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The appearance of farming, from its inception in the Near East around

12 000 years ago, finally reached the northwestern extremes of Europe by

the fourth millennium BC or shortly thereafter. Various models have been

invoked to explain the Neolithization of northern Europe; however, resol-

ving these different scenarios has proved problematic due to poor faunal

preservation and the lack of specificity achievable for commonly applied

proxies. Here, we present new multi-proxy evidence, which qualitatively

and quantitatively maps subsistence change in the northeast Atlantic archi-

pelagos from the Late Mesolithic into the Neolithic and beyond. A model

involving significant retention of hunter–gatherer–fisher influences was

tested against one of the dominant adoptions of farming using a novel

suite of lipid biomarkers, including dihydroxy fatty acids, v-(o-alkylphenyl)-

alkanoic acids and stable carbon isotope signatures of individual fatty acids

preserved in cooking vessels. These new findings, together with archaeozoo-

logical and human skeletal collagen bulk stable carbon isotope proxies,

unequivocally confirm rejection of marine resources by early farmers

coinciding with the adoption of intensive dairy farming. This pattern of

Neolithization contrasts markedly to that occurring contemporaneously in

the Baltic, suggesting that geographically distinct ecological and cultural

influences dictated the evolution of subsistence practices at this critical

phase of European prehistory.
1. Introduction
The mechanism of the Neolithization of northwestern Europe has been debated

for many years, with some arguing that Mesolithic inhabitants were prime

movers, adopting domesticated animals and plants from their Continental

neighbours, but retaining much of their own lifestyle [1]. Others argue that

these domesticates were introduced as part of a novel package by immigrant

farming groups from the Continent, followed by a rapid spread of Neolithic

ideas [2,3]. In this ‘colonization’ scenario, a rapid acculturation of indigenous

hunter–gatherer–fisher groups is envisaged, with key evidence derived from

the stable carbon isotope signatures from Mesolithic and Neolithic human

bone collagen. These reveal a marked difference in diet between Mesolithic

and Neolithic coastal inhabitants, with enriched d13C values in the former

suggesting a significant marine protein component, while Neolithic individuals

display predominantly terrestrial values [4,5].

While the faunal assemblages and strong marine isotopic signature in skel-

etal remains from coastal Late Mesolithic Britain are unambiguous, criticism

has been levelled at the interpretation of low or non-existent contributions

of marine products to the Neolithic diet. This is owing, in part, to the lack of
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Table 1. Pottery from coastal and island locations included in this study.

date period region
assemblages
(n)

sherds
(n)

visible
deposits (n)

residues
further
analysed (n)

.4600 BC Early Neolithic Channel Isles 5 22 1 8

.3700 BC Early Neolithic mainland northern Britain, Isle

of Man, island of Ireland

14 218 12 124

3600 – 2900 BC Middle Neolithic Outer Hebrides, Northern Isles,

mainland northern Britain,

island of Ireland

15 205 26 104

2900 – 2300 BC Late Neolithic Northern Isles, mainland

northern Britain, Isle of Man,

island of Ireland

14 272 28 172

2280 – 800 BC Bronze Age Outer Hebrides, Northern Isles,

Isle of Man

6 79 8 40

800 BC – AD 800 Iron Age Outer Hebrides, Northern Isles 6 162 25 100

AD 800 – 1400 Viking/Norse Outer Hebrides, Northern Isles 3 123 42 95

S 63 1081 142 643
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sensitivity of the bulk collagen stable isotope approach for

low-protein diets combined with possible scrambled routing

of dietary carbon, which could render low quantities of

marine protein (less than 20%) isotopically invisible [6,7].

Furthermore, it has been argued that possible Neolithic

shell middens from Ireland and Scotland point to continued

marine resource consumption, and the possibility has been

raised that the skeletons investigated isotopically were not

representative of the Neolithic population of Britain [6,8];

however, these critiques have been robustly rebutted [9].

In view of this controversy, we sought independent evi-

dence based on the biomolecular and isotopic compositions of

lipids preserved in prehistoric pottery from insular and coastal

locations from the eastern North Atlantic, including mainland

Britain, the Scottish isles and the isles of Man and Ireland (see

electronic supplementary material, figure S1). This is a highly

sensitive means of investigating the significance of marine pro-

duct processing in pottery. Although the characteristic long-

chain polyunsaturated fatty acid (PUFA) distributions of fresh

marine fats and oils are lost from degraded marine lipids

owing to rapid oxidation and polymerization, our recent

work has identified more stable marine biomarkers, including

v-(o-alkylphenyl)alkanoic acids (APAAs) [10,11] and vicinal

dihydroxy acids (DHYAs) [11,12] originating from the degra-

dation of poly- and monounsaturated fatty acids, respectively.

While APAAs require heating for formation [11,13], in the

case of DHYAs heat is unnecessary because oxidation of mono-

unsaturated fatty acids occurs spontaneously at room

temperature [14]. These products preserve the carbon chain

length (and, for the latter, double-bond positions) of precursor

fatty acids and thus act as reliable proxies for the presence of

products containing significant concentrations of long-chain

PUFAs (i.e. marine or freshwater fats and oils). Although

these products may exist only at low concentrations, operating

the gas chromatograph/mass spectrometer (GC/MS) in

selected ion-monitoring mode (SIM; see the electronic sup-

plementary material, tables S1 and S2) greatly enhances
the sensitivity of the analyses such that picogram per gram

concentrations are routinely detectable.

Additionally, the determination of the d13C values of

n-alkanoic acids provides a robust signature of source(s)

of dietary carbon and the metabolism of organisms. Specifically,

ruminant species (cattle, sheep and goats) are separable from

non-ruminants (e.g. pigs); milk fats, moreover, are separable

from carcass fats, owing to more depleted d13C values exhibited

by octadecanoic acid in the former, resulting from its different

biosynthetic origins [15]. Fats and oils of marine origin would

exhibit higher d13C values than terrestrial species, which is con-

firmed by our investigation of approximately 100 aquatic

organisms from the North Atlantic (see the electronic sup-

plementary material, figure S2) [13]. Together, these molecular

and stable carbon isotope methods constitute a powerful

multi-proxy approach for testing theories relating to marine

and terrestrial resource processing in pottery vessels.

Our archaeological investigations focused on 1081 sherds

and 142 associated carbonized deposits, yielding roughly 650

sufficiently well-preserved lipid residues for biomolecular

and stable carbon isotopic analysis. A significant proportion

of the sherds (more than 400; approx. 40%) derived from 48

Neolithic assemblages were chosen to increase sensitivity at

this critical time. These sherds included pottery of: (i) Cari-

nated Bowl tradition, before 3700 BC; (ii) the secondary

expansion of the Neolithic to insular locations and Middle

Neolithic Hebridean, ‘Unstan’ and early Grooved Wares,

3600–2900 BC; and (iii) later Neolithic Grooved and Ronalds-

way Ware (2900–2300 BC; table 1; see the electronic

supplementary material, figure S1). Post-firing heat discolora-

tion, the incidence of sooting and the vessel shapes are

diagnostic that these types of Neolithic vessels were commonly

used for cooking, probably boiling. A longer chronological

dimension was obtained from coastal and insular northern

Britain, through the inclusion of 15 sites from the Bronze Age

to Norse period. Existing evidence from faunal assemblages

and human stable isotope information was also collated. This
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allowed three strands of proxy evidence for subsistence patterns

to be aligned for this region, and hence chronological trends to

be studied over 5000 years of prehistory.
.royalsocietypublishing.org
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2. Material and methods
(a) Solvent extraction
Any visible carbonized deposits were first removed using a

solvent-cleaned scalpel. Small portions of the external surfaces of

sherds were then cleaned using a modelling drill before the

piece was removed using a chisel. Carbonized residues and

cleaned sherd fragments were crushed in a solvent-washed

mortar and pestle, and an internal standard added (10 or 20 mg

n-tetratriacontane to the carbonized deposit or sherd fragment,

respectively) prior to solvent extraction using 2 � 5 ml (carbonized

residue) or 2 � 10 ml (sherd fabric) CHCl3/MeOH (2 : 1 v/v) via

sonication (20 min). After centrifugation, the solvent was decanted

and blown down to dryness under a gentle stream of N2.

(b) Alkaline extraction
The ‘bound’ fraction from selected sherds was released through

the alkaline extraction of solvent-extracted pottery using 5 ml

0.5 M NaOH/MeOH in DCM-extracted double-distilled water

(9:1 v/v; 708, 1 h). After acidification to pH 3 using 3 M aqueous

HCl, ‘bound’ lipids were extracted using 3 � 3 ml DCM.

(c) Preparation and analysis of trimethylsilyl ethers
and esters

Aliquots of the solvent and alkaline extracts were filtered through

a silica column and treated with 40 ml N,O-bis(trimethylsilyl)tri-

fluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride

(708, 1 h). These derivatives were analysed using high-temperature

gas chromatography, using a GC fitted with a high-temperature

non-polar column (DB1-HT; 100% dimethylpolysiloxane, 15 m �
0.32 mm i.d. 0.1 mm film thickness). The temperature programme

comprised a 508C isothermal hold followed by an increase to 3508
at 108 min21, followed by a 10 min isothermal hold. Alkaline

extracts were immediately introduced via a split/splitless injector

onto a GC/MS fitted with a non-polar column (100% dimethyl

polysiloxane stationary phase; 60 m � 0.25 mm i.d. 0.1 mm film

thickness). The instrument was a ThermoFinnigan single quadru-

pole TraceMS run in EI mode (electron energy 70 eV, scan time of

0.6 s). Samples were first run in full scan mode (m/z 50–650) and

then SIM, scanning for the two cleavage fragments and [M-15]þ

ions for the most common positional isomers of C18–C22 DHYAs

(see electronic supplementary material, table S2) within the appro-

priate retention time windows. The temperature programme

comprised an isothermal hold at 708 for 2 min, ramping to 2208 at

108 min21, followed by the second ramp at 48 min21 to 3008, with

a 10 min isothermal hold.

(d) Preparation and analysis of fatty acid methyl esters
Aliquots of the total lipid extract were hydrolysed (0.5 M NaOH/

MeOH; 708, 1 h). The neutral fraction was removed (3 � 3 ml

hexane) followed by acidification to pH 3 using 1 M aqueous

HCl and the extraction of free fatty acids (3 � 3 ml CHCl3). Fatty

acids were methylated using 100 ml BF3/MeOH (14% w/v, 758,
1 h) and extracted (3 � 2 ml CHCl3). Fatty acid methyl esters

were analysed using a GC/MS fitted with a polar column, with

the MS operated in full scan (m/z 70–650) and SIM (m/z 105,

262, 290, 318 and 346 to determine APAAs) modes.

The d13C values of individual fatty acids were determined

using GC-combustion-isotope ratio MS (GC-C-IRMS). Analyses

were performed using a Varian 3400 GC coupled to a Finnigan
MAT Delta-S IRMS with a modified Finnegan MAT interface, Cu

and Pt wires (0.1 mm o.d.) in an alumina reactor (0.5 mm i.d.).

Samples were injected via an SPI injector onto a non-polar

column (CP-Sil CB, 100% dimethylpolysiloxane, 50 m � 0.32 i.d.

0.1 mm film thickness). The temperature programme consisted of

a 2 min isothermal hold at 508 and then ramped at 108 min21 to

3008C followed by a 10 min isothermal hold. Results were cali-

brated against reference CO2, which was injected directly into

the source three times at the beginning and end of the run. All

samples were run in duplicate with external standards every

four runs; any runs of unacceptable integrity were discarded

and repeated. The d13C values were derived according to the fol-

lowing expression and are relative to the international standard

vPDB: d13C‰¼ ((Rsample– Rstandard)/Rstandard) � 1000, where

R ¼ 13C/12C. The d13C values were corrected for the carbon atoms

added during methylation using a mass balance equation [16].
3. Results and discussions
(a) Marine biomarkers
Over 300 Neolithic residues from coastal locations on northern

Britain and the smaller isles of Orkney, Shetland, North

and South Uist, Lewis and Man were investigated using high-

sensitivity GC/MS-SIM. Lipid residues typically displayed com-

positions of saturated carboxylic acids consistent with degraded

animal fats (see the electronic supplementary material, figure

S3), with the incidence of a distinctive series of mid-chain

ketones (e.g. approx. 30% of Early Neolithic residues) indicating

that the fats extracted were regularly reaching temperatures in

excess of 2708C [17,18]. Nonetheless, long-chain DHYAs and

APAAs were detected in just two sherds, one from Moray on

the Scottish mainland and one from South Uist on the Outer

Hebrides (figure 1). The near-complete absence of aquatic bio-

markers in the Neolithic pottery residues was supported by

stable carbon isotope signatures of n-alkanoic acids, which

reflect a predominantly ruminant origin for the majority of fats

(figures 1a–c and 2; electronic supplementary material, table S3).

Such low prevalence of marine biomarkers in these pottery

residues, less than 1% from over 40 sites, is inconsistent with

significant exploitation of aquatic resources throughout the

Neolithic. Moreover, the composition of organic residues

from the post-Neolithic pottery demonstrates that biomarkers

of aquatic origin remain rare over the subsequent 2 millennia.

No evidence for marine product processing, based on long-

chain DHYAs and APAAs, was identified from 40 sherds of

Bronze Age pottery, and marine biomarkers and more

enriched stable carbon isotope signatures only re-emerge by

the Late Iron Age (figure 1d,e). By the Viking and Norse

period, from which nearly 100 sherds were investigated,

marine biomarkers are considerably more widely detected in

pottery (approx. 40% sherds; figures 1–3).
(b) Dairy product processing
While aquatic commodities were rarely identified in the lipid

residues of Neolithic pottery of the northeast Atlantic archipe-

lagos, the intact triacylglycerols often exhibited a wide acyl

carbon number distribution. This distribution is characteristic

of dairy-derived fats, arising from the higher abundance of

lower carbon number (C12–C14) fatty acids in milk fats com-

pared with adipose fats. The stable carbon isotope signatures

confirmed an overwhelming predominance of dairy products

associated with Neolithic pottery throughout the northeast



ruminant dairy fats

ruminant
adipose fats

porcine fats

ruminant dairy fats

ruminant
adipose fats

porcine fats

–34 –28 –22 –16–34 –28 –22 –16–34 –28 –22 –16

ruminant dairy fats

ruminant 
adipose fats

porcine fats

d13C
16:0

 (‰)d13C
16:0

 (‰) d13C
16:0

 (‰)

marine fats marine fats marine fats

ruminant dairy fats

ruminant
adipose fats

porcine fats

–34

–28

–22

–16

d13
C

18
:0
 (

‰
)

–34

–28

–22

–16

d13
C

18
:0
 (

‰
)

marine fats

ruminant
adipose fats

porcine fats

marine fats

ruminant dairy fats

ruminant
adipose fats

porcine fats

marine fats

(a) (b)

( f )(e)(d )

(c)

(h)(g) (i)

dairy fat
carcass fat

n = 32

n = 23

n = 10

n = 37

n = 18

n = 28

n = 41 n = 129

n = 15

n = 19

n = 62 n = 53

n = 9

n = 60 n = 18 n = 8

dairy fat
carcass fat

ruminant dairy fats

Figure 1. Prevalence of marine and dairy fats in prehistoric pottery determined from lipid residues. (a – f ) Scatter plots show d13C values determined from C16:0 and
C18:0 fatty acids preserved in pottery from northern Britain (red circles), the Outer Hebrides (yellow circles) and the Northern Isles of Scotland (blue circles), dating to
(a) Early Neolithic, (b) Mid/Secondary expansion Neolithic, (c) Late Neolithic, (d ) Bronze Age, (e) Iron Age and ( f ) Viking/Norse. Star symbol indicates where aquatic
biomarkers were also detected. Ellipses show 1 s.d. confidence ellipses from modern reference terrestrial species from the UK [19] and aquatic species from North Atlantic
waters [13]. (g – i) Maps show the frequency of dairy fats in residues from Neolithic pottery from (g) Early Neolithic, (h) the Middle Neolithic/Secondary expansion and
(i) Late Neolithic. Additional data from isotopic analysis of residues from Neolithic southern Britain (n ¼ 152) and Scotland (n ¼ 104) are included [19,20].

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132372

4

archipelago (figure 1a–c,g–i). During the earliest Neolithic,

dairy fats comprised some 80% of lipid residues identified in

pottery vessels (figures 1 and 3) and thus strong evidence

now associates the introduction of the earliest pottery with
the exploitation of secondary (liquid) animal products.

At more northerly and westerly locations in the northeast

Atlantic archipelago, this pattern was maintained into the

Late Neolithic; however, on mainland England and Scotland
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the prevalence of dairy fats dropped by the later part of the

third millennium BC, with terrestrial carcass products starting

to play a more predominant role (figures 1i and 3d). Contri-

butions from wild terrestrial fauna (notably deer) can be

discounted, since they typically make up less than 10% of

faunal assemblages on the Western Isles of Scotland [30] and

are sparse on Ireland (1–3%) until the Later Neolithic [31].

(c) Environmental effects
The non-parametric Mann–Whitney U-test (SPSS v. 21) was

run to determine whether there was any significant difference

between the d13C values of Neolithic milk (D13C � 23.4‰)

fatty acids from island compared with mainland coastal

locations. Analysis of milk residues only was chosen in order

to remove any possibility of different types of fat affecting

the analysis. Distributions of d13C values from island and

mainland locations were similar, as assessed by visual inspec-

tion, for both C16:0 and C18:0 fatty acids, and the dataset did not

deviate significantly from the assumptions required for a

Mann–Whitney U-test. Interestingly, an offset is observed

between the range of compound-specific d13C values from

the smaller and larger island masses. The median d13C value

was statistically significantly higher for both fatty acids from

island locations (n1 ¼ 129, C16:0¼ 227.0‰, C18:0¼ 232.0‰)
compared with mainland locations (n2 ¼ 67, C16:0¼ 228.1‰,

C18:0¼ 233.3‰; C16:0 U ¼ 1454.5, z¼ 27.612, p , 0.001;

C18:0 U ¼ 1446.5, z ¼ 27.633, p , 0.001).

These differences between the absolute values of fatty acids

from milk fats can probably be explained by the greater rela-

tive expanse of coastline. More saline conditions, which are

encountered at shoreline locations, are known to cause stoma-

tal closure and hence higher stable carbon isotope signatures

in the terrestrial non-halophytic plants [32,33]. This would be

incorporated into the tissues of herbivore consumers, thus

explaining the higher d13C signatures in the herbivore fats in

Hebridean, Shetlandic and Orcadian pottery.
(d) Intercomparison of pottery lipid, human stable
isotope and faunal proxies

Comparing these lipid biomarker proxies with our synthesis of

faunal and human skeletal stable carbon isotope data from the

northern island and coastal sites further confirms that marine

products were of low importance during the Neolithic compared

with those of terrestrial origin (figure 3). Indeed, significant pro-

portions of aquatic biomarkers and more positived13C values are

only observed in Late Iron Age and Viking/Norse residues.

When viewed together with the archaeozoological evidence
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and human collagen d13C values from these later periods

(figures 1d–f, 2 and 3), our findings reveal that the immediate

shift in subsistence patterns in the earliest Neolithic was followed

by a gradual return to the inclusion of marine products over sub-

sequent millennia, reaching its highest levels by the Late Norse

period. By this point, greater regional variability in resource

exploitation is also observed, with a strong emphasis on proces-

sing of aquatic resources detected on Shetland, where it is likely

that intensive, possibly commercial fishing was undertaken [34].
4. Conclusion
To summarize, our findings provide unequivocal evidence

that marine products were of little overall importance to the

Neolithic farmers of the northeast Atlantic archipelagos, as

evidenced by (i) almost non-existent evidence for aquatic pro-

duct processing in pottery, (ii) low presence of aquatic species

in faunal assemblages from southern Britain [35] and the

Western and Northern Isles of Scotland (figure 3b), and (iii) col-

lagen stable carbon isotope signatures of Mesolithic and

Neolithic humans from Britain showing a terrestrial-based diet

of coastal-dwellers in the Neolithic (figure 3a) [4,5,21]. While

interpretations based on the stable carbon isotope values have

been challenged, our new evidence for a widespread intensive

dairy economy across the region provides an entirely plausible

explanation for the high terrestrial carbon isotope signal recorded

in human collagen and seemingly negates any arguments for

these farmers consuming low-protein diets that would be

required to mask a marine dietary contribution. Interestingly,

stable carbon isotope evidence from Middle Neolithic humans

from the Channel Isles [36] and our investigations of Early/

Early–Mid Neolithic pottery from Jersey, which are significantly

earlier and related to a northwest French Neolithic tradition

(table 1), produce much the same picture to the northerly sites.

This contrasts markedly with recent findings from Late

Mesolithic and Neolithic human bone stable isotopes and
organic residues from pottery from the Baltic region [37–39],

which indicate significant continuation of hunter–fisher–

forager activities alongside the adoption of domesticates.

Considering the broader impact of our findings, it should

be emphasized that: (i) the contrasting Neolithization trajec-

tories occurring contemporaneously in different regions (e.g.

northeast Atlantic archipelagos versus the Baltic) point to geo-

graphically distinct ecological, demographic and cultural

influences dictating the patterns of adoption of subsistence

practices at this key phase of European prehistory; (ii) the

rapid shift to an intensive dairy economy, persisting for several

millennia, is consistent with current theories concerning the

high abundance of lactase persistence among the modern

inhabitants of northwest European archipelagos, which are

predicated on high milk consumption driving the evolution

of the -13910*T allele, and would have been enhanced by the

practices introduced by the milk-producing dairy farming

populations identified herein [40–43]; and (iii) these findings

are relevant to the debated calcium absorption hypothesis,

which emphasizes milk consumption to be of particular impor-

tance for high latitude populations where low UV light exposure

can result in vitamin D deficiency and thus poor calcium absorp-

tion [44]. Given the absence of any indication of the consumption

of vitamin D-rich marine resources, the suggested calcium

absorption-stimulating effect of milk consumption may have

been critical in maintaining the fitness of these prehistoric farm-

ing populations. Notwithstanding the need for further work to

confirm the genetic characteristics and bone health of the early

dairying populations of the northwest European archipelago,

their continued success exploiting such marginal zones is

indisputable.
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