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Abstract: The regulation of early events in mammalian embryonic development is a complex process.
In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times
and these events are regulated by different genes that are expressed at specific times and locations.
The genes related to pluripotency and cellular differentiation, and growth factors that determine suc-
cessful embryonic development are different (or differentially expressed) among mammalian species.
Some genes are fundamental for controlling pluripotency in some species but less fundamental in
others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas
Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms
that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular
differentiation, growth factors are relevant in early development, and their effects also differ among
species, for example, insulin-like growth factor improves the blastocyst development rate in some
species but does not have the same effect in mice. Some growth factors influence genes related to
pluripotency, and therefore, their role in early embryo development is not limited to cell growth
but could also involve the earliest stages of development. In this review, we summarize the differ-
ences among mammalian species regarding the regulation of pluripotency, cellular differentiation,
and growth factors in the early stages of embryonic development.

Keywords: embryo; development; gene expression; growth factors; mammalian; molecular mecha-
nisms; pluripotency

1. Introduction

A successful pregnancy is a complex process that depends on different events that
occur in an embryo and the maternal environment. At the preimplantation stages, se-
quential expression of specific genes in the embryo enable it to implant in the maternal
endometrium, while failures in their expression or in their regulation cause pregnancy loss.
Therefore, there are considerable differences between spatial and temporal transcriptomes
and their regulatory pathways. After formation of the totipotent zygote, sequential cellular
divisions occur and the morula is developed [1]. During the morula stage (until the 16-cell
stage), the embryo is a compact sphere of cells where cell-to-cell tight junctions are first
established [2]. Shortly after, the blastocyst stage is reached and two areas are differenti-
ated: the inner cell mass (ICM), which is composed of the pluripotent epiblast (EPI) and
hypoblast (HP) cells in the gastrula stage, and the trophectoderm (TE), which later forms
the embryonic placenta. Blastocyst formation happens at different time points depending
on the mammalian species. In mice, blastocyst formation occurs approximately 3 days post
coitum; in rabbits and humans, it occurs around 3–6 days; in swine and horses, at 7 days;
and in cattle and goats, around 7–8 days [3–8]. Finally, effective implantation takes place
over a span of 6 days in pigs and 28 days in horses [9,10]. The precise genetic regulation of
all these processes and their underlying molecular mechanisms are not conserved across
species [1]. The differences between the time of embryonic development and implantation
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in mammal species are shown in Figure 1. Although these events occur at similar times
in some species, the expression of certain transcription factors and growth factors vary.
In other cases, the transcription factors and growth factors that have been found are the
same, but their regulatory mechanisms and pathways differ between species. To extend
the challenge of establishing pluripotent stem cells in domestic animals, it is necessary
to understand the establishment of pluripotency and how growth factors influence early
embryos. In this review, we focus on the most important factors that orchestrate early
stages in embryonic development and their species-specific gene regulatory patterns.
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2. Pluripotency Transcription Factors

One of the most critical transcription factors related to pluripotency and regulated by
the Wnt canonical pathway in several mammals is the Oct4 transcription factor (belonging
to the POU gene family, POU5F1 gene), which is expressed predominantly in pluripotent
cells [14,15]. This transcription factor is necessary to maintain pluripotency, but its presence
differs among species. In fact, Oct4 is expressed both in the ICM and TE in human,
mouse, rabbit, pig, sheep, and cattle preimplantation embryos [4,8,16–18]; however, early
development can be supported without Oct4 expression in bovines, so maternal Oct4
mRNA maintains its expression [19]. In goat embryos, the inhibition of Oct4 does not
affect blastocyst formation but does increase the expression of other genes, such as Nanog
homeobox (Nanog) [20]. The relative expression of Oct4 remains constant between the
oocyte and morula stage, and decreases in blastocyst in in vitro studies, indicating the
beginning of cellular differentiation. Factors such as Nanog and SRY-box transcription factor
2 (SOX2) are upregulated by the Wnt pathway in ICM around Day 8 in bovine embryos,
with one (SOX2) or two (Nanog) characteristic peaks of expression in goat embryos at the 8-
to 16-cell stage and later blastocyst stage, respectively. In this context, Nanog expression is
necessary for the proliferation of TE cells [5,15,21–23].

Ozawa et al. [24] analyzed gene expression between the ICM and the TE in bovine
embryos, and showed that Nanog and SOX2 presented similar expression patterns in bovine
embryos obtained from mice and humans. Nanog expression was higher in ICM than TE
in bovine expression, while Oct4 expression was similar, and Nanog is necessary for the
expression of SOX2 (marker of EPI cells), GATA6 (marker of HP cells), and CDX2 [25].
Oct4, Nanog, and SOX2 expression in bovine embryos is regulated by the exogen bone
morphogenetic protein 5 (BMP5) [26]. In human embryos, BMP5 and other BMPs regulate
different sets of developmental genes, such as GATA2, GATA3, and CDX2, and BMP10 is
the one with greater regulatory potential [27]. Recently, Naddafpour et al. [20] reported
that Oct4 inhibition in goat embryos increased the relative expression of CDX2. This gene
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presents an important function in mouse embryos, since, after TE formation, it inhibits
Oct4 expression in their cells and allows the differentiation of TE cells [28]. In fact, Oct4 is
not required to inhibit CDX2 expression in bovine and human ICM, but is necessary for the
expression of Nanog [19,29]. The molecular mechanism that maintains Nanog expression in
the absence of Oct4 is still unknown in mice. Additionally, GATA6 expression is repressed
by Oct4 to facilitate HP differentiation [30,31]. This inhibition in mice occurs by blocking
the MEK/ERK pathway, which leads to GATA6 downregulation in HP and depends on the
fibroblast growth factor (FGF) [32]. In humans, cattle, pigs, and rabbits, the segregation of
HP is independent of FGF [33–35]. MEK inhibition reduces the number of HP cells in mice
and rats, but not in humans, cattle, pigs, and rabbits [33].

Transcriptomic analyses of embryos from different species have identified additional
regulatory factors that modulate pluripotency and cellular differentiation in early devel-
opment. Bernardo et al. [36] compared pluripotency genes in mouse, pig, and bovine
embryos and found that around 82% of the genes were commonly expressed across the
three species studied. Regarding Oct4, Nanog, and SOX2 expression in the ICM, mice at
Day 3.5 showed expression levels similar to those of cattle and pigs at Day 7, and three
genes were upregulated between the transition from ICM to EPI in pigs and cattle, while
Nanog and SOX2 were downregulated and Oct4 was stable in mice [33]. For example,
bovine embryos upregulated 159 and 48 genes in the ICM and TE, respectively. Genes ex-
pressed differentially have been compared using gene ontology with mice and humans,
and species-specific pluripotency control in ICM was demonstrated [37]. In pigs, analysis
of individual cells by single-cell RNA sequencing showed expression of some species-
specific genes, such as paired box 6 (PAX6), aquaporin 3 (AQP3), and in late blastocyst,
clathrin adaptor protein (DAB2), platelet-derived growth factor receptor alpha (PDGFRA),
fibronectin 1 (FN1), hepatocyte nuclear factor 4 alpha (HNF4F), goosecoid homeobox (GCS),
nuclear receptor subfamily 5 group A member 2 (NR5A2), and lysine acetyl-transferase 6A
(KAT6A) [38].

In summary, these findings indicate that although the control of pluripotency is mainly
carried out through the canonical Wnt/β-catenin and MER/ERK pathways, downstream
temporal and spatial development cues differ depending on the species.

3. Growth Factors and Early Development
3.1. Vascular Endothelial Growth Factor (VEGF)

Adhesion processes can be affected by growth factors that regulate vascularization
and cellular motility. One of these factors, vascular endothelial growth factor (VEGF) is
associated with de novo vascularization in a wide variety of processes, such as implan-
tation, embryogenesis, menstrual cycle, corpus luteum development, ovarian follicular
development, and tumorigenesis [39,40]. Initially, VEGF was characterized for its ability to
induce vascularity, permeability, and promote vascular endothelial cell proliferation [41].
Three families of VEGF proteins and their corresponding receptors have been characterized
and the main receptors involved in the first steps of signal transduction cascades comprise
different tyrosine kinases receptors, such as VEGFR-1, VEGFR-2, and VEGFR-3 [42]. Across
species, some VEGF family members and receptors are found in placentomes, uterus tis-
sues, and oviduct, and in different species including humans, mice, rats, cattle, sheep, pigs,
and rabbits [43–50]. The in vivo administration of VEGF to goats and sheep stimulates
follicular growth and increases the number of preovulatory follicles [51]. Studies in vitro
have shown that VEGF supplementation in bovine and pig embryo culture improves
cytoplasmatic maturation and blastocyst development rates [52,53]. Recently, Liu et al.,
(2020) [54] showed that VEGF improved embryo development rates in vitro, on the one
hand, through activation of the MAPK pathway and, on the other hand, via inhibition of
the canonical Wnt pathway during the last step of oocyte maturation.

In the embryo, the expression of VEGF and its receptors (VEGFR-1 and VEGFR-2) are
also conserved in different species. For example, VEGF expression has been related to fetal
weight increase in porcine embryos [55], in which VEGF expression was detected in TE cells



Vet. Sci. 2021, 8, 78 4 of 16

at Day 14 of pregnancy [50]. VEGF, VEGFR-1, and VEGFR-2 mRNA have been found in
vitellin sacs and TEs of bovine embryos [49,56,57]. In humans, VEGF expression increases
in the late luteal phase, while in bovine corpus luteum, VEGF mRNA is upregulated in
the early luteal phase, and then is progressively downregulated until its levels increase
again during pregnancy [58,59]. In rabbits, VEGF expression increases around Day 6 of
pregnancy before implantation [8].

The role of VEGF in vascularization and fetal growth is known, but additional players
are gaining biological relevance in successful embryonic development and implantation in
mammals. For instance, a critical role of macrophage recruitment and embryo polarization
have been reported [60].

3.2. Transforming Growth Factor-Beta (TGF-β) Superfamily

Another relevant group of growth factors that are conserved across species before and
during implantation is the transforming growth factor-beta (TGF-β) superfamily. This su-
perfamily comprises regulating factors involved in growth and differentiation, for example,
bone morphogenetic proteins (BMPs), activin (Ac), nodal and gonadal hormone growth
factors, as well as inhibin (In) [61]. In particular, Ac plays an important role in cellular
differentiation, proliferation, and apoptosis [62]. Recently, Bloise et al. [63] published a
review and provided an in-depth analyses of the different functions of activin in human
reproduction. The authors described the different roles of Ac and highlighted its role
promoting endovascular differentiation in TE through VEGF stimulation. In summary, Ac
facilitates blastocyst union and TE penetration during the first stages of implantation in
humans and mice. These roles of the TGF-β superfamily have also been demonstrated
in other species, such as pigs, in which TGF-β regulates blastocyst differentiation and
maturation events, including modulating the interaction between the uterus and embryo
during implantation [64,65]. Another member of the TGF-β superfamily, growth differ-
entiation factor-8 (DGF-8), is involved in the expression of ICM marker SOX2 during
porcine embryo in in vitro development, indicating its role in preimplantation embryonic
development and pluripotency control [66]. In fact, TGF-β expression increases in the
porcine conceptus–maternal interface at the same time that the embryo is lengthened and
the fixation and implantation process begins [67]. In in vitro culture, the addition of TGF-β
superfamily factors, such as BMP-15, improves blastocyst development rates in sheep,
goats, and cattle [5,68,69]. In fact, expression of TGF-β in early bovine embryos (from
two- to eight-cell stages) has been shown to increase the relative abundance of Nanog,
suggesting an early role of TGF-β [70]. In rabbits, the relative expression of TGF-β increases
on Day 6 of pregnancy [8]; therefore, this early role of TGF-β could be species specific.
The activity of the TGF-β superfamily members is mediated through SMAD signaling in
humans and mice, and SMAD2 and SMAD3 are necessary for bovine early embryonic
development [71,72]. The AKT pathway seems to play an important role; therefore, SMAD
signaling might not be the only way to regulate TGF-β actions in bovine embryos [73].

3.3. Fibroblast Growth Factor (FGF) Family

The fibroblast growth factor (FGF) family members are involved in angiogenesis, em-
bryonic development, and have a role in controlling peri-implantation development [74–77].
Some FGF family members, such as FGF-3 and FGF-8, are related to the differentiation of
different tissues in the late stages of development, such as brain, liver, pancreas, and heart,
among other organs and tissues in mammals [78–83].

In human and mouse embryos, FGF promotes mesoderm formation and prolifera-
tion [84,85]. Recently, Guzzeta et al. (2020) demonstrated that a Hedgehog–FGF signaling
axis is required for anterior mesoderm lineage development during gastrulation [86]. In
mouse blastocyst, the expression of the FGF-2 receptor is observed, but not in human
blastocyst [87]. These data suggest that the expansion of TE in early development depends
on FGF in mice, and that this expansion, which is dependent on FGF, occurs more in late
stages in humans. The actions of FGF family members begin in the initial steps of repro-
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duction mechanisms, therefore, FGF-10 expression has been detected in theca cells and
ovarian stromal cells in humans [88], and FGF-2 and FGF-10 have been shown to increase
the survival and proliferation of cumulus cells, increasing blastocyst development rates
in bovine, sheep, and yak, in in vitro cultures [89–92]. Another family member, FGF-18,
seems to regulate steroidogenesis in the fetal ovary [93]. In the early development of
bovine embryos, FGF-2 regulates the expression of genes related to the development and
proliferation of ICM, such as Nanog and GATA6 [94]. In addition, FGF-1, FGF-2, and FGF-10
produced by TE control the expression of interferon tau (IFN-τ), favoring implantation in
cows [75]. FGF family members also play an important role in the early development of
pig embryos. FGF-4 regulates TE formation and elongation [95], and the amount of FGF-2
increases in endometrial tissues between Days 15 and 20 of pregnancy, demonstrating its
relevance in embryo elongation and implantation [45]. The mechanisms by which FGF
family members regulate all these events, and which are the most relevant factors in each
species, remain unknown. Table 1 summarizes the more important FGF family members
related to reproduction events, localization, and the species in which they are found.

Table 1. More important fibroblast growth factor (FGF) family members related to reproduction
events, localization in embryos, and the species in which they are found.

FGF Family Member Localization Species

FGF-1

Mesoderm Mouse [96]
Late embryo (Day 12.5) Mouse [82]

Trophectoderm Human [97]
Mesoderm Human [98]
Mesoderm Rat [99]

Trophectoderm Cattle [74]

FGF-2

Trophectoderm Human [97]
Mesoderm Rat [99]

Trophectoderm Cattle [74]
Ectoderm Pig [100]
Mesoderm Pig [100]
Endoderm Pig [100]

FGF-4 ICM Mouse [101]

FGF-6
Somites Mouse [102]

Myoblasts Mouse [103]

FGF-7 Trophectoderm Cow [104]

FGF-10
Trophectoderm Cattle [75]

Teca cells Human [88]

FGF-18 Late embryo (Day 30) Human [105]

FGF-23 Late embryo (Day 30) Human [105]

3.4. Insulin-Like Growth Factor (IGF) System

Insulin-like growth factors (IGFs) are polypeptides with insulin-like sequences with
mitogenic properties that induce proliferation and growth of somatic cells [106]. In addition,
fetal and placental growth are regulated by autocrine and paracrine IGFs and their receptors,
such as insulin-like growth factor receptor 1 (IGFR-1), insulin-like growth factor receptor
2 (IGFR-2), and insulin receptor (IR) in humans and mice [107]. IGFR-1 is an IR-like
tetrameric transmembrane protein with high affinity to IGF-1 and IGF-2 [108,109]. IGFR-2
is a simplex polypeptide with affinity only to IGF-2 [110].

IGF-1 and IGF-2 have been correlated to fetal, placental, and post-partum growth
in different species of mammals, including humans, rodents, cattle, sheep, pigs, and
dogs [111–115]. In vitro and in vivo studies have shown placental and fetal growth regu-
lation by autocrine and paracrine effect of IGF-1 and IGF-2, and their interactions with
IGFR-1, IGFR-2, and IR [107]. These factors and their receptors do not only influence
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fetal and placental growth but also regulate different signaling cascades to promote cel-
lular proliferation and differentiation in some reproductive steps [116,117]. In fact, IGF-2,
IGFR-1, IGFR-2, and IR are present in human and mouse oocytes, where an IGF/insulin
axis regulates gamete development [118,119]. This regulation differs between species, e.g.,
rat oocytes only express IGF-1 but not its receptor IGFR-1 [120], bovine oocytes express
two receptors, IGFR-1 and IGFR-2, and IGF-1 but not IGF-2 [121,122], and in dog, corpus
luteum presents a similar amount of IGFR-1, but expression of IGF-1 diminishes during
embryonic development [123]. In vitro studies have shown that the addition of IGF-1 in
culture oocyte medium improves maturation rate and embryonic development in sheep
by the PI3/AKT pathways, but the blastocyst development rate is not affected in sheep
and mice [124–126]. The PI3K/AKT pathway is activated by IGF-1 and IGFR-1, and IR
is secreted in early human embryos, whereas this pathway is activated by IGF-1 in the
trophectoderm of horses [127,128]. In fact, IGF-1 and IGF-2 are expressed by blastocyst in
several mammalian species (Table 2) [48,119,128–131].

Table 2. Spatiotemporal expression of insulin-like growth factors (IGFs) across mammalian species.

IGF System Compound Localization Species

IGF-1

Blastocyst Human [132], mouse [133], rat [134], cattle [135],
sheep [136], goat [137], rabbit [48], dog [138], buffalo [139]

Early embryo Human [140], cattle [129], horse [130]

Early placenta or pregnant
endometrium

Human [141], rat [142], rabbit [48], pig [143], dog [144],
horse [127]

IGF-2

Blastocyst
Human [119], mouse [145], rat [142], cattle [146],

sheep [137], pig [143], rabbit [48], goat [22], dog [138],
horse [130], buffalo [139]

Early embryo Cattle [129]

Early placenta or pregnant
endometrium Human [147], rat [142], rabbit [48], dog [144], cat [148]

IGFR-1

Blastocyst Human [119], mouse [133], rat [134], cattle [135],
sheep [136], rabbit [48], horse [130], cat [149], buffalo [139]

Early embryo Cattle [129]

Early placenta or pregnant
endometrium Dog [144], rabbit [48], rat [134]

IGFR-2

Blastocyst Human [119], rat [134], cattle [146], pig [143], goat [22],
rabbit [48], cat [149], horse [130], buffalo [139]

Early embryo Cattle [129]

Early placenta or pregnant
endometrium Rabbit [48], cat [148]

IR

Blastocyst Human [119], mouse [150], rat [134], rabbit [151],
cattle [150], sheep [136]

Early embryo Cattle [129]

Early placenta or pregnant
endometrium Rat [134]

Indeed, the addition of IGF-1 in culture medium activates the PI3K/AKT pathway
and improves blastocyst development rates in humans, cattle, goats, yaks, and horses
but not in mice and sheep [124,127,128,152–155]. Similar results have been observed with
the addition of IGF-2 in humans and cattle [156,157]. These results indicate that the IGF
system is related to placental, fetal, and postnatal growth in mammals and is also involved
in the process of cellular differentiation in early embryos. In fact, interactions between
IGF-2 and IGFR-2 have been shown to regulate homeobox genes controlling apoptosis
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in human and bovine TE cells [157,158]. Studies in yak early embryos have shown that
the addition of IGF-1 increased Bcl-2 expression (anti-apoptotic gene) and diminished
Bax expression (apoptotic gene), therefore, this regulation of apoptotic events occurs by
different compounds of the IGF system depending on the species [153]. A schematic of the
canonical pathway of apoptosis regulation by the IGF system is shown in Figure 2.
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activate the PI3K/AKT pathway, up- and down-regulating expression of anti-apoptotic and apoptotic genes, respectively.

Differences in IGF system control such as the fact that the addition of IGF-1 in culture
medium improves blastocyst development rates in some species but not in mice, or IGFR-2
expression in some mammalian blastocysts but not in mice and sheep, indicate relevant
alternative pathways of regulation by the IGF system. These results suggest that it would
be interesting to use species other than mice, such as bovine or rabbit, for the study of
human embryonic development.

3.5. Epidermal Growth Factor (EGF) Family

The epidermal growth factor (EGF) family comprises 13 polypeptide proteins that
bind to members of the four ErbB family receptors. These four receptors have the abil-
ity to bind different growth factors and molecules, and regulate different events such as
cell proliferation, migration, differentiation, and apoptosis [159]. Regarding reproductive
events, the best-known roles of EGF are in oocyte growth, maturation, and developmental
competence in mammals [160]. In cows, da Rosa et al. [161] demonstrated that inhibi-
tion of EGF receptors arrested oocyte development in the germinal vesicle stage, and
Sugimura et al. [162] determined that EGF was necessary to correct oocyte–cumulus com-
munication. Supplementation of medium with EGF increased oocyte maturation in goats,
whereas this improvement in oocyte maturation did not occur in pigs [163,164]. The re-
sults in early embryos have been contradictory according to the species and the study.
For example, in bovine embryos, in vitro culture supplementation of EGF and insulin-
transferrin-sodium selenite (a common complement for the in vitro culture), increased the
embryonic development rate and TE capacity of invasion [165]. In contrast with these
results, Dall’Acqua et al. [166] did not observe differences in blastocyst development rate
in in vitro culture with EGFR inhibitor, and they observed decreased apoptosis in early
embryos. These results could indicate that EGF alone does not improve blastocyst devel-
opment in cattle. Kelly et al. [155] found similar results in sheep; however, EGF seems to
improve embryo in vitro production in mice, goats, and pigs [155,163,167,168].



Vet. Sci. 2021, 8, 78 8 of 16

Some studies have demonstrated EGF and its receptors’ expression in the early em-
bryos of mice, rabbits, sheep, and pigs, but this expression does not exist in other mammals,
such as goats [48,169–172]. These data suggest that EGF has a role in embryonic develop-
ment that is species specific, although further studies are necessary to discover this role
and its mechanisms.

3.6. Other Growth Factors

In addition to the growth factors previously analyzed in this review, other factors
that affect early embryonic development and oocyte development have been found in
different mammalian species. For example, nerve growth factor (NGF) has a role in em-
bryonic development in sheep and oocyte development in rabbits [173,174]; growth factor
receptor-bound protein 10 (GRB10) plays a role in embryonic development in humans
and cattle [175,176]; hepatoma-derived growth factor (HDGF) promotes early blastocyst
development without bovine serum albumin (BSA) [177]; hepatocyte growth factor ac-
tivator inhibitor-1 (HAI-1) is necessary for human and murine TE function [178,179];
granulocyte–macrophage colony-stimulating factor (GMCSF) is secreted from cells of the
female reproductive tract in mice, accelerating the development of the blastocyst in vitro,
and the presence of this growth factor is related to the high proliferation and viability of
blastomeres [180]; and platelet-derived growth factor (PDGF) increases the development
of bovine and human embryos after the 16-cell stage and morula stage [181–183]. In vitro
studies have demonstrated an increase in human blastocyst development rate via supple-
mentation with other growth factors such as brain-derived neurotrophic factor (BNF), glial
cell-line derived neurotrophic factor (GCLDNF), and colony-stimulating factor (CSF) [183]
that reduce oocyte competence and exert a positive effect in Nanog and SOX2 expression in
bovine epiblast [184].

In summary, a large number of growth factors are related to embryonic develop-
ment, and there is still much to be investigated with regard to the roles they play during
development in different species of mammals.

4. Conclusions

During early embryonic development in mammals, several cellular and molecular
mechanisms are activated, each involving different transcription factors and growth factors,
related to pluripotency control, and cellular differentiation and growth. Some of these
events, however, are species-specific. Therefore, the interaction of these factors with
each other, and the metabolic pathways involved remain to be clarified. The use of
certain species, such as the mouse, to understand these mechanisms in early pregnancy
in humans should be reviewed since substantial differences between the two species are
evident. In addition, many questions about regulator genes of pluripotency and cellular
differentiation, and other molecules, such as growth factors as well as the interactions
among them in different mammalian species, remain to be answered.
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