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Abstract: In this work, we implement models that are able to describe complex rheological behaviour
(such as shear-banding and elastoviscoplasticity) in the HiGTree/HiGFlow system, which is a recently
developed Computational Fluid Dynamics (CFD) software that can simulate Newtonian, Generalised-
Newtonian and viscoelastic flows using finite differences in hierarchical grids. The system uses a
moving least squares (MLS) meshless interpolation technique, allowing for more complex mesh
configurations while still keeping the overall order of accuracy. The selected models are the Vasquez-
Cook-McKinley (VCM) model for shear-banding micellar solutions and the Saramito model for
viscoelastic fluids with yield stress. Development of solvers and numerical simulations of inertial
flows of these models in 2D channels and planar-contraction 4:1 are carried out in the HiGTree/HiGFlow
system. Our results are compared with those predicted by two other methodologies: the OpenFOAM-
based software RheoTool that uses the Finite-Volume-Method and an in-house code that uses the
Vorticity-Velocity-Formulation (VVF). We found an excellent agreement between the numerical
results obtained by these three different methods. A mesh convergence analysis using uniform and
refined meshes is also carried out, where we show that great convergence results in tree-based grids
are obtained thanks to the finite difference method and the meshless interpolation scheme used
by the HiGFlow software. More importantly, we show that our methodology implemented in the
HiGTreee/HiGFlow system can successfully reproduce rheological behaviour of high interest by the
rheology community, such as non-monotonic flow curves of micellar solutions and plug-flow velocity
profiles of yield-stress viscoelastic fluids.

Keywords: CFD; rheology; complex-fluids; viscoelasticity; shear-banding; yield-stress; elastovis-
coplasticity

1. Introduction

A large majority of fluids that are of great interest in the industry (for instance, in food,
pharmaceutic, plastic, oil and gas industries) exhibit viscoelastic behaviour, i.e., they show
both viscous and elastic responses to forces, and thus, their characterisation is essential to
estimate the ideal conditions to pump, mix and store them in industrial operations [1–5].
One of the key features of viscoelastic fluids is the presence of memory; stresses in such
fluids depend on the flow history. In addition, they generate stresses absent in their
Newtonian counterpart, resulting in interesting but complex flow phenomena.

More interestingly, complex fluids can also simultaneously display multiple rheologi-
cal behaviours. An example of this kind of fluid is a structured fluid, i.e., those materials
that contain more than one phase, such as solid particles dispersed in a liquid, suspensions,
and surfactant solutions, among others, whose complex behaviour is generally dominated
by the interactions between the components of the fluid. The most common example
of a structured fluid is a micellar solution (or surfactant solutions), which consists of a
dispersion of micelles in a solvent. These solutions have been studied theoretically and
experimentally over the last years by the rheology community, and they are also heavily
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used in the pharmaceutical, cosmetic and food industries. In addition, the rheological
behaviour of the micellar solutions makes them highly attractive in the industry, especially
in oil-recovery processes and drilling operations, since there is a need for drilling fluids,
which are specially designed fluids circulated through a wellbore as the wellbore is being
drilled to facilitate the drilling operation.

When surfactant molecules (which have a hydrophilic group (water-loving) that is
chemically bonded to a hydrophobic group (water-hating)) are in solution, they will self-
assemble into aggregates such as spherical and wormlike micelles, bilayers, among others.
Entangled solutions of wormlike micelles exhibit viscoelastic effects. However, they show
a special characteristic: at very low shear rates, their shear viscosity is constant, but more
importantly, they are characterised by a single stress relaxation time (unlike some polymer
solutions that exhibit a spectrum of relaxation times), yielding a near-Maxwell behaviour.
At higher shear rates, the entanglements may begin to break, so to model this complex fluid,
it is necessary to account for the reversible assembly and disassembly of the entangled
wormlike-chain solution, which is usually modelled using a kinetic equation or a mass-
balance equation [6–9].

Apart from viscoelasticity, these solutions can show another fascinating rheological
property. For instance, the steady, simple shear flow of a (initially entangled) wormlike
micellar solution is studied. At very low shear rates (γ̇ � γ̇1), the fluid exhibits a linear
dependence of the shear stress on the shear rate (i.e., Newtonian-like behaviour with high
viscosity). An increase in γ̇ will cause a drop in viscosity (shear-thinning), as viscosity
strongly depends on the applied shear rate.

Above a critical value of the shear stress, the initially homogeneous flow becomes
unstable, which will lead the system to separate into two bands with different internal
structures and different shear-rates values, γ̇1 and γ̇2, see Figure 1. These two bands are
separated by an interface whose normal is in the flow-gradient direction. This phenomenon
is called shear-banded flow or shear-banding transition, which describes a transition between
a homogeneous and non-homogeneous state. This rheological phenomenon is analogous to
the liquid-gas transition described by Van-der-Waals [6]. At very high shear rates (γ̇� γ̇2),
the theoretical models predict that the flow becomes homogeneous again, and the fluid will
display a single but smaller viscosity [7].
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Figure 1. Shear-banding flow. (a): flow curve σ vs. γ̇; (b): steady shear flow; (c): velocity profile v(y)
vs. y.

The critical stress value described above is called the stress plateau σp: below this value,
we observe entangled networks of micellar solutions; when the stress applied is σxy = σp,
separation of bands occurs, and they coexist at this point, and above this stress value, we
can idealise that the majority of entanglements will be destroyed, leading to flow-oriented
linear wormlike chains. The coexistence of the low and high viscosity bands has been
confirmed by different experimental techniques [10–13].

The non-monotonic curve shown in Figure 1a, which is the theoretical curve pre-
dicted by many constitutive equations, has interesting features: (1) in the banded region
(γ̇1 < γ̇ < γ̇2), a negative slope for the flow curve σ vs. γ̇ is seen, and homogeneous flow
is unstable there, triggering the formation of bands with different shear rate values, and
(2) a multivalued region (i.e., three different possible values of shear rate for a given value of
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shear stress). However, experiments have observed that real systems have well-defined
stress, which is the stress plateau σp. Thus, the real shear flow curve is composed of two
increasing stable homogeneous curves of high and low viscosities separated by a stress
plateau (horizontal line) extending between two shear rate values γ̇1 and γ̇2.

The modelling of shear-banding behaviour becomes challenging, but fortunately,
several different constitutive models have captured this flow curve. As Fielding [14] states,
these models can be divided into two classes: (a) phenomenological models, which can
capture the relevant physics of the phenomenon while using as few parameters as possible,
and (b) models that are derived by considering the dynamics of the molecular chains,
i.e., flow-induced changes on the structural level of the fluid. One of the most popular
phenomenological models is the Diffusive Johnson-Segalman (DJS) model [15,16], used
to describe shear-banding in dilute solutions of wormlike micelles. The stress tensor of
the JS model comprises the pressure, Newtonian solvent stress and non-Newtonian stress.
The last stress term is governed by a Gordon-Schowalter convected time derivative [17].

On the other hand, several models in the literature do consider these kinetic processes.
A common approach taken by some of the models found in the literature is to combine
dumbbell models and network theory by coupling viscoelastic governing equations and ki-
netic equations to break and reformate micellar solutions. One of the most popular models
is the Bautista-Manero-Puig (BMP) model [7,18,19], which consists of a codeformational
Maxwell constitutive equation coupled to an evolution equation for the internal structural
level of the fluid [20]. This model can accurately capture complex rheological behaviour,
such as shear-thinning and shear-thickening effects, thixotropy, viscoelasticity, plasticity
and the shear-banding phenomenon. Another constitutive equation used to model worm-
like micellar solution’s rheological behaviour was developed by Vazquez et al. [8,9], which
is a two-species reptation-reaction network model that incorporates the reformation and con-
tinuous rate-dependent breakage of the entangled viscoelastic network. More specifically,
they consider long elastic chains that can cause each break to form two short chains, which
can also recombine to form the long chain. This model can describe linear and non-linear
rheological behaviour before the onset of shear-banding. It also works well in predicting
start-up shearing flow and cessation of steady shear flow.

Another rheological behaviour of interest in the industry is plasticity or yield-stress fluid
flows, which occur in many operations and unit processes within the oil and gas industry [5],
such as reservoir flows of visco-plastic heavy oils, drilling operations, wellbore cementing,
among many others. In a few words, yield stress τ0 is defined as the minimum stress value
applied to a fluid before it starts to flow. If the applied stress is smaller than the yield stress,
the fluid will behave like a rigid solid (or material with extremely high viscosity). One
of the simplest models that describe this behaviour is the Bingham model, which strongly
influences the viscoplasticity literature since many more elaborated models have been
derived using the ideas of Bingham. The Bingham model states that a fluid initially resists
flowing until the shear stress exceeds the yield stress value. Once this condition is satisfied,
the fluid will flow as a Newtonian-like fluid (constant viscosity). In the Bingham model,
the solid-like and the liquid-like Newtonian contribution are combined as additive parts
of the total stress. The Newtonian fluid contribution can also be replaced by a non-linear
function of the shear rate; for instance, if a power-law dependence with the strain rate is
assumed, then a Herschel-Bulkley model with yield stress is derived, which is one of the
most representative and most used constitutive equations to describe viscoplasticity.

More complex yield-stress fluid models have been developed over the last years,
which have also incorporated other rheological phenomena, such as the model proposed
by Mujadmar et al. [21] (which incorporates thixotropy to a yield-stress equation), or the
model of Souza Mendes et al. [22], a thirteen-parameter model commonly used in the oil
and polymer industry due to its ability to model multiple rheological flows (visco-elasto-
thixotropic materials with yield stress).
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A simpler model for elastoviscoplastic fluids was proposed by Saramito [23], which ex-
tends both the Bingham and the Oldroyd-B viscoelastic models. One year later, Saramito [24]
extended his previous model, where he derived a model that combines the Oldroyd-B
model with a Herschel-Bulkley viscoplastic model with a power-law index. His general
equation also allows the incorporation of viscoelastic behaviour predicted by other classic
models, such as the Phan–Thien–Tanner (PTT) models.

It is of great interest for researchers and professionals in the industry to be able to
carry out numerical and computational simulations of complex fluids that exhibit some of
the rheological behaviour described above since it will allow us to study how these fluids
behave under some specific flow scenarios and thus, reliable and efficient tools are needed.
Simulation of viscoelastic fluids has been the centre of attention for many years since the
mathematical complexity of their constitutive equations (non-linearity, time dependence
of the stress) has been a real challenge. Efforts have been made by engineers and pure
and applied mathematicians in the field of fluid mechanics and numerical analysis that
have led to the development of numerical methods used to solve the governing equations
of viscoelastic flows, which have also been successfully implemented in Computational
Fluid Mechanics (CFD) software. This software (both commercial and open-source) allows
users to simulate Newtonian and Generalised Newtonian (GNF) fluids and multi-phase
and viscoelastic flows. Many of these packages for CFD are traditionally based on the
Finite-Volume-Method (FVM) approach to discretise the governing equations (continuity,
Navier-Stokes and constitutive equations), where the physical domain or mesh of interest
needs to be divided into discrete cells/volumes. In FVM, the governing equations are
integrated over a volume or cell, and a flux balance of the properties (velocity, temperature,
concentration, etc.) across the boundaries of the individual volume is needed to be made.
The flux of these properties is calculated at the mid-point between the discrete nodes in the
domain. Hence, the flux between all neighbouring nodes in the domain can be calculated.
This calculation is straightforward in a regular mesh (the same number of divisions in any
direction). However, the balance of fluxes can become harder to deal with in irregular
meshes. As we know, the mesh’s quality affects the solution’s accuracy and stability, and the
local accuracy of the finite-volume method, such as close to a region of interest, can be
increased by refining the mesh around that region. However, one of the problems of the
FVM methods is that the functions that approximate the solution cannot be easily made of
higher order.

Recently, F.S. Sousa et al. [25] proposed a new approach to discretise the governing
equations of fluids, where they introduced a finite difference method with meshless in-
terpolations in tree-based hierarchical grids. These Cartesian grids bring the flexibility
and accuracy of local mesh refinement and allow for the development of finite difference
or finite volume methods without the hassle of mapping and transforming distorted el-
ements or dealing with general and complicated stencils, as happens in non-Cartesian
grids. As discussed in [25], one of the main challenges is to adapt the discretisation stencil
near the interfaces between grid elements of different sizes, which is usually solved by
local high-order geometrical interpolations. These interpolations, however, depend on the
distribution of cells in the vicinity of the point of interest. Hence they are site-specific and
can become challenging to calculate in three-dimensional simulations, especially when
dealing with staggering arrangements (where some scalar variables are stored in cell cen-
tres, whereas the velocities are located at the cell facets). Most methods tend to avoid this by
limiting the mesh configuration (usually to graded quadtree/octree grids), thus, reducing
the number of cases to be treated locally. The interpolations used in their numerical method
are based on Moving Least Squares (MLS) approximations performed to compute the
final finite difference stencil weights, allowing for complex mesh configurations while still
keeping the overall order of accuracy of the resulting method. This numerical method
has already been tested in different flow configurations, and the results were compared
with already published methods [25–27], showing excellent accuracy and flexibility of this
new methodology.



Polymers 2022, 14, 4958 5 of 45

This new numerical method was used to develop the HiGTree/HiGFlow system (HiG
stands for hierarchical grids) by the same research group, a CFD software that allows
simulating Newtonian, GNF, multi-phase, electroosmotic and viscoelastic flows. Some
of the classic and most popular viscoelastic models (such as Oldroyd-B, Giesekus, linear-
PTT, generalised-PTT and KBKZ-integral models) are already available in the HiGFlow
software as well as viscoelastic models that incorporate non-constant viscosity and time-
dependent phenomena (such as thixotropy). Thus, our goal in this work is to implement
new models into the HiGTree/HiGFlow system that can describe more complex rheological
behaviour, such as shear-banding and elastoviscoplasticity (yield stress fluids). The selected
models to be implemented are the Vasquez-Cook-Mckinley [8,9] and the Saramito [24]
models. To verify the simulations carried out with HiGFlow, our results will be compared
with solutions predicted by two different methodologies: (1) the OpenFOAM/RheoTool
system [28], an open-source CFD software that uses the FVM approach to discretise the
governing equations and where the VCM and Saramito models are already implemented;
and (2) the Vorticity-Velocity-Formulation (VVF). This will allow us to demonstrate that
our solvers implemented in HiGFlow can successfully predict rheological behaviour of
interest, such as non-monotonic curves of micellar solutions, non-zero normal stresses,
and plug-flow velocity profiles of viscoelastic fluids with yield-stress.

The structure of this work is as follows: in Section 2, we show the general governing
equations and the dimensionless groups adopted to simulate viscoelastic fluids exhibiting
shear-banding and plasticity. In Section 3, we describe the numerical methods used to
simulate flows using the HiGTree/HiGFlow system, the RheoTool and the Vorticity-Velocity
Method. Lastly, our numerical results are illustrated in Section 4, where we describe the
interpolation and discretisation schemes to be used in our simulations, as well as the details
of the geometries/meshes and model parameter values, and the comparison between our
HiGFlow, RheoTool and our in-house VVF results. A discussion of the physical interpretation
of the results obtained is also presented in each subsection.

2. Governing Equations

This section shows the general governing equations in the tensorial form adopted in
the present paper and implemented in the adopted codes. In a later Section 3, we show the
discretised form of these equations.

For transient, isothermal and incompressible flows, the mass conservation and mo-
mentum equations (in the absence of external forces such as gravity) are:

∇ · u = 0, (1)

ρ
(∂u

∂t
+ u · ∇u

)
= −∇P + 2 ηs∇ ·D +∇ · τ, (2)

τ = τ
(
η, D

)
, (3)

where u is the velocity field, t is the time, ρ is the fluid density, P is the pressure, ηs is the
solvent viscosity, and τ is a viscoelastic stress tensor (see Equation (3)) that can depend on
the viscosity and on the deformation tensor D, which is defined as:

D =
1
2

[
∇ u +∇ u>

]
. (4)

2.1. The Both-Sides-Diffusion (BSD) Technique

For our numerical methods, we will implement the both-sides-diffusion (BSD), which
is a technique that consists in adding a diffusive term on both sides of the momentum
equation. Once a steady state is reached, both terms cancel each other exactly. Such a
method increases the ellipticity of the momentum equation and has a stabilising effect.
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Incorporating the terms arising from the both-sides-diffusion in the momentum Equation (2)
and rearranging the equations, we have:

ρ
(∂u

∂t
+ u · ∇u

)
− 2

[
ηs + η0]∇ ·D = −∇P− 2 η0∇ ·D +∇ · τ, (5)

As it can be seen, we have introduced a diffusive term of the form 2η0∇ ·D on both
sides of the equation. Here, η0 is the characteristic viscosity of the polymer, which can vary
from fluid to fluid, and it will depend on the selected model by the user. In most cases, η0
is the viscosity at low-shear rates, which can be easily measured experimentally.

2.2. The Vasquez-Cook-McKinley (VCM) Model

In 2007, the Vasquez-Cook-McKinley (VCM) [8] model was published to describe
the rheological behaviour of micellar solutions that exhibit shear-banding. Their model
is based on the “living polymer theory” proposed by Cates. In order to derive the VCM
model, they considered two active Hookean species: long chains can break to form short
chains, which can recombine to form a long chain. The chains undergo rupture at a rate
dependent on the local elongation and deformation rate.

The model (see Figure 2) represents the micellar solutions as a combination of large
(subscript A) and small chain (subscript B) species that can convert into each other. A trans-
port equation is solved for each species using the following equations

∂nA
∂t

+ u · ∇ nA = 2DA∇2 nA +
1

2 λA
cB n2

B −
cA nA

λA
, (6)

∂nB
∂t

+ u · ∇ nB = 2DB∇2 nB −
cB n2

B
λA

+ 2
cA nA

λA
, (7)

where ni is the dimensionless number density of the specie, λi is the relaxation time, Di
is the diffusivity coefficient, cA and cB are, respectively, the dimensionless breakage and
reformation rates, which can be calculated as follows:

cA = cAEq +
χ

3

(
γ̇ :

A
nA

)
, (8)

cB = cBEq . (9)

In Equation (8), the longer elastic segments (specie A) will experience convection
by the flow and recoil following a breakage event before being reincorporated into the
network, where cAEq and cBEq are equilibrium concentrations, χ is a parameter associated
to the structural destruction, and γ̇ is a symmetric tensor:

γ̇ =
[
∇ u +∇ u>

]
. (10)

In Equations (6) and (7), the double contraction term presented in the original pa-
per [8] is omitted here in our equations to simplify the definition of no-flux boundary
conditions for the density number at the walls, which reduce to a zero-gradient condition.
More importantly, we will be focusing on simulating inertial flows (Re 6= 0); therefore,
the contribution of these omitted terms is negligible.

A viscoelastic constitutive equation is also solved for each specie:

∇
A=

1
λA

(nA I−A) +
1

λA
(cB nB B− cA A) + DA∇2 A, (11)

∇
B=

1
λB

(nB
2

I− B
)
+

2
λA

(cA A− cB nB B) + DB∇2 B. (12)
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The identity tensor is represented as I, A and B represent the conformation tensor of
each species, and the hat symbol ∇ represents the upper-convected-derivative of a tensor,
which is expressed below in terms of the tensor A:

∇
A=

DA
Dt
−A · (∇ u)− (∇ u)> ·A. (13)

Finally, the contribution of each species to the polymeric extra-stress tensor is given by:

τ = G0

[
(A + 2 B)− (nA + nB) I

]
, (14)

where G0 is the elastic modulus.

L
L/2

γ̇Specie A

Specie B

nA

nB

Figure 2. Visual representation of the process of breakage and reformation of the micellar chains
modelled by the VCM model: the specie A (long chains) can break to form short chains (specie B),
which can themselves recombine to form a long chain (specie A). The chains undergo rupture at a
rate dependent on the local elongation and deformation rate γ̇.

2.3. Dimensionless Form of the Governing Equations for Viscoelastic Micellar Solution Flows
Using the VCM Model

In order to obtain the dimensionless governing equations that we will be using
to simulate VCM fluids, we will use the same scales reported in [29]; we scale times
with the effective (or overall) relaxation time of the network λe f f , which is defined as:
λe f f = λA/(1 + C′Aeq

λA); for the velocities, we we use a characteristic velocity L/λe f f ;

we scale stresses with a convective characteristic stress defined as ρ (L/λe f f )
2, and lastly,

we scale viscosities with η0 = λe f f G0. Thus, the mass and momentum conservation
equations become:

∇ · u = 0, (15)

∂u
∂t

+ u · ∇u = −∇P + 2 E
(

1 +
β

1− β

)
∇ ·D +∇ · S. (16)

In these equations, we define the polymeric tensor S (which is a direct result of implement-
ing the both-sides-diffusion technique) and the dimensionless stress tensor:

S = T− 2 E D T = E
[
(A + 2B)− (nA + nB)I

]
. (17)

We can also notice that we have introduced two dimensionless parameters, E and β,
the elasticity number and the solvent viscosity ratio, respectively, which are:

E =
η0 λe f f

ρ L2 =
Dee f f

ReV
β =

ηs

ηs + η0
, (18)

As seen in Equation (18), the elasticity number E can be expressed as the ratio between
the efficient Deborah number of the network Dee f f and the Reynolds number (ReV), which
we conveniently defined as shown below:

Dee f f = λe f f

(U0

L

)
=

η0

G0

(U0

L

)
ReV =

ρ U0 L
η0

, (19)



Polymers 2022, 14, 4958 8 of 45

where U0 is a characteristic velocity associated with the flow, which is different to the
velocity we previously defined in terms of the efficient relaxation time (L/λe f f ). Notice
that U0 cancels out when we calculate E. We found it very convenient to dimensionalise
our governing equations using L/λe f f instead of U0 because it allows us to stabilise the
numerical simulations of this flow since we require high-velocity values in order to observe
the shear-banding behaviour of micellar solutions.

On the other hand, the dimensionless viscoelastic equations for the conformation
tensors A and B and the conservation equations for the density numbers of species A (nA)
and species B (nB) are:

∇
A=

1
DeA

(nA I−A) +
1

DeA
(cB nB B− cA A) +

1
PeA
∇2 A, (20)

∇
B=

1
DeB

(nB
2

I− B
)
+

2
DeA

(cA A− cB nB B) +
1

PeB
∇2 B, (21)

∂nA
∂t

+ u · ∇ nA =
2

PeA
∇2 nA +

1
2 DeA

cB n2
B −

cA nA
DeA

, (22)

∂nB
∂t

+ u · ∇ nB =
2

PeB
∇2 nB −

cB n2
B

DeA
+ 2

cA nA
DeA

, (23)

with breakage and reformation rates for cA and cB that are calculated using the expressions
already reported in Equations (8) and (9), considering that our parameter associated to the
breakage rate χ is χ = (λA/λe f f )ξ, see [29].

Four new dimensionless groups were derived; the first two are what we call the
Deborah numbers of species A (DeA) and species B (DeB), which are:

DeA =
( λA

λe f f

)
DeB =

( λB
λe f f

)
. (24)

We also have defined two Péclet numbers, one for each specie, which compare the transport
of species by convection with the transport by diffusion:

PeA =
(DAλe f f

L2

)
PeB =

(DBλe f f

L2

)
. (25)

Generally, we will assume that these numbers tend to be large and that PeA = PeB. Thus,
our final set of Equations (15)–(25) are implemented in the HiGTree/HiGFlow system, which
will be then solved to simulate flows of micellar solutions that exhibit shear-banding.

2.4. The Saramito Model

Elastoviscoplastic fluids exhibit a solid-like behaviour below critical stress, commonly
known as yield stress τ0, and they flow as viscoelastic fluids when the yield stress is exceeded.
In 2009, Saramito [23,24] proposed a model that combines the viscoplastic and yield stress
effects from the Herschel–Bulkley model with the viscoelastic behaviour predicted by
classical models such as the Oldroyd-B and Phan–Thien–Tanner (PTT). Accordingly, his
constitutive equation adopts the following general form:

f (τ) ηP max

(
0,

σ̄− τ0

k σ̄ n

) 1
n

τ + λp
�
τ= 2 ηP D, (26)

where
�
τ is the Gordon-Schowalter derivative defined as:

�
τ =

∇
τ + ξ

(
τ ·D + D · τ

)
. (27)
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The slip-parameter ξ takes into account the non-affine motion between the polymer
molecules and the continuum, and if ξ = 0, the Gordon-Schowalter derivative reduces to
the upper-convected-derivative, which is defined below:

∇
τ=

Dτ

Dt
− τ · (∇ u)− (∇ u)> · τ. (28)

In Equation (26), ηP is the polymer viscosity, n is the power index, k > 0 is the consistency
parameter, f (τ) is a function dependent on the stress that can be imposed on the constitutive
equation to reproduce the viscoelastic behaviour observed in the Oldroyd-B model or the
linear (LPTT) or exponential (EPTT) models; σ̄ is a parameter that can be defined as the
second invariant of the deviatoric stress tensor τD:

σ̄ = I IτD =

√
τD : τD

2
(29)

τD = τ − tr(τ)
N

I, (30)

where N is the number of dimensions in the flow problem (N = 2 for a 2D flow case and
N = 3 for a 3D problem).

Saramito’s general constitutive Equation (26) can be reduced to a previous model
proposed by the same author [23] if the parameters n and k take the following values, n = 1,
k = ηP, which will give a model that is able to merge the classic Bingham model with the
Oldroyd-B or the PTT models, depending on the form that the function f (τ) takes:

f (τ) =



1 , Oldroyd-B

1 +
ε λp

ηP
tr(τ) , linear PTT

exp
ε λp

ηP
tr(τ) , exponential PTT,

(31)

where ε is the extensibility parameter.

2.5. Dimensionless Form of the Governing Equations for Elastoviscoplastic FLOWS Using the
Saramito Model

For our equations, we scale lengths with L, we use the average shear rate U0L−1

to scale times (where U0 is a characteristic velocity), and finally, we scale stresses with a
characteristic convective flux (ρU2

0 ). Thus, the momentum and mass conservation equations
can be written in dimensionless form as follows:

∇ · u = 0 (32)

∂u
∂t

+ u · ∇u = −∇P +
2

Re
∇ ·D +∇ · S, (33)

where Re is the dimensionless Reynolds number defined as

Re =
ρ U0 L

ηs + ηP
. (34)

In Equation (33), we have also introduced a new tensor named the polymeric tensor,
which is:

S = T− 2(1− β)

Re
D, (35)

where β is the dimensionless solvent viscosity ratio, β = ηs/(ηs + ηP); ∇ u and ∇ u> are
the velocity gradient and its transpose, respectively, and T is the elastic stress tensor (the



Polymers 2022, 14, 4958 10 of 45

dimensionless form of the tensor τ), which can be written in terms of the conformation
tensor AS for the Saramito model:

T =
1− β

Re De
(
AS − I

)
. (36)

Here, I is the identity tensor, and De is the Deborah number, which is defined as:

De = λp

(U0

L

)
, (37)

where λp is the characteristic stress relaxation time of the polymer, λp = (ηP/G0) (G0
is a constant shear-modulus). The dimensionless form of Equation (26) in terms of the
dimensionless stress tensor T can be written in general form as:

∇
T=

1
De

[
2(1− β)

Re
D− f

(
T
)

T − ξ De
(
T ·D + D · T

)]
, (38)

where f
(
T
)

is a stress-dependent function that allows us to implement the four variants of
elastoviscoplastic models that can be described by the Saramito general equation [23,24].

In order to overcome the numerical instabilities seen at high Deborah number values,
Equation (38) can be reformulated and be written as a function of the conformation tensor
AS by using the decomposition of the velocity gradient proposed by Fattal et al. [30,31],
∇ u> = Ω + BS + N A−1

S , where Ω and N are anti-symmetric tensors, and BS is symmetric
and commutes with AS. As a result, Equation (38) becomes:

∇
AS=

1
De

[
M
(
σd
)
(I−AS)− f (ξ)

]
. (39)

whereM
(
σd
)

can adopt each of the following forms:

M
(
σd
)
=



max

(
0,

σd − Bi
σd

)
, Oldroyd-B-Bingham

max

(
0,

σd − Bi
K σn

d

) 1
n

, Oldroyd-B-HB

max

(
0,

σd − Bi
σd

)[
1 +

ε De Re tr(S)
1− β

]
, LPTT-Bingham

max

(
0,

σd − Bi
σd

)
exp

[
ε De Re tr(S)

1− β

]
, EPTT-Bingham,

(40)

with:
f (ξ) = ξ De

(
BS − BS ·AS

)]
, (41)

which is a term that takes into account non-affine motion. In Equation (40), we show the
four viscoelastic variants that can be simulated using the Saramito’s general equation:
the Oldroyd-B-Bingham, the Oldroyd-B-Herschel-Bulkley, the liner-PTT-Bingham and the
exponential-PTT-Bingham. The dimensionless parameters that appear in this equation
are: σd, which is defined as σd =

√
(TD : TD)/2, where TD is the dimensionless form
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of the deviatoric stress tensor, TD = T− (tr(T)/N)I, K is the dimensionless consistency
parameter, K = [Re/(1− β)]1−n and Bi is our Bingham number:

Bi =
τ0

ρ U0 U0
. (42)

If the stress σd is below Bi, the fluid will behave as a rigid-solid. On the other hand,
if σd > Bi, the material will flow as a viscoelastic fluid.

In addition, notice that if the power-law index n = 1 that appears as a model parameter
in the Oldroyd-B-Herschel-Bulkley equation, we recover the original Oldroyd-B-Bingham
model; if n < 1, the fluid will exhibit viscoelastic shear-thinning behaviour (if σd > Bi) and
we will observe shear-thickening behaviour for n > 1 (if σd > Bi).

Recently, Afonso et al. [32] proposed a generic Kernel-conformation tensor transforma-
tion for a large class of differential constitutive models, in which the evolution equation of
the kernel tensor k(AS) = Ok(Λ)OT (where k represents any continuous, invertible and
differentiable matrix transformation function and O is a matrix containing in its columns
the eigenvectors of AS), can be expressed in its tensorial formulations as:

Dk(AS)

Dt
= Ω k(AS)− k(AS)Ω + 2B+

1
De

M, (43)

In Equation (43), B and M are symmetric tensors constructed by the orthogonalization
of the diagonal tensors DB and DM, respectively (see their definition and a full-detailed
explanation of this approach in [26]).

The set of Equations (32)–(43) were implemented in the HiGTree/HiGFlow system,
which will allow us to simulate different elastoviscoplastic flow scenarios.

3. Numerical Method

Three different codes were used in the present study: HiGTree/HiGFlow, RheoTool, and
Vorticity-Velocity code. Each code has its features; therefore, each one is described below.

3.1. HiGTree/HiGFlow

In this section, we will give a brief introduction to the HiGFlow system. HiGFlow (HiG
stands for hierarchical grids) is a Computational Fluid Dynamics (CFD) software written
in C language that was developed at the Institute of Mathematics and Computer Sciences
(ICMC) from the University of São Paulo (USP). The system can simulate single and
multi-phase flows of Newtonian and Non-Newtonian fluids using a new finite difference
method [25] that was recently published to solve partial differential equations derived from
Newtonian incompressible flows. This system is being developed modularly, allowing new
techniques and methods to be easily tested and implemented.

Some of the main features of HiGFlow are: the user can choose the dimension (2D or
3D) and the modules to be used in the program (such as single- or multi-phase, Newtonian,
generalised Newtonian or viscoelastic flows) at compile-time. In the same way, the user
specifies the numerical techniques to be used in the input files: for instance, projection
method (incremental or non-incremental), temporal discretisation methods (explicit or
semi-implicit Euler, third order Runge-Kutta, Crank-Nicolson or Backward Differentiation
Formula), the numerical scheme for the convective and diffusive terms (1st and second
order central differencing scheme, first order Upwind, second order Quick, CUBISTA, etc.),
the constitutive equation for viscoelastic flows (such as Oldroyd-B, Giesekus, EPTT and
GPTT models), in addition to the various parameters for simulation (i.e., Reynolds and
Deborah numbers, etc.).

On the other hand, the HiGTree system is responsible for creating the data structure
(hierarchical grid), domains, and linear and non-linear system solvers, as well as carrying
out the interpolations schemes (see Section 3.1.1). Parallelisation strategies are also imple-
mented through the PETSc library (Portable, Extensible Toolkit for Scientific Computation),
which contains a set of functions implementing the best-known methods for representing
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matrices, vectors and data in parallel, solution of linear systems with pre-conditioning,
solution of linear and non-linear systems, ordinary differential equations, etc.

3.1.1. Hierarchical Grids and Meshless Interpolations

Here, we will briefly describe the basic concepts of the finite difference techniques in
hierarchical cartesian meshes already implemented in HiGFlow. In Figure 3, we illustrate
an example of a hierarchical grid and the tree data structure representing it. This kind of
structure has been used in previous works to solve the Navier-Stokes equations, where a
staggered grid arrangement of the unknowns allows a stable discretisation for uniform
grids. In this arrangement, components of the velocity u are evaluated at the cell facets
(green and blue squares). In contrast, scalar and tensorial quantities represented by α (such
as pressure, stress tensor, densities, etc.) are evaluated at the cell centres (red circle).

In this data structure, each cell can be geometrically partitioned in any matrix arrange-
ment of cells. The problem, however, is that such general grids impose difficulties in the
numerical approximation in finite differences approximation. This is because they usually
require the computation of spacial interpolations in the unknown points of the finite dif-
ference stencil that heavily relies on the geometrical characteristics of the grid. In order to
avoid this geometrical dependence, F.S. Sousa et al. [25] introduced a method based on inter-
polations in a neighbouring point cloud, requiring no geometry or topological information
that is performed by an efficient Moving-Least-Square (MLS) interpolation scheme.

(a) (b)

Figure 3. HiGTree data structure: (a) Computational cell representation, (b) Tree-based data structures.

To illustrate an example of this, let us consider Figure 4, and suppose that we are
interested in approximating the second derivative of a variable u in y-direction on the point
c. Using second-order finite differences, we have:

∂2u
∂y2 ≈

1
∆y

(ut − 2uc + ub). (44)

It can be easily noticed from Equation (44) and Figure 4 that ub does not coincide with
some of the mesh grid points (recalling that the component of the velocities is evaluated
at the facets centres). Thus, ub has to be approximated by some interpolation of the grid
unknowns in the vicinity of uc. This interpolation can be carried out as follows:

ub = ∑
k∈Vb

wb
kuk, (45)

where Vb = ik, k = 1, . . . , Nl is the set of indexes for the unknowns that are in the vicinity
of uc for each approximation. The number of neighbours Nl is defined according to
the imposed precision on the numerical method. On the other hand, the weights wk are
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computed by a Moving Least Squares (MLS) procedure. The full details of the interpolations
can be found in [25].

We are interested in simulating incompressible complex fluid flows using general hier-
archical tree-based meshes through the general meshless interpolation scheme described in
Section 3.1.1.

(a) (b)

Figure 4. Finite difference second order stencil discretisation. The figures show the discretisation
of the (a) velocity (evaluated at the facet centres) and (b) of the scalar and tensorial quantities α

(evaluated at the cell centres). Notice that the variables ub and αb do not coincide with the mesh
grid points.

As previously mentioned, the pressure values are evaluated in the cells’ centre, while
the velocity components are evaluated at the cell facets. The other variables (polymeric
stress and kernel tensors) will be located at the cell centres. The governing equations will
then be discretised with finite difference methods in a Cartesian mesh that could have
different cell sizes. As discussed before, although some of the variables required to solve
the equations might be located at unknown points of the stencil, the HiGTree/HiGFlow can
calculate the properties at those points through a function called “compute-value-at-point”,
which will return an approximate value of the property using the Moving-Least-Square
(MLS) interpolation scheme. Full details of this approach can be found in [25]. Here, we
will summarise the discretisation schemes by the HiGTree/HiGFlow software.

The HiGTree/HiGFlow system uses the projection method for the momentum con-
servation equations. Upon discretising Equation (32) in time using a first-order implicit
discretisation, the idea of this projection method is to use the newest previous pressure
field, which leads to an explicitly-computed velocity field v∗ that is not divergence-free
(∇ · v∗ 6= 0). This velocity field v∗ can be calculated through the solution of:

u∗ − un

∆t
= −∇Pn − un · ∇un = +a∇ ·Dn +∇ · Sn, (46)

with u∗ satisfying the same boundary conditions as u and a is a constant, which depends
on the model we are using; a = 2/Re for the Saramito model (see Equation (33)) and
a = 2E(1 + (β/(1− β)) for the VCM model (see Equation (16)). The corrected velocity
field can be computed from a Helmholtz-Hodge decomposition to u∗:

u∗ = un+1 +∇φ, (47)

where φ = −∆t(Pn+1 − Pn), which is obtained by solving the following Poisson equation:

∇2φ = ∇ · u∗. (48)
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For the Poisson Equation (48) and all the terms that involve the operator ∇·, we use a
second-order central differencing scheme to discretise the laplacians terms. For the vis-
coelastic constitutive equations of the tensors (A and B) of the VCM model (see
Equations (20)–(23)), we use an explicit Euler method to discretise them:

An+1 = An + ∆t
[
An · (∇ u)n + (∇ un)> ·An − un · ∇An + F(Bn, nn

A, nn
B)
]
, (49)

Bn+1 = Bn + ∆t
[
Bn · (∇ u)n + (∇ un)> · Bn − un · ∇Bn + F(An, nn

A, nn
B)
]
, (50)

where F(Bn, nn
A, nn

B) and F(An, nn
A, nn

B) are the right-hand sides of Equations (20) and (21),
respectively. Similarly, we can use an explicit Euler method to discretise the density number
equations for nA and nB:

nn+1
A = nn

A + ∆t
[
− un · ∇ nn

A + F(nB, cA, cB)
]
, (51)

nn+1
B = nn

B + ∆t
[
− un · ∇ nn

B + F(nA, cA, cB)
]
, (52)

with F(nB, cA, cB) and F(nA, cA, cB) being the right-hand side of the conservation equations
for the densities (see Equations (22) and (23)).

For the Saramito general model and the variants that can be derived from it (Oldroyd-
B-Bingham, Oldroyd-B-Herschel-Bulkley, LPTT-Bingham and EPTT-Bingham), we have
to discretise the governing equation in terms of the Kernel tensor k (see Equation (43)).
Applying an Euler explicit method, we have:

kn+1 = kn + ∆t
[
− (un · ∇)kn + Ωn kn − kn Ωn + 2Bn +

1
De

Mn
]
. (53)

The kernel kn is then used to obtain the elastic stress tensor Tn and the polymeric tensor Sn

that is included in the momentum conservation Equations (46).
Lastly, all the convective terms from the governing equations of the VCM and Saramito

fluids are discretised using a CUBISTA (Convergent and Universally Bounded Interpolation
Scheme for the Treatment of Advection) scheme [33].

3.2. Overview of the Numerical Method

In order to summarise the numerical method, we now describe the computational
steps of our solver.

1. Initialise the fields for pressure p, velocity u, polymeric S and elastic stress T tensors,
the kernel tensor k for the Saramito model and the conformations tensors A, B and
the density number fields nA and nB for the VCM model at time t = 0 and set
boundary conditions.

2. Enter the time loop (t = ∆t).

(a) Solve the Navier-Stokes equations for the velocity field u∗ using (46).
(b) Solve the Poisson Equation (48) to obtain φ.
(c) Calculate the corrected velocity field un+1 using (47) and Pn+1 from

φ = −∆t(Pn+1 − Pn).
(d) If solving a flow problem using the VCM model:

i. Compute the conformation tensors An+1 and Bn+1 using the discretised
Equations (49) and (50).

ii. Compute the density numbers of the two species nn+1
A and nn+1

B using
Equations (51) and (52).

iii. Calculate the new polymeric Sn+1 and elastic stress tensors Tn+1 using
Equation (17).
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(e) If solving a flow problem using the Saramito model or the simplified forms
derived from such model:

i. Compute the conformation tensor AS (Equation (39)) and their respec-
tive eigenvalues and eigenvectors and apply the kernel transformation
approach to obtain the kernel tensor k.

ii. Solve the evolution of the kernel tensor Equation (53) to obtain kn+1.
iii. Compute the inverse of the kernel tensor and calculate the new con-

formation An+1
S , polymeric Sn+1 and elastic stress tensor Tn+1 with

Equation (35).

(f) Update all the fields to be used in the next time loop:
{p, u, S, A, B, T, nA, nB}n = {p, u, S, A, B, nA, nB}n+1 for the VCM model, and
{p, u, S, T,k}n = {p, u, S, T,k}n+1 for the Saramito model.

3. Increment the time t = t + ∆t and return to step 2 until the final time is reached.

3.3. RheoTool

In order to compare and validate the results of our numerical simulations obtained
using the HiGTree/HiGFlow system, we will also carry out flow simulations in the RheoTool
system [28]. RheoTool is an open-source toolbox based on OpenFOAM to simulate Gen-
eralised Newtonian Fluids (GNF) and viscoelastic fluids under pressure-driven and/or
electrically-driven flows. In the present work, we use the OpenFOAM version 7.0 together
with RheoTool version 5.0.

Some of the many features of RheoTool are: (1) a logarithm transformation of the confor-
mation tensor is implemented, allowing to reach higher Deborah numbers without loss of
positive definiteness of the conformation tensor, (2) several techniques are available for sta-
bilisation purposes (for instance, the both-sides-diffusion technique, the pressure-velocity
and stress-velocity coupling algorithms), (3) high-resolution schemes for the discretisation
of convective terms, (4) a constitutive equations library that contains a large amount of
viscoelastic and GNF models (including the original BMP model), (5) it includes interfaces
to the sparse matrix solvers of external libraries, such as PETSc, among other interesting
features. The main difference between the HiGTree/HiGFlow system and RheoTool is that
the latter uses a Finite Volume Method (FVM) approach for the numerical simulation of
flows. Full details and the theory behind the single-phase flow solvers used in RheoTool can
be found in [34,35]. Another difference between these two softwares is that the governing
equations are solved in a dimensional form in RheoTool. Thus, all variables’ units (in SI base
units) have to be specified there.

In all the simulations carried out in RheoTool, we will use the solver RheoFoam, which
implements the transient and incompressible Navier-Stokes equations for single-phase
flows of Generalized-Newtonian or viscoelastic fluids. In addition, the following tech-
niques will be specified in the constant folder and in the fvSchemes and fvSolutions files: the
coupling between stress and velocity was performed using the Improved Both Sides Diffusion
technique [36]. For the solution of the linear systems resulting from the discretisation of
the velocity, the Bi-CGSTAB (BiConjugate Gradient Stabilized) method [37] was used with
a DILU (Simplified Diagonal-based Incomplete LU) preconditioner and for the pressure,
the conjugated pre-conditioned gradients (PCG) method was used with DIC (Simplified
Diagonal-based Incomplete Cholesky) preconditioner.

The following discretisation schemes were used: firstly, we used an Euler implicit
scheme for the time derivatives; secondly, all the convective terms were discretised using
the CUBISTA method; a Gauss linear scheme was used for the gradient of the pressure and
of the velocity and for the divergence terms; finally, the laplacians were discretised using a
Gauss linear corrected. All the details of these schemes can be found in [38].
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3.4. Vorticity-Velocity Code

This code was developed to solve the equations using the Vorticity-Velocity Formula-
tion (VVF). The vorticity component in the z direction, ωz can be calculated as:

ωz =
∂u
∂y
− ∂v

∂x
, (54)

where u and v are the velocity components in the x and y directions, respectively
(u = (u, v, 0)). The equation system to be solved is given by:

∂ωz

∂t
+

∂(uωz)

∂x
+

∂(vωz)

∂y
=

β

Re

(
∂2ωz

∂x2 +
∂2ωz

∂y2

)
+

∂2Txx

∂x∂y
+

∂2Txy

∂y2 −
∂2Txy

∂x2 −
∂2Tyy

∂x∂y
, (55)

∂2v
∂x2 +

∂2v
∂y2 = −∂ωz

∂x
, (56)

∂u
∂y

+
∂v
∂x

= 0, (57)

where Txx, Txy and Tyy are the elastic stress tensor components.
The integration in time (Equation (55)) is carried out by a classical fourth-order

Runge-Kutta scheme. The spatial derivatives are discretized by high-order compact finite-
difference schemes [39]. After each Runge-Kutta step, the v component velocity is calculated
by solving the Poisson Equation (56) using a multigrid Full-Approximation Scheme [40];
and the u velocity component is updated by the continuity Equation (57). The code is
parallelized in the streamwise and wall-normal direction, and the MPI library does the
communications. The code adopted here is the same used by [41] for Oldroyd-B studies,
changing the non-Newtonian model.

4. Results

In the present work, we carried out simulations using the rheological models described
in previous sections in two different geometries: 2D channels and planar-contraction 4:1.
Firstly, we are interested in simulating shear-banding viscoelastic micellar solutions that
obey the VCM model (see Section 2.2). Secondly, we will be simulating materials that exhibit
elastoviscoplasticity using the Saramito general equation (see Section 2.4)), which is able to
reproduce the behaviour predicted by classical models such as the Oldroyd-B-Bingham,
the Oldroyd-B-Herschel-Bulkley and the PTT-Bingham models (both linear and exponen-
tial). In addition, our results that will be obtained using the HiGFlow software, will then be
compared with the solutions from RheoTool and from the numerical results derived from
the Vorticity-Velocity-Formulation (VVF) in order to carry out a code validation process.

In all the simulations performed in the HiGFlow system, we used the numerical method
that is explained in Section 3. In addition, we use the incremental projection method and
a semi-implicit Euler method for temporal-discretisation of the momentum equations,
while the viscoelastic and the additional governing equations (for instance, the density
number equations of the two species modelled by the VCM model) are discretised using an
explicit Euler method. All the details of the interpolation and discretisation schemes used
in RheoTool were already mentioned in Section 3.3.

4.1. Two-Dimensional Channel-Flow

Here we simply describe the planar channel-flow geometry that is used in HiGFlow,
RheoTool and in the VVF approach, see Figure 5. The channel height is L, which takes
a value of L = 1 m, and has an extent of 10L in the x-direction. At the inlet, we set a
velocity profile u(y), which in all of the cases will adopt a parabolic shape of the form
u(y) = U04y(1− y), where U0 is the centreline velocity. At the walls (y = 0 and y = 1),
we have non-slip boundary conditions (u(0) = u(1) = 0). Lastly, we set fully developed
boundary conditions at the outlet.



Polymers 2022, 14, 4958 17 of 45

y

x

u(y) L = 1

10L

u(1) = 0

u(0) = 0

Figure 5. Flow geometry: two-dimensional channel flow.

4.2. The VCM Model

In the present section, we show our simulations in the two-dimensional channel flow
using the VCM model (see Sections 2.2). To carry out a code verification and validation
of our numerical method (see Section 3.2), we will compare directly our results obtained
by the HiGTree/HiGFlow system with the solutions predicted by OpenFOAM/RheoTool and
the VVF approach. We will start by using an uniform Cartesian mesh with cell sizes
∆x = ∆y = 0.03125 m and with a time-step ∆t = 1.0× 10−4 s.

Besides the boundary conditions for the velocity field mentioned in Section 4.1, we
also need to specify the boundary conditions for the tensors (A, B, T) and for the densities
(nA and nB) and their respective fields in order to initialise the mesh. At t = 0, the number
densities and stresses are assumed to be initially at equilibrium and thus, we have the
following profiles, which can be easily obtained by setting to zero all the time derivatives
and the convective terms of the governing Equations (17)–(23):

A = I B =
nB
2

I T = 0 (58)

nA = 1 nB =

√
2

cAEq

cBEq

. (59)

At the walls and at the outlet, we simply set zero gradient boundary conditions for all
these quantities.

4.2.1. First Flow Scenario: Low Velocity Values

For our first simulation using the VCM model, we focus on using low velocity values,
i.e., U0 = 0.125 m/s, which is a flow region where we still expect to observe a monotic
behaviour in the flow curve (stress vs. shear rate). We will be using parameter values
that were fitted to experimental data of a concentrated cetyl pyridinium chloride/sodium
salicylate (CPyCl/NaSal) solution, whose rheological parameter values were previously re-
ported in [9,29]: λA = 1.9 s, λB/λA = 6.27× 10−4, λe f f = 1 s, DA = DB = 1× 10−3 L2 s−1,
CAEq = 0.9, CBEq = 1.4, χ = 0.57 and G0 = 1 Pa. For our convenience, we choose the
following values of density ρ = 10 Kg ·m−3 and solvent viscosity ηs = 0.01 Pa · s. Thus,
our dimensionless parameter values (derived in Section 2.3) are:

DeA = 1.9 DeB = 1.1913× 10−3 β = 0.01 (60)

PeA = PeB = 1000 χ = 0.57 CAEq = 0.9 CBEq = 1.4 (61)

It is important to point out that the solvent-viscosity ratio we use here β = 0.01 differs
from the value reported experimentally in [9]. The reason we chose to use a higher value
of solvent viscosity is mostly to stabilise our numerical method which uses the both-sides
diffusion approach, described in Section 2.1. For lower β values, we observed numerical
instabilities and therefore, we could not get numerical convergence for this particular
model. For similar reasons, we will be particularly focused on simulating VCM fluids with
very low values of elasticity number (E� 1).

We simulate the transient flow of viscoelastic micellar solutions that follow the rheo-
logical behaviour of the VCM model, and we will show the fully developed steady-state
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profiles at x = 9.0 using the model parameters shown before for the case E = 0.1. In
Figure 6, we illustrate the numerical simulations obtained by two CFD software: HiGFlow
and RheoTool, whose solutions are also compared with the results predicted by the VVF
approach from our in-house code. Although we observe very small differences near the
wall and at the centreline, it can be clearly seen that there is a good agreement between the
solutions obtained by our three numerical methods.
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Figure 6. Steady–state velocity profiles Ux obtained using HiGFlow (red solid line) and the RheoTool
software (solid black squares) for a VCM fluid with U0 = 0.125 and E = 0.1. These results are also
compared with the numerical results predicted by the VVF approach (dashed line). The VCM model
parameter values used are shown in Equations (60) and (61).

As described in Section 2.2, the VCM model solves two viscoelastic equations for the
conformation tensor of each of the two species, the longer chains (tensor A) and the shorter
chains (tensor B). In Figure 7, we show the relevant components of these tensors. Firstly, we
have the normal Axx and shear Axy components of the conformation tensor of specie A, see
Figure 7a,b, where we observe that the first follows a parabolic behaviour while the later is
a straight line. On the other hand, Figure 7c,d show the channel profiles for the normal and
shear components of the tensor B, whose behaviour is almost identical to the one observed
for the profiles of the tensor A. We can notice however that the order of magnitude of the
components of the conformation tensor of specie A is much more bigger compared to the
ones from the conformation tensor of specie B, and this is because we are simulating a flow
region where the specie A (longer chains) dominates, since the flow (low velocity values
U0 = 0.125) is not strong enough to cause high breakage rates in the network.

As shown in Equation (17), the conformation tensors of the two species (A and B)
and their respective density numbers (nA and nB) have a contribution to the elastic stress
tensor T of the network. Figure 8a,b illustrate the relevant components of the tensor
T, the normal Txx and the shear Txy stresses, respectively, where it can be seen that the
behaviour of the stresses is very similar to the profiles of the conformation tensors reported
in Figure 7. The shear stress Txy vs. y profile is of particular interest when studying these
kind of micellar solutions since it is comparable to the rheological flow curve Txy vs. γ̇,
and this is because the shear rate γ̇ is proportional to the channel-coordinate y. For the
present case (U0 = 0.125 and E = 0.1), we obtain a monotic curve, which indicates that
shear-banding behaviour is not yet observed, and this is due to the low values of velocity,
which are not strong enough to cause a high structural destruction of the network. More
importantly, we see that there is also a good agreement between the results obtained with
the three different methodologies. Small differences between the results can be observed
at and near the boundaries, and these differences could be explained by the boundary
conditions adopted in each formulation/method. For instance, in HiGFlow, the stresses at
the wall are determined by the non-slip boundary condition of the velocity. By contrast,
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in RheoTool, we specified zero-gradient and non-slip boundary conditions for the stresses
and the velocity, respectively. Despite this, we will show in the following sections that a
much better agreement of the results predicted by the three different methodologies at the
wall is observed.

Lastly, we have the density number profiles, which are illustrated in Figure 8c,d.
Notice how the profile for each specie is different: for specie A (longer chains), we observe
a maximum value at the centreline, but the concentration of these longer chains decreases
continuously as we approach the walls (y = 0 and y = 1). On the other hand, we observe a
minimum value of density number of the shorter chains (specie B) at the centreline, but an
increase is seen if we move away from y = 0.5 and we reach the walls. These results are
consistent with the physics of the model, which predicts that the breakage rates are higher
at the wall because the viscous dissipation is maximum at y = 0 and at y = 1. We can
also see that the order of magnitude of nA is much greater compared to that of specie
B (nB), and as discussed before, this is because we are simulating a flow region where
shear-banding is still not present.

These profiles show that we have an excellent agreement between our results obtained
using three different methodologies (especially at the wall, unlike the profiles shown in
Section 4.2.1), which manage to capture the basic physics that the VCM model is able to
predict. These results also allowed us to carry out a code verification and validation of our
numerical method implemented in the HiGTree/HiGFlow system described in Section 3.2.
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Figure 7. Steady–state profiles of the conformation tensors of the two species (tensors A and B) for
a VCM fluid with U0 = 0.125 and E = 0.1. (a,b) profiles for the components of the conformation
tensor of specie A, Axx and Axy; (c,d) components of the conformation tensor of specie B, Bxx and
Bxy. The curves in red solid line are the profiles obtained using HiGFlow, the solid black squares are
the results predicted by RheoTool software (solid black squares) and the curves of numerical results
obtained by the VVF approach are shown as dashed lines. The VCM model parameter values used
are shown in Equations (60) and (61).
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Figure 8. Steady–state profiles of the elastic stress tensor T and density numbers of the species A and
B for a VCM fluid with U0 = 0.125 and E = 0.1. (a,b) profiles for the normal (Txx) and shear (Txy)
stresses of the tensor T; (c,d) density number of species A (nA) and B (nB). The curves in red solid line
are the profiles obtained using HiGFlow, the solid black squares are the results predicted by RheoTool
software (solid black squares) and the curves of numerical results obtained by the VVF approach are
shown as dashed lines. The VCM model parameter values used are shown in Equations (60) and (61).

4.2.2. Second Flow Scenario: Shear-Banding Behaviour

It is of our interesting to simulate a flow scenario where shear-banding behaviour is
observed, and thus, we will increase the centreline velocity value U0 = 10. We also find
convenient to set our elasticity number to E = 0.01, which is a smaller value compared to
our previous case study (E = 0.1), and this is due to the numerical difficulties we faced
when simulating VCM fluids at high velocities in both CFD software. Thus, for this, flow
case, we set U0 = 10 m/s, ρ = 100 Kg ·m−3 and ηs = 0.01 Pa · s. In addition, we will be
using the same rheological parameter values reported in previous papers [9,29].

It is also worth mentioning that we could not get good convergence for these parameter
values (E = 0.01) in our VVF in-house code, and thus, we will only report the steady-
state profiles obtained using HiGFlow and OpenFOAM/RheoTool codes. Figure 9 shows
the velocity profile in the channel, where it can be easily noticed that there is an excellent
agreement in the results predicted by both software. In contrast to the profile observed
in the previous section, we can see here that we observe a plug-flow-like profile near the
centreline, which indicates us that the low shear-rate region is governed by the longer
chains (specie A).
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Figure 9. Steady–state velocity profiles Ux obtained using HiGFlow (red solid line) and the RheoTool
software (dashed lines) for a VCM fluid with U0 = 10 and E = 0.01. The VCM model parameter
values used are shown in Equations (60) and (61).

The profiles of the normal and shear components of the conformation tensors A
and B are shown in Figure 10. Our profiles are in agreement with the results reported
by Cromer et al. [29], who carried out numerical simulations of pressure-driven flow of
wormlike micellar solutions in rectilinear microchannels (see Figures 6, 7 and 8 in their
paper). Notice how the general behaviour of these profiles differ to the one seen in the low-
velocity region (see Figure 7). For instance, for the normal component Axx (Figure 10a), here
we observe a V behaviour at the centreline (where we can also see some slight differences in
the results predicted by HiGFlow and RheoTool), and as we approach the wall, the values of
Axx tend to decrease. Another remarkable example is the shear component Axy, shown in
Figure 10b), where we no longer observe a full linear profile in the whole channel; instead,
we observe only a linear behaviour near the centreline; outside of this region, Axy tends
to gradually decrease as we are getting closer to the wall (y → 0 or y → 1). This is a
clear indicative that we are starting to observe shear-banding behaviour, since we have a
non-monotonic behaviour for the Axy profile.

For the profiles of the components of the tensor B (see Figure 10c,d), we see a perfect
agreement between the solutions predicted by both software. Moreover, we can also notice
that the order of magnitude of the values of Bxx and Bxy is greater compared to the previous
flow case (U0 = 0.125 and E = 0.1), which means that the contribution of species B to the
elastic stress tensor T is now more relevant since we have stronger breakage rate caused by
the flow (U0 = 10).

We also report the normal Txx and shear Txy components of the tensor T, which can be
found in Figure 11a,b, which are indeed very similar to the profiles of the components of
the tensor A (see Figure 10a,b). And as we previously discussed in Section 4.2.1, the density
number profiles tell us that specie A dominates at the centreline, while we tend to observe
a higher number of shorter chains (specie B) near the wall, as shown in Figure 11c,d. Notice
how the profiles of nA and nB are less parabolic in contrast to the profiles seen in Figure 11;
since we have a stronger flow caused by a higher value of velocity (U0 = 10), the breakage
and reformation rates are higher, which leads to a quicker structural destruction of specie
A. The rheology and the kinetics of this destruction and reformation of the network is
perfectly predicted by HiGFlow and RheoTool, since our results match nicely.
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Figure 10. Steady–state profiles of the conformation tensors of the two species (tensors A and B)
for a VCM fluid with U0 = 10 and E = 0.01. (a,b) profiles for the components of the conformation
tensor of specie A, Axx and Axy; (c,d) components of the conformation tensor of specie B, Bxx and
Bxy. The curves in red solid line are the profiles obtained using HiGFlow while the dashed lines
represent the results predicted by the RheoTool. The VCM model parameter values used are shown in
Equations (60) and (61).

Lastly, we report the VMC model rheological flow curve (shear stress vs shear rate)
that was obtained using our methodology implemented in the HiGTree/HiGFlow system. In
order to construct the curve, we need the shear rate values γ̇, which are simply calculated
through the gradient of our velocity profile (γ̇ = |dUx/dy|). Secondly, we will calculate
the total shear stress σT , which takes into account the solvent contribution and the elastic
stress, σT = S + 2 (1 + β) E D = T + 2 β E D and the shear component σxy is then plotted
against γ̇. Our curve is illustrated in Figure 12.

It can be appreciated that the HiGFlow system is able to reproduce the typical theoreti-
cal non-monotonic flow curve that is observed in flows of micellar solutions (as shown in
the introduction, see Figure 1). The dashed horizontal line indicates the location of the stress
plateau σp, which was calculated using the method of equal areas (

∫ γ̇3
γ̇1

σxy γ̇ =
∫ γ̇2

γ̇3
σxy γ̇),

where γ̇1 and γ̇2 are the shear-rate value of the bands of fluid with high concentration of
specie A and specie B, respectively, while γ̇3 is the value correspondent to the unstable
region of the flow curve (for a more detailed explanation of this rheological curve, see [6]).
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Figure 11. Steady–state profiles of the elastic stress tensor T and density numbers of the species A
and B for a VCM fluid with U0 = 10 and E = 0.01. (a,b) profiles for the normal (Txx) and shear (Txy)
stresses of the tensor T; (c,d) density number of species A (nA) and B (nB). The curves in red solid
line are the profiles obtained using HiGFlow while the dashed lines are the results predicted by the
RheoTool software. The VCM model parameter values used are shown in Equations (60) and (61).
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4.2.3. Mesh Independence Using the VCM Model

As stated in [25], one of the main advantages of the methodology used by the
HiGTree/HiGFlow system is the ability to preserve expected order of convergence with-
out any special treatment or geometrical interpolations, which is extremely useful when
dealing with non-graded meshes (i.e., meshes that vary abruptly, with large cells being
neighbors of very small ones).

In this section, we will carry out simulations of two-dimensional channel-flows using
a set of meshes with different cell sizes and refinement levels in order to verify mesh
convergence of the results. For these simulations, we will use the same parameter values
reported in Section 4.2.2, with a time-step ∆t = 1.0× 10−4.

In Tables 1–3, we show the geometric characteristics of the meshes used in our simula-
tions. On one hand, we have the uniform meshes (see Table 1), in which all the cells are
equal and have the same cell size (∆x = ∆y).

Table 1. Uniform meshes used for the 2D channel.

Meshes ∆x = ∆y

MI (8× 80) 0.125
MII (16× 160) 0.0625
MIII (32× 320) 0.03125
MIV (64× 640) 0.015625

Table 2. Non–uniform refined meshes with two refinement levels used in the 2D channel.

Meshes Large ∆x Small ∆x

RMI 0.125 0.0625
RMII 0.0625 0.03125
RMIII 0.03125 0.015625

Table 3. Non-uniform refined meshes with three refinement levels used in the 2D channel.

Meshes Large ∆x Middle ∆x Small ∆x

RMIV 0.125 0.0625 0.03125
RMV 0.0625 0.03125 0.015625

On the other hand, we have the refined meshes, where there are more than one cell
sizes. In some flow scenarios it would be ideal to have refined meshes with small cell sizes
near the wall to capture properly significant results (since it is the region where we observe
a rapid variation of the shear rate and the shear stress) and larger cells near the centreline
to reduce overall the computational cost of the simulation since we do not have to simulate
the flows using only small cell sizes.

In this section, we use meshes with two and three refinement levels, and their geomet-
ric characteristics are shown in Tables 2 and 3. In these tables, we only show the cell size
∆x of the large, medium and small cells, but it should be obvious that for each refinement
level, ∆x = ∆y. We also illustrate in Figure 13 some of the meshes to show the refinement
near the channel wall.

In order to verify the convergence, we now calculate the errors L1, L2 , L∞. Firstly, we
take the mesh MIV as a reference solution, and thus, the errors can be calculated using the
following equations:

L1 =
∑n

0 |u(i)MIV − u(i)∗|
∑n

0 |u(i)∗|
L2 =

√
∑n

0 (u(i)MIV − u(i)∗)2

∑n
0 u(i)∗2 (62)
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L∞ =
max|u(i)MIV − u(i)∗|

max|u(i)∗| (63)

where u(i)MIV is the solution in the mesh of reference MIV, u(i)∗ is the solution of the
respective mesh for which the error is being calculated (MI-MIII and RMI-RMV), u(i) is
the value of the property (can be velocity, stress, density, etc) in the points i = (x(i), y(i)),
where x(i) is a fixed point in the channel x(i) = 9 and y(i) = 0.01 i, with i = 0, 1, · · · , 100.

(a) Two levels (RMIII) (b) Three levels (RMV)

Figure 13. Refined meshes for the two–dimensional channel–flow problem.

Equations (62) and (63) were used to calculate the errors L1, L2 and L∞ of five quantities
predicted by the VCM model: the velocity Ux, the stresses Txx and Txy and the density num-
bers of the two species (nA and nB). Our results are shown in Tables 4–8. Overall, we can
see that all errors of each of our five flow quantities tend to be higher for uniform meshes
(MI, MII and MIII) compared to the errors obtained using refined meshes. Subsequently,
we can also notice that the errors of the meshes with three levels of refinement (RMIV and
RMV) are smaller compared to the meshes with only two levels of refinement (RMI, RMII
and RMIII). More interestingly, it can be seen that the errors of the uniform meshes are
roughly of the same order of magnitude than the errors obtained in refined meshes that
have cells with identical cell sizes ∆x; for instance, the uniform mesh MIII which has cell
sizes ∆x = ∆y = 0.03125 has error values for the normal stress Txx: L1 = 4.131× 10−2,
L2 = 1.177× 10−1, L∞ = 3.1724× 10−1; the error values for refined mesh RMII (which has
two levels of refinement with cell sizes ∆x = 0.0625 near the centre of the channel and
∆x = 0.03125 near the wall) are L1 = 5.380× 10−2, L2 = 1.675× 10−1, L∞ = 3.7873× 10−1;
lastly, the error values of the refined mesh RMIV that has three levels of refinement
whose cells that are close the wall have cell size ∆x = 0.03125 are: L1 = 7.829× 10−2,
L2 = 2.668× 10−1, L∞ = 6.1063× 10−1. This clearly suggests that instead of simulating
uniform meshes with very small cell sizes (which can take plenty of simulation time), we
can use refined meshes since we obtain great convergence results thanks to the finite differ-
ence method and the meshless interpolation scheme used by the system HiGTree/HiGFlow
described in Section 3.1.

Table 4. Errors for the velocity profile in the 2D channel–flow. For the calculation of these errors,
the mesh MIV was assumed as a reference solution.

Velocity ux Errors

Mesh L1 L2 L∞

MI 5.087× 10−2 6.997× 10−2 1.8759× 10−1

MII 5.147× 10−2 7.023× 10−2 1.9014× 10−1

MIII 5.167× 10−2 7.039× 10−2 1.9202× 10−1

RMI 5.192× 10−2 7.073× 10−2 1.9032× 10−1

RMII 5.156× 10−2 7.029× 10−2 1.8733× 10−1

RMIII 3.849× 10−2 4.117× 10−2 5.5436× 10−2

RMIV 5.162× 10−2 7.032× 10−2 1.8404× 10−1

RMV 8.800× 10−3 1.060× 10−2 2.4743× 10−2
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Table 5. Errors for the normal stress Txx profile in the 2D channel–flow. For the calculation of these
errors, the mesh MIV was assumed as a reference solution.

Stress Txx Errors

Mesh L1 L2 L∞

MI 1.541× 10−1 2.660× 10−1 6.1488× 10−1

MII 5.421× 10−2 1.722× 10−1 3.9556× 10−1

MIII 4.131× 10−2 1.177× 10−1 3.1724× 10−1

RMI 7.595× 10−2 2.670× 10−1 6.1718× 10−1

RMII 5.380× 10−2 1.675× 10−1 3.7873× 10−1

RMIII 2.543× 10−2 5.958× 10−2 1.0801× 10−1

RMIV 7.829× 10−2 2.668× 10−1 6.1063× 10−1

RMV 2.553× 10−2 1.130× 10−1 3.3298× 10−1

Table 6. Errors for the shear stress Txy profile in the 2D channel–flow. For the calculation of these
errors, the mesh MIV was assumed as a reference solution.

Stress Txy Errors

Mesh L1 L2 L∞

MI 1.448× 10−1 1.887× 10−1 3.7420× 10−1

MII 7.403× 10−2 9.697× 10−2 2.3815× 10−1

MIII 6.985× 10−2 7.817× 10−2 2.1894× 10−1

RMI 1.222× 10−1 1.631× 10−1 2.8733× 10−1

RMII 7.580× 10−2 9.162× 10−2 2.2184× 10−1

RMIII 9.389× 10−2 1.368× 10−1 3.1017× 10−1

RMIV 1.159× 10−1 1.422× 10−1 2.1485× 10−1

RMV 3.492× 10−2 4.892× 10−2 9.2251× 10−2

Table 7. Errors for the density number nA of specie A profile in the 2D channel–flow. For the
calculation of these errors, the mesh MIV was assumed as a reference solution.

Density Number nA Errors

Mesh L1 L2 L∞

MI 2.285× 10−1 3.248× 10−1 5.2077× 10−1

MII 1.341× 10−1 1.789× 10−1 2.6022× 10−1

MIII 1.137× 10−1 1.495× 10−1 2.3416× 10−1

RMI 2.078× 10−1 2.987× 10−1 4.8055× 10−1

RMII 1.337× 10−1 1.771× 10−1 2.6180× 10−1

RMIII 6.575× 10−2 7.918× 10−2 1.0642× 10−1

RMIV 2.061× 10−1 2.986× 10−1 4.8870× 10−1

RMV 5.878× 10−2 8.438× 10−2 1.3690× 10−1

Lastly, we show our flow curves (σxy vs. γ̇), which were obtained using the same
meshes reported in Tables 1–3. This kind of curve was previously discussed in Section 4.2.2,
and the resulting curves of the present analysis can be seen in Figure 14.
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Table 8. Errors for the density number nB of specie B profile in the 2D channel–flow. For the
calculation of these errors, the mesh MIV was assumed as a reference solution.

Density Number nB Errors

Mesh L1 L2 L∞

MI 6.507× 10−2 1.008× 10−1 2.3092× 10−1

MII 4.045× 10−2 6.104× 10−2 1.4938× 10−1

MIII 3.500× 10−2 5.290× 10−2 1.5076× 10−1

RMI 5.943× 10−2 9.385× 10−2 2.1689× 10−1

RMII 4.024× 10−2 6.042× 10−2 1.5066× 10−1

RMIII 2.253× 10−2 3.054× 10−2 6.2624× 10−2

RMIV 5.843× 10−2 9.323× 10−2 2.2011× 10−1

RMV 1.949× 10−2 3.119× 10−2 7.4277× 10−2
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Figure 14. Rheological flow curves (σxy vs. γ̇) of the VCM model. These curves were obtained
by simulating the 2D channel–flow using uniform and refined meshes (see Tables 1–3) in the
HiGTree/HiGFlow system.

On the right, we include all the curves for all the meshes (from MI to RMV), but for
better appreciation, we only show the curves of five meshes in the figure of the left, which
are the following ones: (1) two uniform meshes (MII and MIII), which are shown as solid
lines, (2) two refined meshes with two levels of refinement (RMI and RMII), which are
represented by solid-dashed lines and (3) a refined mesh with three levels of refinement
(RMV), which is the thick dashed line. It can easily be observed that all the curves predicted
exactly the same behaviour seen at intermediate values of shear-rate (10� γ̇� 100), which
is the region where we observe the shear-banding behaviour. However, some remarkable
differences can be appreciated at very low values of shear-rate, and this is due to the
different cell sizes that are used in the centreline for the five meshes reported here. As we
know, the low γ̇ values region corresponds to the centreline, which is the location in the
channel where specie A dominates, and therefore, if we have meshes with different ∆x
values, it is expected to obtain shear-stress σxy values with different orders of magnitude.
For instance, for the uniform mesh MIII, we obtain a value of σxy = 1.1534 × 10−3 at
γ̇ ≈ 0.20, meanwhile we have σxy = 3.7439× 10−4 at γ̇ ≈ 0.20 for the refined mesh RMV,
which has cell sizes ∆x = 0.0625 at the centreline. In contrast, notice how also the curves
predicted using the meshes RMV and RMII overlap each other, and this is because the mesh
RMII has also cell sizes ∆x = 0.0625 at the centre of the channel. These curves also happen
to be identical to the curve of the uniform mesh MII, which has ∆x = ∆y = 0.0625. Once
again, we conclude here that our methodology used by the HiGFlow software in hierarchical
grids is able to reproduce flow curves of high interest by the rheology community.
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4.3. Elastoviscoplastic Fluids: The Saramito Model

The Saramito model [23,24] is used to simulate the rheological behaviour of elasto-
viscoplastic fluids. Such model combines the viscoplastic and yield stress effects from the
Herschel–Bulkley model with the viscoelastic behaviour predicted by models such as the
Oldroyd-B and Phan–Thien–Tanner (PTT).

In this section, we will simulate the 2D channel flow using three different methodolo-
gies: the Vorticity-Vorticity-Formulation (see Section 3.4), the OpenFOAM/RheoTool system
that uses the FVM approach (see Section 3.3) and the HiGTree/HiGFlow system which uses
finite difference methods in tree-based grids (see Section 3.1). The results of our simulations
using four different models that can be derived from the general constitutive equation of
the Saramito model (Oldroyd-B-Bingham, Oldroyd-B-Herschel–Bulkley, LPTT-Bingham
and EPTT-Bingham, see Section 2.5) are shown hereafter.

4.3.1. The Oldroyd-B-Bingham Model

Similarly to the results section of the VCM model, we will use here a simple 2D
channel geometry (see Section 4.1), with non-slip boundary conditions at the wall and
fully-developed conditions at the outlet for the velocity. At the inlet, we will set a parabolic
velocity profile for simplicity.

In order to simulate a flow of the simplest elastoviscoplastic model, the Oldroyd-B-
Bingham model (see Equation (40)), we will use the following model parameter values:
Re = 1.0, De = 1.0, ξ = 0, β = 0.01 and a Bingham number Bi = 1.0.

Using the three numerical methods described before, and an uniform Cartesian mesh
with cell sizes ∆x = ∆y = 0.03125 m and with a time-step ∆t = 1.0× 10−4 s, we obtain the
steady-state velocity Ux, normal and shear stresses (Txx and Txy) and the second invariant
of the deviatoric stress tensor σd or I ID (σd =

√
(TD : TD)/2 ) profiles at x = 9.0. Our

results for the simulation of the Oldroyd-B-Bingham model are illustrated in Figure 15.
As it can be easily seen, there is an excellent agreement between the solutions obtained

using HiGFlow, RheoTool and the in-house code built with the VVF approach, and therefore,
our methodology described in Section 3.2 has been successfully implemented and validated
in the HiGTree/HiGFlow system in order to simulate elastoviscoplastic flows.

The profiles shown above also illustrate the typical behaviour observed in these kind
of materials; for instance, in Figure 15a, we have a plug-flow profile for the velocity, where
there is solid-like behaviour (or a region of extremely high-viscosity) in the centreline, but a
viscous region is observed as we approach the wall. As we know, the yield-stress concept
allows us to distinguish between these two regions: if the stress applied is smaller than the
yield-stress, we are in the plug-flow region (otherwise we are in the viscous region). But at
what exact channel-coordinate y we observe the transition from one region to the other one?
Figure 15b helps us in answering this question, since we are plotting the second invariant
of the deviatoric stress tensor σd (or I ID). This scalar quantity is used in the constitutive
equation reported in Equation (40), where we compare the value of σd with the value of the
Bingham number Bi, which is our dimensionless shear stress and Bi = 1.0 for our current
flow scenario; if σd < Bi = 1.0, we are in the plug-flow region. It can be easily spotted in
our plot that at y ≈ 0.42 (or y ≈ 0.58), the value of σd becomes greater than our Bingham
number value Bi = 1.0, and thus, we can conclude that the plug-flow region is observed
at 0.42 � y � 0.58, and outside this range we observe viscous (or viscoelastic for this
case) behaviour.

Figure 15c,d illustrate the profiles of the shear Txy and normal Txx stresses, where we
observe their respective typical linear and parabolic profiles of such quantities.
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Figure 15. Steady–state profiles of the 2D channel flow simulation of the Oldroyd–B–Bingham model
with Re = 1.0, De = 1.0, ξ = 0, β = 0.01 and Bi = 1.0. The curves in red solid line are the profiles
obtained using HiGFlow, the black squares are the results predicted by the RheoTool software and the
curves of numerical results obtained by the VVF approach are shown as dashed lines.

Similarly to our results presented in Section 4.2.3, we also carried out a mesh con-
vergence analysis in HiGFlow using the Oldroyd-B-Bingham model: we simulate the 2D
channel-flow problem in different meshes (uniform meshes and refined meshes with two
and three levels of refinement, see Tables 1–3, and we estimate the errors L1, L2 , L∞ using
Equations (62) and (63). Our numerical values are reported in Tables 9–12.

Table 9. Errors for the velocity profile in the 2D channel–flow. These errors correspond to the
solutions obtained by HiGFlow using the Oldroyd–B–Bingham model. For the calculation of these
errors, the mesh MIV was assumed as a reference solution.

Velocity ux Errors

Mesh L1 L2 L∞

MI 1.242× 10−2 1.313× 10−2 2.0495× 10−2

MII 2.030× 10−3 2.670× 10−3 5.711× 10−3

MIII 6.162× 10−4 6.780× 10−4 1.574× 10−3

RMI 4.760× 10−3 6.678× 10−3 1.435× 10−2

RMII 1.694× 10−3 2.343× 10−3 5.578× 10−3

RMIII 4.388× 10−4 5.357× 10−4 1.367× 10−3

RMIV 4.910× 10−3 6.721× 10−3 1.559× 10−2

RMV 1.910× 10−3 2.322× 10−3 4.941× 10−3
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Table 10. Errors for the normal stress Txx profile in the 2D channel–flow. These errors correspond to
the solutions obtained by HiGFlow using the Oldroyd–B–Bingham model. For the calculation of these
errors, the mesh MIV was assumed as a reference solution.

Stress Txx Errors

Mesh L1 L2 L∞

MI 4.620× 10−2 4.067× 10−2 3.9578× 10−2

MII 4.898× 10−3 6.592× 10−3 9.906× 10−3

MIII 2.817× 10−3 2.739× 10−3 3.306× 10−3

RMI 2.916× 10−2 3.410× 10−2 3.516× 10−2

RMII 6.696× 10−3 7.263× 10−3 9.832× 10−3

RMIII 1.719× 10−3 2.033× 10−3 4.331× 10−3

RMIV 3.329× 10−2 3.633× 10−2 3.498× 10−2

RMV 9.243× 10−3 8.818× 10−3 1.1062× 10−2

Table 11. Errors for the shear stress Txy profile in the 2D channel–flow. These errors correspond to
the solutions obtained by HiGFlow using the Oldroyd–B–Bingham model. For the calculation of these
errors, the mesh MIV was assumed as a reference solution.

Stress Txy Errors

Mesh L1 L2 L∞

MI 3.014× 10−2 3.346× 10−2 4.785× 10−2

MII 1.491× 10−2 2.077× 10−2 2.957× 10−2

MIII 8.861× 10−3 1.244× 10−2 2.788× 10−2

RMI 2.645× 10−2 3.562× 10−2 5.319× 10−2

RMII 1.382× 10−2 1.865× 10−2 2.718× 10−2

RMIII 4.445× 10−3 7.923× 10−3 2.076× 10−2

RMIV 3.267× 10−2 4.105× 10−2 5.434× 10−2

RMV 1.204× 10−2 1.468× 10−2 2.210× 10−2

Table 12. Errors for the second invariant of the deviatoric stress tensor σd (I ID) profile in the 2D
channel–flow. These errors correspond to the solutions obtained by HiGFlow using the Oldroyd–B–
Bingham model. For the calculation of these errors, the mesh MIV was assumed as a reference solu-
tion.

σd Errors

MI 3.791× 10−2 3.340× 10−2 3.8205× 10−2

MII 5.570× 10−3 7.056× 10−3 9.071× 10−3

MIII 4.186× 10−3 4.934× 10−3 7.517× 10−3

RMI 2.250× 10−2 2.513× 10−2 2.913× 10−2

RMII 6.675× 10−3 7.231× 10−3 8.833× 10−3

RMIII 2.177× 10−3 2.772× 10−3 5.446× 10−3

RMIV 2.720× 10−2 2.837× 10−2 2.894× 10−2

RMV 8.027× 10−3 7.828× 10−3 8.774× 10−3

As we can see, the errors tend to be smaller if we use refined meshes with smaller cell
sizes, but more interestingly, we are also observing that the order of magnitude of the errors
of the uniform meshes (for instance, mesh MIII with ∆x = ∆y = 0.03125) is roughly similar
to the errors of the refined meshes that have refinement levels with cell sizes ∆x = 0.03125
(for instance, meshes RMII and RMIII), which clearly indicate us what we have previously
concluded: the finite difference and the meshless interpolations methods in tree-based grids
used by the HiGTree/HiGFlow allow us to obtain excellent results with good convergence
without having to use uniform meshes with very small cell size values.
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4.3.2. The Oldroyd-B-Herschel-Bulkley Model

Now we carry out simulations for the 2D channel in our in-house code, HiGFlow and in
RheoTool using the Oldroyd-B-Herschel-Bulkley model, which has an additional parameter:
the power-law parameter n, see Equation (40). If n = 1, we recover the Oldroyd-B-Bingham
model, but if n < 1, the fluid will exhibit viscoelastic shear-thinning properties if the flow
overcomes the yield-stress value. For our simulations, we will use the following parameter
values: Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 and n = 0.75.

Our profiles, that were obtained using the three different methodologies in uniform
meshes (∆x = ∆y = 0.03125), are illustrated in Figure 16. Something worth mentioning is
that for this model and for the PTT models, we have to use longer meshes L = 20 in order
to let the flow fully develop. Thus, the profiles we show here are at x = 18.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

V
el

o
ci

ty
, 
U

x

Channel coordinate,y

HiGFlow

RheoTool

VVF

(a) Ux vs. y

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

σ
d
 ,
 I

I D

Channel coordinate,y

HiGFlow

RheoTool

VVF

(b) σd vs. y

-5

 0

 5

 10

 15

 20

 25

 0  0.2  0.4  0.6  0.8  1

T
xx

Channel coordinate,y

HiGFlow

RheoTool

VVF

(c) Txx vs. y

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

T
xy

Channel coordinate,y

HiGFlow

RheoTool

VVF

(d) Txy vs. y

Figure 16. Steady–state profiles of the 2D channel flow simulation of the Oldroyd–B–Herschel–Bulkley
model with Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 and n = 0.75. The curves in red solid line
are the profiles obtained using HiGFlow, the solid black squares are the results predicted by the
RheoTool software and the curves of numerical results obtained by the VVF approach are shown as
dashed lines.

As expected, the solutions predicted by the software HiGFlow and RheoTool are in
excellent agreement since the curves overlap with each other in the whole range of the
channel coordinate y. On the other hand, the numerical results obtained in our in-house
code that uses the VVF approach are also great compared to the solutions of the CFD
software, but we can see that there are some slight differences near the wall.

More importantly, we can notice that although the profiles are roughly identical
compared to the profiles of the Oldroyd-B-Bingham model shown in Section 4.3.1, the stress
values predicted by the Oldroyd-B-Herschel-Bulkley model at the wall almost decreased
by half, which is clearly caused by the effect of the shear-thinning behaviour seen when n
is smaller than the unit (for this case, n = 0.75).

We also simulated an Oldroyd-B-Herschel-Bulkley fluid using uniform and refined
meshes, and the results were compared, as shown in Figure 17. It is evident that the
profiles obtained using different meshes (MIII, RMII, RMIII and RMV, see Tables 1–3 are
almost identical. However, we take a closer inspection and we show the profiles in the
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range 0.3 < y < 0.7 in order to demonstrate that we observe very few differences near the
centreline, specially between the solutions of the uniform mesh MIII (∆x = 0.03125) and
the refined mesh with two levels of refinement RMIII with respect to the meshes RMII and
RMV, whose cells near the centreline have a greater cell size value (∆x = 0.0625). Once
again, this clearly shows that we obtain very decent results by using refined meshes, which
take less computational time compared to the simulations obtained using uniform meshes
with very small cell size values.
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Figure 17. Comparison of the 2D channel–flow profiles using four different meshes in the
HiGTree/HiGFlow system for the Oldroyd–B–Herschel–Bulkley model with Re = 1.0, De = 1.0,
ξ = 0, β = 0.01, Bi = 1.0 and n = 0.75. The meshes used here are: an uniform mesh MIII (red solid
line), meshes with two refinement levels, RMII and RMIII (thick and thin dashed lines) and a mesh
with three refinement levels RMV (thin solid-dash line). See Tables 1–3 for more specific details of
the meshes.

4.3.3. The Linear- and Exponential-PTT-Bingham Models

In this section we will show our numerical results using two variations of the PTT-
Bingham models: the linear-PTT-Bingham (LPTT-Bingham) and the exponential-PTT-
Bingham (EPTT-Bingham), where a new model parameter ε is introduced, which is the
extensibility parameter. The parameter values for our simulations are: Re = 1.0, De = 1.0,
ξ = 0, β = 0.01, Bi = 1.0 and ε = 0.1. The profiles obtained using HiGFlow, RheoTool and
our in-house code for an uniform mesh with L = 20 and with cell sizes ∆x = ∆y = 0.03125
are illustrated below.

The profiles for the LPTT-Bingham model can be found in Figure 18, while the profiles
for the EPTT-Bingham model are in Figure 19. It is not surprising to see that for both models
we also obtain a plug-flow velocity profile near the centreline, as well as a parabolic-like
and linear profiles for Txx and Txy, respectively. We can also see that overall, there is a good
agreement between the numerical results predicted by our three methodologies. The region
where we notice some differences between our results is in the centreline for the normal
stress Txx (see Figures 18c and 19c).
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Figure 18. Steady–state profiles of the 2D channel–flow simulation of the LPTT–Bingham model with
Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 and ε = 0.1. The curves in red solid line are the profiles
obtained using HiGFlow, the solid black squares are the results predicted by the RheoTool software
and the curves of numerical results obtained by the VVF approach are shown as dashed lines.
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Figure 19. Steady–state profiles of the 2D channel flow simulation of the EPTT–Bingham model with
Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 and ε = 0.1. The curves in red solid line are the profiles
obtained using HiGFlow, the solid black squares are the results predicted by the RheoTool software
and the curves of numerical results obtained by the VVF approach are shown as dashed lines.

Similarly to what we showed in the previous section, we also carried out simulations
of these models in different meshes (MIII, RMII, RMIII and RMV), and the results are
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illustrated in Figures 20 and 21. We can also see that although the profiles almost overlap
with each other in the whole range of the channel-coordinate, we observe some deviation
in the numerical results near the centreline, especially between the uniform mesh MIII and
meshes RMII and RMV, which is due to different cell sizes of the meshes located in the
centreline, as discussed before. Our results here are in agreement with the mesh conver-
gence results shown in Section 4.2.3, where we stated that the finite difference method in
tree-based grids methodology used by HiGFlow provides us with good convergence results.
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Figure 20. Comparison of the 2D channel–flow profiles using four different meshes in the
HiGTree/HiGFlow system for the LPTT–Bingham model with Re = 1.0, De = 1.0, ξ = 0, β = 0.01,
Bi = 1.0 and ε = 0.1. The meshes used here are: an uniform mesh MIII (red solid line), meshes
with two refinement levels, RMII and RMIII (thick and thin dashed lines) and a mesh with three
refinement levels RMV (thin solid-dash line). See Tables 1–3 for more specific details of the meshes.

Lastly, we wish to conclude the 2D channel flow section by showing results of one
last simulation of an elastoviscoplastic fluid that can exhibit a different behaviour. Thanks
to the Saramito general model (see Equation (26)), we can choose what kind of behaviour
to study by specifying the function f (τ), and thus, we carried out a simulation of a fluid
with viscoelastic properties modelled by the linear-PTT model coupled with plasticity
behaviour of the Herschel-Bulkley model. The flow parameter values to be used are:
Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0, ε = 0.1 and n = 0.75. It is worth mentioning
that the simulation of a LPTT-Herschel-Bulkley fluid cannot currently be carried out in
OpenFOAM/RheoTool, since the regularisation of PTT models is not allowed if n 6= 1
(see [28]). Therefore, we only show the numerical results predicted by HiGFlow and the
VVF approach, see Figure 22.

If we compare these results with the profiles obtained for the LPTT-Bingham model
(see Figure 18), the values near the wall of the components of the stress tensor (Txx and
Txy) and of the second invariant of the deviatoric stress tensor σd tend to be smaller for the
LPTT-Herschel-Bulkley model, which is a clear effect of the index value n = 0.75. Notice
how also both methodologies predict the same behaviour for all curves, but there are some
regions (specially close to the walls) in the channel when the solutions differ, which is
something we also observe in our results for the Oldroyd-Herschel-Bulkley model (see
Figure 16).
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Figure 21. Comparison of the 2D channel–flow profiles using four different meshes in the
HiGTree/HiGFlow system for the EPTT–Bingham model with Re = 1.0, De = 1.0, ξ = 0, β = 0.01,
Bi = 1.0 and ε = 0.1. The meshes used here are: an uniform mesh MIII (red solid line), meshes
with two refinement levels, RMII and RMIII (thick and thin dashed lines) and a mesh with three
refinement levels RMV (thin solid-dash line). See Tables 1–3 for more specific details of the meshes.
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Figure 22. 2D channel flow simulation of an elastoviscoplastic fluid that couples the linear–PTT
viscoelastic behaviour with the Herschel–Bulkley model. The following parameter values were used:
Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 ε = 0.1 and n = 0.75. The solid ref line is the solution
predicted by HiGFlow, while the dashed line represents the numerical results obtained in our in-house
code that uses the VVF.
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4.4. The Planar 4:1 Contraction Flow

In the previous sections, we showed our numerical results in a planar channel geome-
try, but here we are interested in simulating VCM and elastoviscoplastic fluids in a more
complex geometry: the planar-contraction 4:1 (see a sketch of the geometry in Figure 23),
which offers a mix of shear and extensional deformation near the contraction region and
where secondary flows might exist. This kind of flow is a suitable benchmark problem for
the evaluation of new models or numerical methods.

u(y)

y = 2

y = −2

L 1
=

4L

20 L

x = −20 x = 25

25 L

x = 0

(x0, y0) = (0, 0)
y

x

Figure 23. Domain representation: the planar 4:1 contraction geometry.

Some of the main characteristics of this geometry are: the width of the downstream
channel is denoted by a characteristic height L = 1 m, and, as required by the problem,
the width L2 of the upstream channel is L2 = 4L. In addition, the inlet and outlet effects
can be neglected since the downstream and upstream lengths are 25L and 20L, respectively.
From our sketch of the domain, we can see that the origin (x0, y0) = (0, 0) is located where
the contraction begins, exactly at the centreline of the downstream channel.

In all simulations for the contraction problem carried out in HiGFlow, we use mesh RM,
which is displayed in Figure 24. This mesh has three levels of refinement, with the most
refined part near the contraction region, with cell sizes ∆x = ∆y = 0.03125 (see Figure 25 for
a better appreciation). The second level of refinement has cell sizes ∆x = ∆y = 0.0625 and
the third one (whose cells mostly cover the inlet and outlet regions) ∆x = ∆y = 0.125. We
will also use a uniform mesh UM with ∆x = ∆y = 0.0625 in order to check the convergence
of the solutions and to compare results between meshes UM and RM.

Figure 24. Refined mesh used in HiGFlow for the contraction 4:1 flow problem with 3 levels
of refinement.

On the other hand, we show the mesh RMRT used in RheoTool (see Figure 26). It
is important to point out that this software solves the governing equations using the
finite volume approach, so it is necessary to provide a three-dimensional mesh. This
mesh was constructed in OpenFOAM and was adapted in order to have meshes with
similar geometric conditions (and as close as possible) to the meshes used in HiGFlow
(Figures 24 and 25). As it can be seen, in RheoTool we only simulate half of the domain
since the flow is symmetric. In addition, we can notice that the upstream and downstream
regions of the contraction geometry have volumes with exactly the same dimensions of the
meshes used in HiGFlow. More details of this mesh can be found in our previous work [27].
Finally, in all the simulations of the contraction problem we use the same time-step value
∆t = 1.0× 10−4.
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Figure 25. Refined mesh RM used in HiGFlow near the contraction region.

Figure 26. Refined mesh RMRT used in OpenFoam/RheoTool (3 refinement levels).

Lastly, it is important to mention that unlike the 2D-channel flow section, here we only
focus on performing simulations using CFD software (HiGFlow and RheoTool), since our
in-house code with the Vorticity-Vorticity-Formulation is only designed to solve simple
geometries (see Section 3.4).

4.4.1. The VCM Model

In this section, we will show results of our simulations of a VCM fluid in the planar-
contraction 4:1 flow problem using the meshes UM, RM and RMRT described in Section 4.4.
Once again, we will compare the solutions from HiGFlow with the numerical results
obtained from RheoTool. To our knowledge, the results we are about to present are the first
computational simulations carried out in the planar-contraction 4:1 using the VCM model.

We also focus on simulating flows with low velocity values (U0 = 0.125 m/s), where
U0 is the centreline velocity of the small channel, since we found numerical instabili-
ties in our simulations for high velocity flows (U0 � 1). Therefore, our selected pa-
rameter values are the same ones reported in Section 4.2.1, which are parameters fit-
ted to experimental data of a concentrated cetyl pyridinium chloride/sodium salicylate
(CPyCl/NaSal) solution [9,29]: λA = 1.9 s, λB/λA = 6.27× 10−4, λe f f = 1 s, DA = DB =

1× 10−3 L2 s−1, CAEq = 0.9, CBEq = 1.4, χ = 0.57 and G0 = 1 Pa. For our convenience,
we set ρ = 10 Kg ·m−3 and ηs = 0.01 Pa · s. Thus, our dimensionless parameter values
(derived in Section 2.3): E = 0.01, DeA = 1.9, DeB = 1.1913, β = 0.01, PeA = PeB = 1000,
χ = 0.57, CAEq = 0.9 and CBEq = 1.4.

We also initialise the densities, tensors and velocity fields using the same values
reported in Section 4.2. We set a parabolic profile of the form U(y) = U0(1/4)(2− y)(2+ y)
at the inlet, fully developed flow conditions at the outlet, and non-slip conditions for the
velocity and zero-gradient boundary conditions for the other fields at the walls.
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We start by illustrating the centreline axial velocity profiles near the contraction region
(y = 0 and −5 < x < 5) shown in Figure 27. Three curves can be found: two of them
correspond to the numerical solutions predicted by HiGFlow, one obtained using the refined
mesh RM (red solid line) and the black dotted line correspond to the uniform mesh UM.
On the other hand, we have the black dashed line for the RheoTool results obtained using
the refined mesh RMRT described in Figure 26. For this figure, we see the typical velocity
profile seen in this geometry: the velocity increases as we approach the contraction region
(x = 0 and y = 0) and it is followed by an overshoot behaviour. After this, the velocity
reaches the steady-state centreline velocity of the downstream channel. It is clearly evident
that there is an excellent agreement in the solutions obtained by RheoTool and HiGFlow.
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Figure 27. Planar–contraction 4:1 steady-state velocity profiles Ux obtained using HiGFlow (refined
mesh RM in red solid line and uniform mesh UM in dotted line) and the RheoTool software (dashed
line, with mesh RMRT) for a VCM fluid with U0 = 0.125 and E = 0.01.

The centreline axial profiles of the other fields predicted by the VCM model (elastic
stress tensor T and density numbers of the two species, nA and nB) can be found in
Figure 28, where we can notice that both RheoTool and our methodology implemented in
HiGFlow (both uniform and refined meshes) are able to reproduce the expected behaviour in
contraction 4:1 flows and the solutions of these CFD software that use different approaches
(FVM and finite-differences) are in excellent agreement.

We start by describing the profile for the normal stress Txx, which can be seen in
Figure 28a. Our simulations describe also the common behaviour adopted by Txx in this
geometry, where we observe a continuous increase of the normal stress until it reaches a
maximum value at the centreline (x = 0, y = 0). After this point, Txx decays and reaches a
zero value very far away from the contraction region (x � 5).

Unlike the 2D-channel flow simulation of previous sections, here we report the normal
stress Tyy, which is a quantity that becomes more relevant in planar-contraction flows,
which is found in Figure 28b. As it can be seen, the behaviour of Tyy is the complete
opposite of Txx: Tyy has always negative values, and as the fluid enters the contraction
region (which is where the extensional flow is extremely relevant), the stress decreases and
reaches a minimum, and then it gradually increases until Tyy becomes zero.
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Figure 28. Planar–contraction 4:1 centreline axial profiles of the normal components of the elastic
stress tensor (Txx and Tyy) and the density numbers of the two species (nA and nB) of a VCM fluid.
The results obtained in HiGFlow are the red solid line (refined mesh RM) and the dotted line (uniform
mesh UM), while the predictions by RheoTool are represented by the dashed line curve (mesh RMRT).

On the other hand, the profiles of the density number of the longer chains (nA) and
of the shorter chains (nB) can be found in Figure 28c,d, respectively. Their behaviour is
very similar to that of the normal stresses: the concentration of both chains is constant
(nA = 1 and nB =

√
2CAEq /CBEq = 1.13389) until the fluid enters the contraction region

zone (−1 < x < 1), where the extensional flows causes a decrease on the concentration of
longer chains (specie A), while simultaneously the density number of the shorter chains
(specie B) is increasing. More interestingly, a minimum value of nA and a maximum value
of nB are observed exactly at the origin (x = 0, y = 0). Very far away from the contraction
region (x � 5), the density numbers recover its initial values (nA = 1 and nB = 1.13389).

As reported in the literature, the elastic forces in viscoelastic fluids can generate the
formation of a corner vortex near the contraction region [34,42]. Therefore, we wish to
show the streamlines obtained both in RheoTool and HiGFlow near the contraction region,
which can be found in Figure 29. All these streamlines were calculated in Paraview, and we
used exactly the same resolution parameters. It can be clearly seen that both methodologies
(FVM in RheoTool and finite-differences in tree-based grids in HiGFlow) are able to predict
the formation of a corner vortex. However, we can notice that the size of the vortexes
differ from each other; for instance, the value of the dimensionless vortex size (horizontal
lentgh) XR predicted by HiGFlow is XR = 0.482733, while RheoTool predicts a value of
XR = 0.313078, showing a 35 % percentage difference between the values.
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(a) HiGFlow (b) RheoTool

Figure 29. Comparison of the streamlines of the planar–contraction 4:1 flow problem of a VCM fluid.

4.4.2. The Saramito Model

In this last subsection, we will show numerical results from our simulations using
the Saramito model in the planar-contraction 4:1 flow problem with meshes UM, RM
and RMRT. As previously discussed, the general equation of Saramito allows the user to
choose the elastoplastic behaviour to be simulated. Thus, we will focus on simulating a
fluid that obeys the Oldroyd-B-Herschel-Bulkley model and another fluid that follows the
linear-PTT-Bingham behaviour. The main reason we chose to use these models is that they
avoid the possible infinite Oldroyd-B elongational viscosity that is observed in extensional
flows of Oldroyd-B fluids for De > 0.5.

For the Oldroyd-B-Herschel-Bulkley fluid, we use the following parameter values:
Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 and n = 0.75. The centreline axial profiles
near the contraction region (y = 0 and −5 < x < 5) for this case can be found in Figure 30.
Overall, it can be seen that both HiGFlow and RheoTool predict the same phenomena, and the
curves of the numerical results are almost roughly the same, with some small differences in
the numerical values seen in the contraction region (0 < x < 2).

For the velocity profile (see Figure 30a), we have the characteristic overshoot that
is seen in this planar-contraction geometry. Figure 30b shows the second invariant of
the deviatoric stress tensor σd, which provides us with interesting information about the
flow: before the fluid enter the contraction region (x < −2), it behaves as a rigid solid in
the centreline since σd < Bi = 1; as soon as it enters in this region, we start to observe
viscoelastic behaviour and σd reaches a maximum value at x = 0. As the fluid leaves the
contraction, σd begins to decay gradually until the fluid starts to behave again as a rigid
solid at x � 2 (this range is not shown here but see Figure 31 for better visualisation).

On the other hand, we show the normal components of the elastic stress tensor, which
are illustrated in Figure 30c,d. These curves are also in agreement with our previous figure,
since we observe that the elastic stresses start to become more relevant when the fluid
approaches the contraction region (−2 < x < 2).

In contrast to the flows of PTT fluids or any other viscoelastic fluids without yield
stress (see also our results from Section 4.4.1), where we observe that the elastic forces lead
to the generation of corner vortexes, we do not observe such vortexes in our simulations
of an elastoviscoplastic fluid modelled through the Oldroyd-B-Herschel-Bulkley model.
The lack of vortexes can be better explained using Figure 31, where we show a heat-map of
the second invariant of the deviatoric stress tensor σd (I ID). As we can notice, the values of
σd in the corner are very small (royal blue colour) and therefore, they do not overcome the
value of our Bingham number Bi = 1.0, which means that the fluid will behave as a rigid
solid in the corner.
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Figure 30. Planar–contraction 4:1 centreline axial profiles of a Oldroyd-B-Herschel-Bulkley fluid.
The results obtained in HiGFlow are the red solid line (refined mesh RM) and the dotted line (uniform
mesh UM), while the predictions by RheoTool are represented by the dashed line curve (mesh RMRT).

Figure 31. Heat map of the second invariant of the deviatoric stress tensor σd (I ID) of a Oldroyd–B–
Herschel-Bulkley fluid in the planar-contraction 4:1.

For the last simulation, we use the following parameter values for our LPTT-Bingham
fluid: Re = 1.0, De = 1.0, ξ = 0, β = 0.01, Bi = 1.0 and ε = 0.1. Our results can be found in
Figure 32. In these profiles (with the exception of the profile for I ID), we have also included
numerical results carried out in HiGFlow using a standard LPTT model (without yield
stress) for reference in order to illustrate how the solutions from the LPTT-Bingham model
deviate from the standard viscoelastic model.
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Figure 32. Planar–contraction 4:1 centreline axial profiles of a LPTT–Bingham fluid. The results
obtained in HiGFlow are the red solid line (refined mesh RM) and the dotted line (uniform mesh UM),
while the predictions by RheoTool are represented by the dashed line curve (mesh RMRT). The velocity
and normal stress profiles of a standard LPTT fluid without yield stress are also included as reference
as thin solid lines.

Firstly, it can be easily seen that the solutions obtained in both HiGFlow and RheoTool
are in excellent agreement, since the curves overlap with each other. We can also observe
similar behaviours in the profiles compared to the figures of the Oldroyd-B-Herschel-
Bulkley (see Figure 30): an overshoot is seen for the velocity profile, while the relevant
components of the elastic stress tensor become more important when the fluid enters the
contraction region. More interestingly, notice how the results differ from the classic LPTT
model; particularly, the stress Txx is much higher at the origin (x = 0) for the LPTT-Bingham
fluid. Similarly to the Oldroyd-B-Herschel-Bulkley case, we did not find vortexes in the
corner either here, and this is because the fluid behaves as solid in the corner, see Figure 33.

Figure 33. Heat map of the second invariant of the deviatoric stress tensor σd (I ID) of a LPTT-Bingham
fluid in the planar-contraction 4:1.
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4.5. Conclusions

In this work, we have presented numerical results from viscoelastic rheological models
that have recently been implemented into the HiGTree/HiGFlow system, a CFD software
that uses a finite difference method with meshless interpolations in hierarchical tree-based
grids [25]. The implemented models (which are the Vasquez-Cook-McKinley (VCM) [8]
and the Saramito model [23,24]) can describe complex rheological behaviour of fluids that
are of great interest in the industry, such as micellar solutions that exhibit viscoelasticity
and shear-banding and elastoviscoplastic materials.

Using experimental reported values of the fluid parameters and typical flow con-
ditions, these models have been tested in HiGFlow using benchmark geometries, such
as the two-dimensional channel and the 4:1 planar-contraction, where we carried out
unsteady-inertial-flow simulations. Our results were directly compared with those ob-
tained in the open-source software RheoTool, a tool based on OpenFOAM developed to
simulate generalised-Newtonian and viscoelastic flows. The main difference between the
HiGTree/HiGFlow system and OpenFOAM/RheoTool is that the latter discretises the govern-
ing and constitutive equations with the finite volume method technique instead of finite
differences. In this work, we have found an excellent agreement between the steady-state
results predicted by both methodologies. In addition, our 2D-channel simulations were
also compared with a third methodology: an in-house code that uses the Vorticity-Velocity-
Formulation (VVF), whose numerical solutions are also similar to the results predicted by
HiGFlow and RheoTool. To our knowledge, we are also the first authors to carry out compu-
tational simulations of the Vasquez-Cook-McKinley (VCM) model in the planar-contraction
4:1 geometry.

In addition, we carried out a mesh convergence analysis of our models using uniform
meshes and two kinds of refined meshes (with two and three refinement levels). The results
clearly showed that the numerical errors obtained for the uniform meshes with very small
cell sizes are rough of the same order of magnitude as the errors obtained in our refined
meshes (with identical cell sizes to those of the uniform meshes). This suggests that we
can opt to use refined meshes instead of uniform meshes with very small cell sizes (which
can take plenty of simulation time) since we have shown great convergence results thanks
to the finite difference method and the meshless interpolation scheme used by the system
HiGTree/HiGFlow described in Section 3.1.

We have also shown that the VCM and Saramito models implemented in the system
HiGTree/HiGFlow can reproduce rheological behaviour that is commonly observed in com-
plex fluids, such as the non-monotonic stress vs. shear rate flow curves of shear-banded
flows, the plug-flow velocity profiles seen in viscoelastic yield-stress fluids, formation of
corner vortex and non-zero normal stresses in 4:1 planar-contraction flows. For future
work, it would be of great interest to implement models that incorporate thixotropy into
viscoelastic yield-stress fluids, such as the MK-IKH [43] and the de Souza [22] models.
Another big step to extend the library of models available in HiGflow would be to incor-
porate the heat-transfer equations in order to simulate non-isothermic flows of complex
fluids [44–48].
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