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ABSTRACT The gut microbiota is susceptible to modulation by environmental stim-
uli and therefore can serve as a biological sensor. Recent evidence suggests that
xenobiotics can disrupt the interaction between the microbiota and host. Here, we
describe an approach that combines in vitro microbial incubation (isolated cecal
contents from mice), flow cytometry, and mass spectrometry- and 1H nuclear mag-
netic resonance (NMR)-based metabolomics to evaluate xenobiotic-induced micro-
bial toxicity. Tempol, a stabilized free radical scavenger known to remodel the mi-
crobial community structure and function in vivo, was studied to assess its direct
effect on the gut microbiota. The microbiota was isolated from mouse cecum and
was exposed to tempol for 4 h under strict anaerobic conditions. The flow cytometry
data suggested that short-term tempol exposure to the microbiota is associated with
disrupted membrane physiology as well as compromised metabolic activity. Mass spec-
trometry and NMR metabolomics revealed that tempol exposure significantly dis-
rupted microbial metabolic activity, specifically indicated by changes in short-chain
fatty acids, branched-chain amino acids, amino acids, nucleotides, glucose, and oli-
gosaccharides. In addition, a mouse study with tempol (5 days gavage) showed simi-
lar microbial physiologic and metabolic changes, indicating that the in vitro ap-
proach reflected in vivo conditions. Our results, through evaluation of microbial
viability, physiology, and metabolism and a comparison of in vitro and in vivo expo-
sures with tempol, suggest that physiologic and metabolic phenotyping can provide
unique insight into gut microbiota toxicity.

IMPORTANCE The gut microbiota is modulated physiologically, compositionally, and
metabolically by xenobiotics, potentially causing metabolic consequences to the
host. We recently reported that tempol, a stabilized free radical nitroxide, can exert
beneficial effects on the host through modulation of the microbiome community
structure and function. Here, we investigated a multiplatform phenotyping approach
that combines high-throughput global metabolomics with flow cytometry to evalu-
ate the direct effect of tempol on the microbiota. This approach may be useful in
deciphering how other xenobiotics directly influence the microbiota.

KEYWORDS metabolomics, NMR, mass spectrometry, metabolism, toxicology,
xenobiotic

Microbes residing in the gastrointestinal tract can significantly influence host health
by producing metabolites or molecules that function as available energy sources

(e.g., short-chain fatty acid [SCFA]) (1, 2), metabolic signals (e.g., bile acid) (3, 4), and
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immune signals (e.g., lipopolysaccharides [LPS]) (5, 6). The gut microbiota is also
involved in xenobiotic metabolism (e.g., drugs and environmental toxicants) through
alteration of xenobiotic-metabolizing enzyme activity (7, 8), regulation of ligand-
activated transcription factors, like the aryl hydrocarbon receptor (9, 10), or execution
of biotransformation (11). Metagenomic and taxonomic tools have enabled the explo-
ration of the diverse and complex microbial community structure. Additionally,
metabolomics approaches, including mass spectrometry (MS)- and nuclear magnetic
resonance (NMR)-based techniques, have provided valuable data to better understand
connections between physiology and metabolism with respect to the host-microbiome
interaction. However, measures of direct microbial toxicity caused by xenobiotic expo-
sure have not been developed. Microbial toxicity assessment is important to under-
stand the potential for drugs and other xenobiotics to influence the microbiota directly,
especially xenobiotics that are not suspected of having antimicrobial activity.

Single-cell techniques, including flow cytometry, open the door for investigating the
physiologic characteristics of microbial communities. Flow cytometric analysis has been
employed to study the biochemical activity of microbial populations in environmental
systems, including wastewater (12, 13) and aquatic ecosystems (14, 15), to characterize
the physiology of the gut microbiota (16, 17) and to assess the microbial response to
xenobiotics (18–20) and physical stress (21–23). Additionally, with the increasing pop-
ularity of anaerobic chambers, scientists have been able to appropriately culture and
characterize a majority of microbes in complex environments, like the human gut (24).
Utilizing the anaerobic chamber and flow cytometry, the physiologic and metabolic
status of microbes can be characterized using different fluorescent dyes (Fig. 1).

Metabolomic approaches have been important for exploration of the metabolic

FIG 1 Flow cytometry provides a snapshot of the microbial physiological state. Four fluorescent dyes were used to
evaluate different physiological parameters. Nucleic acid labeling with SYBR green indicates growth rate, bis-(1,3-
dibutylbarbituric acid) trimethine oxonol (DiBAC) assesses membrane depolarization (moderate damage), propidium
iodide (PI) determines loss of membrane integrity (severe damage), and carboxyfluorescein diacetate/carboxyfluorescein
diacetate succinimidyl ester (CFDA/CFSE) measures metabolic activity.
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effects of pharmaceuticals (25, 26), environmental contaminants (27, 28), and dietary
factors (29, 30), as well as microbe-derived metabolites and microbiome-host co-
metabolites, to understand the metabolite chatter between the host and the gut
microbiome (31–34). Mass spectrometry and NMR are widely used platforms for
metabolomics, with each technique exhibiting its own merits and limitations (35, 36).
Microbial metabolism determined by MS- and NMR-based metabolomics provides a
functional readout of the microbial community, thus providing complementary insight
into the characteristic changes in the metabolic activity, enzymatic pathways, and
networks within the microbiota (37, 38).

Establishing microbial toxicity endpoints is key to understanding potential adverse
interactions of xenobiotics with the microbiota. For example, tempol (4-hydroxy-2,2,6,6-
tetramethylpiperidin-1-oxyl), an antioxidant reported to promote metabolic improve-
ment (39) and attenuate metabolic dysregulation (4, 40), does so through alterations of
the microbial community. However, the precise mechanism by which tempol interacts
with the microbiome is not known. In the current study, gut microbiota toxicity
was evaluated following short-term exposure to tempol (Fig. 2). 1H NMR and mass
spectrometry-based global metabolomics and flow cytometry were performed to
characterize the metabolic and physiological changes following tempol exposure.
Combining measures of the microbial physiological state provided by flow cytometry
and the metabolic status determined with metabolomics, this study revealed the direct
effect of tempol on microbial physiology and metabolism. Importantly, this study
supports the potential of physiological and metabolic phenotyping for the determina-
tion of microbial toxicity.

RESULTS
Short-term exposure of tempol in vitro directly impacts microbial physiology in

a dose-dependent manner. Microbial physiology after short-term exposure of tempol
in vitro was examined using a flow cytometry approach (Fig. 3A). Microbiota isolated
directly from the mouse cecum was incubated in brain heart infusion (BHI) broth
containing different doses of tempol (0.01 mg/ml, 0.1 mg/ml, and 1 mg/ml) under strict

FIG 2 Experimental scheme of microbial toxicity assessment. Microbes isolated from mouse cecum were
incubated with tempol for 4 h under strict anaerobic conditions (O2 � 20 ppm). Microbial toxicity was
evaluated by characterizing microbial physiologic and metabolic status. Microbial physiologic status was
evaluated by flow cytometry with different fluorescent dyes indicating membrane damage and bio-
chemical activity. Microbial metabolism was assessed by global NMR- and LC-MS-based metabolomics.
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anaerobic conditions for 4 h at 37°C. A pH 4 group was introduced as a positive control
by treating the microbiota with 12 M HCl. Acid treatment resulted in severe damage to
microbial membranes, indicated by a significantly high percentage of propidium
iodide-positive (PI�) cells (40.7% PI� cells with pH 4 treatment versus 12.5% in control;
P � 0.001, Student’s t test) and bis-(1,3-dibutylbarbituric acid) trimethine oxonol-
positive (DiBAC�) cells (81.3% DiBAC� cells in pH 4 group versus 39.2% in control
group; P � 0.01, Student’s t test) (Fig. 3A). Additionally, the pH 4 group showed a
decrease in SYBR green-stained cells (an average of 85.8% SYBR� cells in pH 4 group
compared to 91.9% in control group; P � 0.05, Student’s t test) and drastically de-
creased metabolic activity, as revealed by a low percentage of CFDA� cells (2.3%
averaged CFDA� cells in pH 4 group compared to 36.5% in control group; P � 0.001,
Student’s t test) (Fig. 3A). The pH 4 group with compromised physiologic and metabolic
activity validated the feasibility of the flow cytometry method.

Flow cytometry analysis revealed a significant increase in DiBAC� cells following
high-dose tempol exposure (1 mg/ml) and a marked elevation of PI� cells at medium
and high doses of tempol (0.1 and 1 mg/ml, respectively) in vitro, indicating excessive
membrane depolarization and a loss of membrane integrity of the microbiota (Fig. 3A).
A significant decrease in CFDA� cells was observed with all three doses of tempol
compared to the control in vitro, suggesting that the metabolic activity of tempol-
exposed microbiota was compromised (Fig. 3A). These data together demonstrated
that tempol directly impacts membrane health and metabolic activity of the microbiota
in vitro. Notably, the impact of tempol on microbial physiology in vitro is dose
dependent, with a 100-fold dose range (0.01 to 1 mg/ml).

Tempol directly alters microbial metabolism in vitro. Metabolic profiling of
tempol-exposed microbiota in vitro using 1H NMR metabolomics was performed. NMR
analysis revealed a dose-dependent decrease in microbe-derived metabolites, includ-
ing acetate, propionate, butyrate, valine, leucine, and isoleucine, suggesting the inhi-

FIG 3 Tempol directly impacts microbial physiology. Microbial physiology was evaluated by flow cytometry after tempol exposure via 4-h short-term incubation
of cecal microbiota with different doses of tempol (0.01, 0.1, and 1 mg/ml) in vitro (A) and 5-day gavage of tempol (100 mg/kg) to mice in vivo (B). **, P � 0.01;
***, P � 0.001; ****, P � 0.0001. One-way ANOVA with Tukey’s correction. The pH 4 group was introduced as a control. All data are presented as mean � SD
(n � 6 isolates per group). Med, medium.
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bition of microbial fermentation by direct tempol exposure (Fig. 4). In addition, energy
metabolites and the fermentation substrates glucose and oligosaccharides were higher
in concentration in microbiota exposed to high-dose tempol (Fig. 4). Moreover, a
significant change in amino acid profiles characterized by a decrease of phenylacetate
and an increase in aromatic amino acids, including tyrosine and phenylalanine, was
identified (Fig. 4). The most versatile amino acid, threonine, which serves as a precursor
for SCFAs synthesized by microbiota (41), was also significantly increased with tempol
exposure (Fig. 4). Interestingly, the integration of physiological and metabolic biomark-
ers revealed a correlation of microbial physiology and metabolites following tempol
exposure in vitro (see Fig. S1 in the supplemental material). Specifically, the inactivation
physiological biomarkers (membrane damage indicators) PI and DiBAC are positively
correlated with inactivation metabolic biomarkers (i.e., catabolism substrates), includ-
ing glucose, oligosaccharides, and amino acids, while negatively correlated with acti-
vation metabolic biomarkers (i.e., catabolism products), including SCFAs and branched-
chain amino acids (BCAAs) (Fig. S1). These data suggest that the compromised
microbial metabolic activity is strongly correlated with the disrupted microbial mem-
brane by direct tempol exposure.

Comparison of physiologic and metabolic profiles of tempol-exposed microbi-
ota in vivo and in vitro. To further validate the viability of the described multiplatform
approach in vitro, an in vivo exposure model was used by gavaging tempol to mice with
a dose of 100 mg/kg of body weight (based on previous publications [39, 42]). The in
vivo effect of tempol on microbial physiology and metabolism was analyzed following
the same procedure performed for in vitro analysis. Consistent with the in vitro results,
the microbial physiological status characterized by increased membrane damage
(15.9% PI� cells with tempol exposure versus 9.5% in control; P � 0.01, Student’s t test)
and decreased metabolic activity (70.1% CFDA� cells with tempol exposure compared
to 75.2% in control; P � 0.05, Student’s t test) were observed in vivo with tempol
treatment (Fig. 3B). Notably, the proportion of DiBAC� cells, which showed a significant
increase in vitro, remained unchanged in vivo.

Microbial metabolic profiling after in vivo tempol exposure by 1H NMR revealed
similar metabolic fingerprints with in vitro exposure, characterized by lower levels of
SCFAs and BCAAs and higher levels of glucose and oligosaccharides (Fig. 5). The
consistent results in vitro and in vivo suggested that the in vitro method could be a
convenient alternative to study microbial toxicity.

Tempol modulates microbial composition directly in vitro. It is well established
that microbial composition is intimately related to microbial functional roles and host

FIG 4 Tempol directly impacts microbial metabolic profiles characterized by 1H NMR. Relative concentrations of
microbial metabolites after exposure to different doses of tempol in vitro measured via 1H NMR analysis. **, P �
0.01; ***, P � 0.001; ****, P � 0.0001 compared to control. One-way ANOVA with Tukey’s correction. All data are
presented from minimum to maximum ranges with box and whisker plots (n � 6 isolates per group).
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metabolic outcomes. Having defined the physiological and metabolic changes in
tempol-exposed microbiota in vitro, we then investigated the microbial community
composition following tempol exposure in vitro by quantitative PCR (qPCR) analysis
(Fig. S2). Total bacterial quantitation revealed a significant decrease in total bacterial
population in medium and high doses of tempol in vitro, consistent with data reported
from in vivo models (39). Consistent with previous in vivo studies of tempol (4, 39),
significant decreases in Betaproteobacteria, Clostridium coccoides, Clostridium leptum
subgroup, and Lactobacillus spp. were confirmed in the tempol-exposed in vitro model
(Fig. S2). These data suggest that the observed microbial composition change in
tempol-treated mice (39) is likely due, in part, to the direct impact of tempol on the
microbiota.

Orbitrap LC-MS identified additional metabolic biomarkers within functional
pathways and networks. To provide an in-depth view of tempol-altered microbial
metabolic features and pathways, liquid chromatography-mass spectrometry (LC-MS)
was performed for additional metabolic biomarker identification and visualization of
metabolic networks. Orbitrap LC-MS analysis identified over 40 significantly changed
microbial metabolites in the tempol-treated group, providing additional metabolic
biomarkers for microbial membrane damage and metabolism disruption following
tempol exposure (Fig. 6). KEGG functional pathway analysis (Table S1) revealed a wide
array of metabolic pathways altered by tempol exposure, especially nucleotide, amino
acid, and sugar metabolism. Metabolite network visualization revealed a dose-
dependent change in the tempol-treated microbiota (Fig. S3).

Specifically, a significant downregulation of deoxyribose, ribose nucleotides, and
derivatives, including dAMP, dCMP, dGMP, dTMP, GDP, uridine, and uric acid, were
identified (Fig. 6). Nucleotides are used not only as backbone material for RNA and DNA
synthesis but also as energy donors for many cellular functions, including amino acids,
proteins, and cell membrane synthesis and transport (43). The downregulation of
nucleotides with tempol exposure is in agreement with the altered aminoacyl-tRNA

FIG 5 Similar microbial metabolic fingerprints between in vivo and in vitro exposures of tempol revealed by 1H NMR. OPLS-DA scores plots (left) indicating
model quality and coefficient plots (right) displaying metabolite changes are generated using 1H NMR spectra from cecal microbiota after 4-h short-term
incubation with tempol (1 mg/ml) in vitro (A) and cecal microbiota from mice gavaged with tempol (100 mg/kg) (B). The hotness of the color corresponds to
the discrimination significance of the metabolite to the model separation. A positive peak (upward pointing) indicates that the metabolite is higher in
concentration in the tempol treatment group, while a negative peak (downward pointing) indicates the metabolite is higher in concentration in the control
group.

Cai et al.

November/December 2018 Volume 3 Issue 6 e00123-18 msystems.asm.org 6

msystems.asm.org


biosynthesis and amino acid, pyrimidine, and purine metabolism annotated by KEGG
(Table S1). Moreover, a marked change in amino acid metabolism identified by KEGG
pathway analysis was visualized using heatmaps (Fig. 6) and MetaMapp network
visualizations (Fig. S3). High tempol exposure induced an overall decrease in essential
amino acids (leucine, isoleucine, tryptophan, and methionine), nonessential amino
acids (arginine, aspartate, taurine, proline, and glutamate), and amino acid derivatives
(acetyl-glycine, acetyl-alanine, acetyl-glutamine, acetyl-ornithine, and valyl-aspartate)
(Fig. 6). In addition, a significant decrease in glucose-6-phosphate was seen in micro-
biota exposed with all three different tempol doses, suggesting compromised glucose
metabolism, as glucose-6-phosphate is the initiating molecule of glucose catabolism
(44). Significantly decreased hydroxyphenylacetate, phenylpyruvate, and hydroxyben-

FIG 6 LC-MS revealed altered microbial metabolic profile in response to tempol. Z scores were created for the metabolomic data for each
sample. Red shades represent metabolites that are increased or above the mean, and blue shades represent metabolites that are
decreased or below the mean.
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zoate revealed decreased microbial anaerobic metabolism of aromatic compounds (45,
46), consistent with the NMR results showing a decrease in phenylacetate and elevated
aromatic substrates (Fig. 4).

DISCUSSION

Evaluation of the potential toxicity of new drugs, xenobiotics, and/or toxicants to
the gut microbiota may identify new mechanisms of toxicity and off-target effects and,
ultimately, may help to improve risk assessment. This study took advantage of high-
throughput metabolomics combined with flow cytometry to extensively investigate the
physiologic and metabolic impact of tempol on the gut microbiota. The multiplatform
phenotyping approach revealed a direct influence of short-term tempol exposure on
microbial membrane health and metabolic activity, providing additional insight into
the action of the xenobiotic tempol on the gut microbiota. Additionally, this study took
advantage of the anaerobic chamber for rapid assessment of the effects of the
xenobiotic tempol on the gut microbiome. While it is known that some gut microbial
species are not culturable, this in vitro method provides a quantitative means of quickly
testing microbial toxicity.

A human microbiome study demonstrated that membrane damage indicated by
membrane depolarization and integrity loss was significantly increased with environ-
mental hazards, like high heat and oxygen exposure (47). In the current study, we
observed disruption of the microbial membrane as characterized by loss of polarity
(DiBAC�) and integrity (PI�), suggesting that tempol directly targets the microbiota.
Membrane physiology, including membrane potential, integrity, and energy metabo-
lism, is critical for its overall function as well as to maintain passive permeability and
active transport, extracellular/intracellular communication, and signal transduction (48).
Thus, disrupted membrane physiology leads to profound and extensive physiologic
and metabolic consequences, as demonstrated with tempol exposure.

In addition to physiologic biomarkers, metabolic biomarkers and the altered meta-
bolic functional pathways with tempol exposure were identified using MS- and NMR-
based metabolomics. The combination of MS- and NMR-based metabolomics permits
a broader view of the metabolic alterations with improved metabolite identification
and measurement confidence (36). Further, utilizing multiple platforms provides com-
plementary metabolic views, thus providing greater confidence in data interpretation.
NMR analysis identified significantly inhibited microbial fermentation and catabolic
activity, as revealed by a decrease in SCFAs and an increase in fermentation substrates
(glucose and oligosaccharides) and precursors (threonine), as well as a decrease in
phenylacetate and an increase in aromatic amino acids, including tyrosine and phe-
nylalanine. It has been reported that microbial enzymes and genes participate in
aromatic amino acid catabolism, emphasizing the significant role of microbiota in
phenylalanine and tyrosine degradation (49). Additionally, microbial enzymes are in-
volved in the anaerobic oxidation of phenylalanine to generate phenylacetate (50).
Therefore, the compromised microbial metabolism with low microbial enzyme activity
after tempol exposure might explain the increase in aromatic amino acids phenylala-
nine and tyrosine and decrease in the degradation product phenylacetate in the
metabolic profile.

Orbitrap LC-MS analysis identified over 40 significantly changed metabolites with
tempol exposure in addition to NMR. Many of the metabolites are involved in critical
metabolic pathways serving as critical metabolic biomarkers to indicate the profound
systemic metabolic response of the gut microbiota to tempol exposure. For example,
amino acids carry out important nutritional and physiologic roles in protein and
coenzyme synthesis, cell signaling, and gene regulation (51). The microbiota is impor-
tant for amino acid biosynthesis, catabolism, and utilization (41), and the gut microbi-
ota contributes to the synthesis and consumption of different amino acids in response
to environmental stress (51). For example, a microbial community, including Bifidobac-
terium adolescentis, Bacteroides thetaiotaomicron, Ruminococcus bromii, Eubacterium
rectale, and Faecalibacterium prausnitzii, synthesizes higher levels of essential amino
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acids rather than nonessential amino acids (51). Given that tempol modulates microbial
composition readily in vivo (4) and in vitro (Fig. S2), the alterations in amino acid profile
are anticipated. In addition to amino acids, glucose-6-phosphate, which is an important
initiator of glycolysis and the pentose phosphate pathway (44), was reduced, suggest-
ing perturbed glucose metabolism after tempol exposure. Importantly, decreased
glucose metabolism, as revealed by LC-MS is in agreement with the high level of sugar
substrates, like glucose and oligosaccharides, is detected by NMR. Together, these
findings suggest compromised microbial energy catabolism with tempol exposure.

The in vitro results are consistent with the previous and current findings in vivo. We
have previously reported that tempol reduces microbial fermentation in mice (39).
Consistent with the in vivo finding, a significant inhibition of microbial fermentation
activity with short-term tempol exposure was observed in vitro, demonstrating that
tempol modulation of the microbiota is likely through the direct action of tempol on
the microbiota. Furthermore, tempol shifts host energy metabolism from energy
storage to expenditure as an adaptive response to the reduced microbe-derived SCFAs
in vivo (39). In the current study, a direct impact of tempol on microbial energy
metabolism was identified in vitro as well.

Notably, the altered metabolic pathways are functionally interconnected. For exam-
ple, nucleotides serve as both building blocks for nucleic acid synthesis and as energy
donors for physiologic and metabolic functions. The altered nucleotide metabolism by
tempol impacts microbial growth, which was revealed by total bacterial counts and
disturbed energy metabolism. The compromised amino acid metabolism with tempol
exposure could be either the result of the depleted energy supply due to disrupted
nucleotide and carbohydrate metabolism or the cause of the compromised energy
metabolism, as the nucleotide and carbohydrate metabolic pathways are heavily
dependent on enzymes and cofactors, which are synthesized from amino acids.

The gut microbiota is susceptible to modulation from environmental toxicants and
orally ingested xenobiotics, indicating that the gut microbiota is critical for understand-
ing the complete mode of action and potential toxicity of xenobiotics and drugs.
Recently, 40 representative human microbial strains were used to evaluate the impact
of more than 1,000 nonantibiotic drugs on growth rate (52). Twenty-four percent of the
drugs presented with antimicrobial or microbial modulatory effects, uncovering the
potential risk of nonantibiotic drugs promoting antibiotic resistance. Further examina-
tion of these drugs could be completed with our approach combining both physiologic
and metabolic measures and provide further mechanistic insight into their mode of
action.

The gut microbiota can be associated with disease pathogenesis and is increasingly
appreciated as a promising therapeutic target. Including the gut microbiota in toxicity
assessment opens the door for better understanding the underlying mechanisms and
potential off-target effects of xenobiotics. This work presented a novel multiplatform
functional phenotyping approach that combines in vitro approaches, flow cytometry,
and global metabolomics for integrated characterization of the physiological and
metabolic phenotype of the microbiota in response to tempol exposure. This approach
may further lead to the establishment of toxicity endpoints for the gut microbiota and
ultimately provide a means to quantitatively and mechanistically assess the impact of
other xenobiotics on the microbiota.

MATERIALS AND METHODS
Gut microbiota isolation and incubation conditions. Six-week-old wild-type male C57BL/6J mice

(The Jackson Laboratory, Bar Harbor, ME) were transferred into anaerobic chamber (Coy Laboratory
Products, Inc., Grass Lake, MI) following CO2 asphyxiation. All the following procedures were performed
under strict anaerobic conditions with an oxygen level below 20 ppm. The microbiota incubation and
flow cytometry preparation procedures were derived and modified from a previously described protocol
(47). Briefly, the cecal content was collected and diluted 1:10 (1 g in 10 ml) with brain heart infusion (BHI)
broth (Sigma, St. Louis, MO). Each suspension was prepared in triplicate (one for the flow experiment and
the other two replicates for MS- and NMR-based metabolomics analyses). The cecal content suspension
was treated with tempol at final concentrations 0.01 mg/ml, 0.1 mg/ml, and 1 mg/ml, following a brief
vortex and incubation at 37°C for 4 h in the dark. The negative-control group was treated with 12 M HCl

Establishing Measures of Gut Microbiome Toxicity

November/December 2018 Volume 3 Issue 6 e00123-18 msystems.asm.org 9

msystems.asm.org


to reach pH 4. After incubation, two sets of samples were stored at �80°C for future metabolomics
analysis. The rest of the samples were centrifuged (700 � g, 4°C for 1 min). Six hundred microliters of the
microbial supernatant was transferred to a new tube and then centrifuged (6,000 � g, 4°C for 3 min). The
supernatant was discarded, and the microbial pellet was washed with prefiltered (0.2-�m-pore-size filter)
reduced phosphate-buffered saline (PBS; 1� PBS solution containing 137 mM sodium chloride, 2.7 mM
potassium chloride, 10 mM phosphate buffer, 1 mg/ml L-cysteine, and 1 �g/ml the oxygen indicator
resazurin, an oxygen indicator), centrifuged (6,000 � g, 4°C for 2 min), and resuspended in 600 �l
reduced PBS. The wash step was repeated two times until the microbial suspension was colorless. Then,
the microbial cell suspension was diluted 120-fold with reduced PBS. Five hundred microliters of the
diluted microbial suspension was transferred to a 1.5-ml tube to be stained for flow cytometry.

Microbial physiology profiling with flow cytometry. For a physiologic assessment of the micro-
biome after tempol exposure, we completed a flow cytometry analysis on incubated cecal contents. One
critical physiologic parameter is nucleic acid content. Generally, cells with high nucleic acid content
indicate more rapid transcriptional and metabolic activity and higher growth rate than do cells with low
nucleic acid content (53, 54). Fluorescent dyes, like SYBR green, stain single- and double-stranded nucleic
acids regardless of cell membrane status. The microbial membrane status is an excellent physiologic
indicator of cellular damage, as loss of membrane integrity results in compromised selective permeability
and functionality. Propidium iodide (PI) is a nucleic acid dye used to determine the viability of cells (55,
56), as it cannot penetrate an intact cell membrane due to its biochemical properties. Oxonol dyes, like
bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC), can be used to assess the loss of membrane
polarity (57, 58), another indicator of cell damage. Normally, DiBAC is excluded from the cell, as both the
dye and phospholipid membrane are negatively charged. Once the membrane is depolarized and loses
membrane potential, DiBAC enters and binds to lipid-containing components. Another physiologic
feature of bacteria is metabolic activity, which can be measured by fluorogenic esterase substrates, like
carboxyfluorescein diacetate (CFDA) (12, 59, 60) and carboxyfluorescein diacetate succinimidyl ester
(CFSE) (61). Fluorogenic esterase substrate is converted by intracellular esterase into fluorescein analogs,
which are retained by cells. The strength of fluorescence corresponds to the enzymatic/metabolic
activity.

Four distinct fluorescent dyes that stain cells based on nucleic acid content (SYBR green I, 1� final
concentration, 15 min), membrane damage (PI, 40 �g/ml final concentration, 15 min; and DiBAC, 1 �g/ml
final concentration, 10 min) and biochemical activity (CFDA, 10 �M final concentration, 30 min) were
applied to the microbial suspension in the dark and under strict anaerobic conditions. All cytometric
analyses were made using an Accuri C6 flow cytometer (Becton, Dickinson, Franklin Lakes, NJ) equipped
with a solid-state 488- nm laser with standard filter setup. SYBR green I (488/520 nm), DiBAC (488/516
nm), and CFSE (488/517 nm) fluoresce in the green channel (FL1), and PI (488/620 nm) fluoresces in the
yellow channel (FL2). Data were analyzed with the FlowJo software (version 10;). Cell growth and
transcriptional activity were assessed by SYBR green, metabolic activity was indicated by CFDA, and PI
and DiBAC were used as indicators of a compromised membrane and cell damage. Microbial suspension
with a pH adjusted to 4 with 12 M HCl was used as a positive control for damaged microbial cells.

1H NMR metabolomics profiling. The microbiota suspension saved after 4 h of incubation was used
for 1H NMR spectroscopy. One milliliter of microbiota suspension was centrifuged at low speed (700 �
g, 4°C for 1 min) to pellet down large particles. The maximum supernatant volume was transferred to a
new tube and centrifuged at high speed (6,000 � g, 4°C for 3 min) to pellet down bacteria. The microbial
pellet was washed two times with PBS. After the third wash, 1 ml of precooled methanol-H2O (2:1
[vol/vol]) and 1.0-mm-diameter zirconia/silica beads (BioSpec, Bartlesville, OK) were added to the
microbial pellet, followed by homogenization (6,500 rpm, 1 cycle, 60 s) using the Precellys tissue homog-
enizer (Bertin Technologies, Rockville, MD). The homogenized sample was freeze-thawed three times
with liquid nitrogen and a 37°C water bath, and then it was homogenized again and sonicated for 15 min
at 250 W with a Branson 1510 ultrasonic cleaner (Branson Ultrasonics, Danbury, CT) to rupture microbial
cell walls and release intracellular metabolites. The sample was centrifuged (11,180 � g, 4°C, and 10 min),
and the supernatants were transferred to a new 2-ml tube. Another 1 ml methanol-H2O (2:1 [vol/vol]) was
added to the pellets, and the extraction procedure was repeated. All supernatants were combined, dried
down, and reconstituted in 600 �l of PBS (K2HPO4/NaH2PO4, 0.1 M [pH 7.4], containing 50% D2O and
0.005% [3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid] TSP-d4 as an internal standard). Following
centrifugation (13,000 � g, 4°C, 10 min), 550 �l of each extract was transferred into a 5-mm NMR tube
for analysis.

1H NMR spectra of extracted samples were acquired at 298 K on a Bruker NMR spectrometer (600 MHz
for 1H) configured with a 5-mm inverse cryogenic probe, as previously described (9). In brief, a standard
one-dimensional nuclear Overhauser enhancement spectroscopy (NOESY)–presaturation pulse sequence
was employed, with irradiation at the water frequency during the recycle and mixing time delays to
suppress the water signal. The 90° pulse length was adjusted to approximately 10 �s (9.6 dbW), and 64
transients were collected into 64 K data points for each spectrum, with a spectral width of 16 ppm. For
the resonance assignment, a two-dimensional NMR spectroscopy was performed, including 1H–1H
correlation spectroscopy (COSY), 1H–1H total correlation spectroscopy (TOCSY), 1H-13C heteronuclear
single quantum correlation (HSQC), and 1H-13C heteronuclear multiple-bond correlation (HMBC) spectra.

1H NMR spectrum processing and multivariate data analysis were performed as previously described
(36). Briefly, 1H NMR spectral quality was improved by phase, baseline correction, and calibration
referenced to TSP-d4 (� 0.0) using TopSpin 3.0 (Bruker BioSpin, Germany). The NMR spectra then were
processed using the AMIX 3.9.14 software (Bruker BioSpin). The spectral region at �0.5 to � 9.0 was
bucketed into 0.004-ppm bins. The residual water signal (region �4.2 to 5.2) was discarded prior to
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normalization. The binned spectral data were normalized to the sum of the total intensity of the
spectrum prior to the multivariate analysis. Multivariate data analysis was performed on the normalized
binned NMR data with SIMCA 13 (Umetrics, Sweden). Principal-component analysis (PCA) was done first,
with the score plots showing intergroup separation and the possible presence of outliers. Then,
orthogonal projection to latent structures with discriminant analysis (OPLS-DA) was performed with a
7-fold cross-validation method using UV scaling. R2X and Q2 values generated from the model fitting
represent the predictive power and validity of the models, respectively. The validation of the OPLS-DA
model was further confirmed by cross-validated analysis of variance (CV-ANOVA) (implemented in SIMCA
13). To facilitate interpretation of the results, color-coded loading plots using Pearson linear correlation
coefficients of variables from OPLS-DA loadings were generated by MATLAB (MathWorks, Inc., Natick,
MA). The hotness of the color represents the significance of the metabolite contribution to intergroup
separation, with a “hot/red” color being more significant than a “cold/blue” color. A cutoff value of |r| �
0.754 (r � 0.754 and r � �0.754) was used as significant based on the discrimination significance (P �

0.05).
LC-MS metabolomics profiling. Six hundred microliters of bacterial suspension after 4 h of incu-

bation was centrifuged (700 � g, 4°C for 1 min), and supernatants were transferred to a new tube,
centrifuged (6,000 � g, 4°C for 3 min), and washed 3 times with PBS. After the final centrifugation, 1 ml
cold 50% aqueous methanol containing 1 �M chlorpropamide and 1.0-mm-diameter zirconia/silica
beads (BioSpec, Bartlesville, OK) were added to the microbial pellet, followed with homogenization
(6,500 rpm, 1 cycle, 60 s). The sample was freeze-thawed three times with liquid nitrogen to break apart
the tough microbial cell wall. Then, the sample was centrifuged (maximum speed, 4°C, and 10 min),
supernatants were transferred to a new Eppendorf tube, dried down, and resuspended in 200 �l of 3%
aqueous methanol. After a final spin (maximum speed, 4°C, and 10 min), 150 �l of supernatants was
transferred to an autosampler for LC-MS analysis.

Metabolomics profiling was performed with a Dionex Ultimate 3000 quaternary high-performance
liquid chromatography (HPLC) pump, column compartment, and autosampler-coupled Exactive Plus
Orbitrap mass spectrometer controlled by Xcalibur 2.2 software (Thermo Fisher Scientific, Waltham, MA).
LC-MS was run with a modified ion pairing reversed-phase (RP) negative-ion electrospray ionization
method (62). A total volume of 10 �l of sample is injected and separated on a Hydro-RP C18 column
(100 by 2.1 mm, 2.5 �m particle size; Phenomenex, Torrance, CA) using a water/methanol gradient with
tributylamine and acetic acid added to the aqueous mobile phase to enhance separation. The HPLC
column is maintained at flow rate of 200 �l/min with the temperature of 30°C. The solvents and gradient
are as follows: solvent A is 3% aqueous methanol with 10 mM tributylamine and 15 mM acetic acid, and
solvent B is 100% methanol. The gradient is 0 min, 0% B; 5 min, 20% B; 7.5 min, 20% B; 13 min, 55% B;
15.5 min, 95% B; 18.5 min, 95% B; 19 min, 0% B; and 25 min, 0% B. The Exactive Plus is operated in
negative-ion mode at maximum resolving power (140,000) and scans from m/z 72 to 1,000 for the first
90 s and then from m/z 85 to 1,000 for the remainder of the chromatographic run for the detection of
small-molecule metabolites.

Orbitrap LC-MS data were analyzed with the open-source software pipeline MS-Dial (63). An in-house
library generated from 288 pure metabolite standards was used for peak identification, with a strict
accurate mass tolerance of 0.002 Da (5 ppm at mass of 400) and retention time (RT) tolerance of 0.5 min.
Raw integrated data were normalized to chlorpropamide (m/z 275.0262; RT, 16.91 min). Filtering
methods were applied to remove features with greater than 50% gap filling, and their peak areas were
less than the background signal of blank injection. Chemical and biochemical similarities among
identified compounds were calculated using MetaMapp (64). Biochemical mapping was calculated
based on the KEGG reactant pair database, and chemical mapping was obtained from substructure
comparison in the PubChem database using Tanimoto chemical similarity. For the visualization of
biochemical and chemical mapping, Cytoscape was used. The P value from the statistical t test and
fold change can show node color (related to up- and downregulation) and node size related to the
absolute value of fold change. MetaboAnalyst (http://metaboanalyst.ca) (65) is used for metabolite set
enrichment analysis, which identifies metabolite pathways using KEGG pathway information. For the
metabolic profile visualized with a heatmap, Z-scores were created with the equation z � (x � x=)/[SD(x)],
where x represents the individual metabolite level, x= is the average value for the metabolite across all
groups, and SD(x) is the standard deviation of the metabolite across all groups. All shown identified
metabolites are significant at a P value of �0.05 from Student’s t test in high-tempol group relative to
the control. Heatmaps were created with the heatmap.2 function from the gplots package in R.

Quantitative PCR analysis. (i) Standard curve construction. Escherichia coli (wild type [WT] strain
MG1655) was cultured in Luria-Bertani medium at 37°C and 220 rpm in the incubator overnight.
Spectrophotometer readings at an optical density at 600 nm (OD600) were obtained (Eon microplate
spectrophotometer; Bio-tek) to estimate bacterial numbers. A series of diluted E. coli media (dilution
degree is based on estimated bacterial numbers) were cultured on LB agar plates under the same
conditions (24 h at 37°C). All plate cultures were analyzed in triplicate. The colony counts were averaged
to determine the total bacterial number, represented as CFU. In parallel, DNA from the same E. coli
culture was extracted using the E.Z.N.A. stool DNA kit (Omega Bio-tek). Quantitative PCR assays
were carried out using 16S rRNA universal primers (8F, 5=-AGAGTTTGATCCTGGCTCA-3=; 338R, 5=-
CTGCTGCCTCCCGTAGGAGT-3=) on serially diluted DNA with Fast SYBR green qPCR master matrix on an
ABI Prism 7900HT Fast real-time PCR sequence detection system (Applied Biosystems, Foster City, CA).
The reactions were analyzed according to the ΔΔCT method. qPCR conditions were 95°C for 20 s, 95°C for
3 s, and 60°C for 30 s, for 45 cycles. A standard curve was constructed with the threshold cycle (CT) value
versus the microbial number.

Establishing Measures of Gut Microbiome Toxicity

November/December 2018 Volume 3 Issue 6 e00123-18 msystems.asm.org 11

http://metaboanalyst.ca
msystems.asm.org


(ii) Bacterial quantification. Microbial DNA from cecal contents (50 mg) was extracted using the
E.Z.N.A. stool DNA kit (Omega Bio-tek). DNA concentration was determined using a NanoDrop spectro-
photometer and diluted in diethyl pyrocarbonate (DEPC) water at a concentration of 1 ng/�l. DNA was
then subjected to quantitative PCR using Fast SYBR green with the indicated universal 16S rRNA primers,
PCR conditions, and ΔΔCT method described above. CT values were substituted into a standard curve. The
final results were expressed as bacterial number per milligram of microbial pellet. For relative specific
bacterial quantification, specific primers were utilized instead of the universal primer (Table S2).

Statistical analysis.

Graphical illustrations and statistical analyses were performed using Prism version 6,
Microsoft Excel (2016), and RStudio (1.1.419). All data values were expressed as the
mean � standard deviation (SD). Statistical significance was defined as a P value of
�0.05. Pearson correlation analysis was used to investigate the relationships between
stain intensity and metabolite levels across all three doses (low, medium, and high).
Statistical significance was determined by transforming the Pearson r values into t
values and then using t distributions to determine P values. The equation used to find
the statistical significant cutoff was r � t/	(t2 � n � 2), where r is the correlation value
and n is the number of subjects. In this experiment, n was equal to 24. The t value was
found by using the Excel function tinv (0.05,22), where 0.05 represents a P value of 0.05
and 22 is the degrees of freedom for this experiment (n � 2). Results were shown using
the heatmap.2 function from the gplots package in R.

Data availability.

The mass spectrometry and NMR data have been deposited in the Metabolomics
Workbench (http://www.metabolomicsworkbench.org/) under project ID PR000681.
The data can be accessed directly via its project doi, https://doi.org/10.21228/M8NH4G.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00123-18.
FIG S1, TIF file, 0.5 MB.
FIG S2, TIF file, 0.4 MB.
FIG S3, TIF file, 2.1 MB.
TABLE S1, TIF file, 0.6 MB.
TABLE S2, TIF file, 0.4 MB.
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