asymptotic and Fisher's Z tests rejected the H0. This is a different conclusion from the studentized
permutation test, which failed to reject H0. Based on the simulation results, the studentized permutation test is more
reliable when the sample size is small.

4.2 | Echocardiographic imaging

The second example is taken from an echocardiographic imaging (EI) study.27 The study developed an autonomous
boundary detection (ABD) algorithm to detect the limiting boundaries of the left ventricular myocardium, which
requires no observer input. The study aimed to increase reliability, objectivity, and reproducibility in order to enhance
the quantitative accuracy of echocardiography.

Following the approach by Hutson,13 we have selected a subset of n = 15 subjects from the EI study, and use the
fractional area change (FAC) as the quantity of interest. The FAC is computed as

FAC=
AED−AES

AED
× 100%,

where AED and AES are the endocardial areas at end diastole and end systole respectively. In this example we focus on the
comparison between the FAC's as measured by the fuzzy gold standard (FGS) derived from a consensus of experts and
one of the echocardiographers (Expert 2), so as to examine the tests when the agreement is poor. The agreement between

FIGURE 4 Scatter plot of cardiac output data with

concordance line

TABLE 3 The p-values of testing

H0 : ρc = ρc(0) versus H1 : ρc > ρc(0) for

cardiac output data

Tests ρc(0) = 0 ρc(0) = 0.3

Asymptotic <0.0001 0.0141

Fisher's Z 0.0009 0.0320

Perm 0.0038 –

Stu Perm 0.0146 0.1178
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FGS and the expert is visualized by a scatter plot with concordance line (Figure 5). Similarly, marginal normality of data
was examined by Shapiro–Wilk test, and the bivariate normality was examined by Henze–Zikler test. The p values of
Shapiro–Wilk tests for FGS and expert are 0.20 and 0.09, respectively. The p value of Henze–Zikler test is 0.09.

The paired-sample t-test shows cardiac outputs estimated by FGS are significantly higher than the estimates by the
expert (p = 0.02) suggesting a systematic difference. From the scatter plot (Figure 5), a low agreement between two
measurements was observed, and the CCC is estimated as 0.42. Table 4 shows the results for testing H0 : ρc = 0 versus
H1 : ρc > 0. Similarly, both permutation tests used 5000 resamples. If we are testing at level α = 0.05, then only
studentized permutation test failed to reject H0 (p = 0.11). All the other three tests rejected H0 and conclude there is a
non-zero agreement between FGS and the expert in estimating FAGS. Based on the simulation results in Section 3, the
result from studentized test is more reliable and we should conclude that there is no significant agreement between
FGS and the expert.

5 | DISCUSSION

In this work, we present a robust concordance correlation permutation test for testing H0 : ρc = ρc(0). Conventional test-
ing of the CCC relies on large sample approximations, which tends to have inflated Type I error rates when the sample
size is small. This was illustrated in our simulations studies (Section 3). An alternative approach to hypothesis testing
based on asymptotic approximations is to consider the corresponding permutation test. However, DiCiccio and
Romano21 have shown that the naive permutation test of Pearson's correlation coefficient does not control type I error
under non-normality settings where two variables can be dependent but uncorrelated. Here we demonstrated that a
naive permutation test for the CCC suffers a similar issue both theoretically and empirically. To solve this issue, we pro-
posed a permutation test for the CCC based on appropriately studentized statistic following DiCiccio and Romano's
approach,21 which controls type I error even when sample size is as small as 10 and normality assumption is violated.

FIGURE 5 Scatter plot of echocardiographic imaging (EI) data

with concordance line

TABLE 4 The p-values of testing

H0 : ρc = 0 versus H1 : ρc > 0 for

echocardiographic imaging (EI) data

Tests p value

Asymptotic 0.0001

Fisher's Z 0.0003

Perm 0.0074

Stu Perm 0.1112
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Importantly, while the original studentized permutation test can only handle tests of zero correlation coefficients,24 we
further extended the studentized permutation test for more general hypotheses. Similarly, the generalized testing proce-
dure exhibited a robust type I error control under different scenarios. The proposed method may also enable the con-
struction of confidence sets with better coverage probability by inverting the acceptance region, which still requires
future investigation. Implementation of the method is available through the R package perk (https://github.com/hyu-
ub/perk).
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