
Genomics Proteomics Bioinformatics 14 (2016) 62–71
HO ST E D  BY

Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
ORIGINAL RESEARCH
A Bipartite Network-based Method for Prediction

of Long Non-coding RNA–protein Interactions
* Corresponding author.

E-mail: aoli@ustc.edu.cn (Li A).
a ORCID: 0000-0001-5185-7045.
b ORCID: 0000-0001-9910-8967.
c ORCID: 0000-0002-5788-894X.

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences and Genetics Society of China.

http://dx.doi.org/10.1016/j.gpb.2016.01.004
1672-0229 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Beijing Institute of Genomics, Chinese Academy of Scie
Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Mengqu Ge 1,a, Ao Li 1,2,*,b, Minghui Wang 1,2,c
1School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
2Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
Received 12 November 2015; revised 4 January 2016; accepted 6 January 2016
Available online 22 February 2016

Handled by Zhihua Zhang
KEYWORDS

lncRNA;

Protein;

Interaction;

Bipartite network;

Propagation
Abstract As one large class of non-coding RNAs (ncRNAs), long ncRNAs (lncRNAs) have gained

considerable attention in recent years. Mutations and dysfunction of lncRNAs have been implicated

in human disorders. Many lncRNAs exert their effects through interactions with the corresponding

RNA-binding proteins. Several computational approaches have been developed, but only few are

able to perform the prediction of these interactions from a network-based point of view. Here,

we introduce a computational method named lncRNA–protein bipartite network inference

(LPBNI). LPBNI aims to identify potential lncRNA–interacting proteins, by making full use of

the known lncRNA–protein interactions. Leave-one-out cross validation (LOOCV) test shows that

LPBNI significantly outperforms other network-based methods, including random walk (RWR)

and protein-based collaborative filtering (ProCF). Furthermore, a case study was performed to

demonstrate the performance of LPBNI using real data in predicting potential lncRNA–interacting

proteins.
Introduction

An increasing number of studies show that approximately
2% of the whole mammalian genome represents protein-
coding genes, whereas the majority of the genome consists
of non-coding RNA (ncRNA) genes. ncRNAs had long been
regarded as transcriptional noise, but recent investigations

demonstrate that ncRNAs play an important role in the reg-
ulation of diverse biological processes [1–5]. Long ncRNAs
(lncRNAs), which consist of more than 200 nucleotides, con-

stitute a large class of ncRNAs [6–7]. In the past several
years, the number of identified lncRNAs has been increasing
sharply because of the development of both bioinformatics

tools and experimental techniques. Functional studies of
lncRNAs show that mutated and dysfunctional lncRNAs
are implicated in a range of cellular processes [8–12] and

human diseases, ranging from neurodegeneration to cancer
[13–18]. Although some lncRNAs, e.g., Xist [19] and
nces and
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MALAT1 [20], have been well studied, the functions of most
lncRNAs remain unclear. Usually lncRNAs function through
interacting with RNA-binding proteins (RBPs) [21–24].

Therefore, it is important to predict the potential lncRNA–
protein interactions, in order to study the complex function
of lncRNAs.

Since the experimental identification of lncRNA–protein
interactions remains costly, developing effective predictive
approaches becomes essential. Recently, several computational

methods have been reported for predicting potential lncRNA–
protein interactions. For instance, Bellucci et al. developed
catRAPID in 2011 [25] by taking into account secondary struc-
ture, hydrogen bonds, and van der Waals forces between

lncRNAs and proteins. Next, Muppirala et al. [26] introduced
a method named RPISeq, using only sequence information of
lncRNAs and proteins. Support vector machine (SVM) classi-

fiers [27] and random forest (RF) [28] are used to predict
RBPs. In 2013, Lu et al. [29] developed a novel approach,
named lncPro, which uses secondary structure, hydrogen

bond, van der Waals force features, and yields the prediction
score using Fisher’s linear discriminate method. Later on, an
approach named RPI-Pred was developed by Suresh et al.

[30], they trained SVM-based approach, by extracting
sequence and high-order 3D structure features of lncRNAs
and proteins.

All the aforementioned methods are based on the biolog-

ical characteristics of ncRNAs and proteins. CatRAPID
and lncPro combined sequence and structural features of
lncRNAs and proteins. RPISeq was based on sequence fea-

tures. RPI-Pred used the high-order structure features of
lncRNAs and proteins. However some studies show that
lncRNAs generally exhibit low sequence conservation [1],

which may make it difficult to predict interactions based on
the intrinsic properties of lncRNAs. Biological network-
based methods are widely used in many types of studies, such

as disease gene prioritization [31] and drug-target interaction
prediction [32]. The development of bioinformatics technolo-
gies such as CLIP-seq and cross-linking immunoprecipitation,
has enabled us to construct lncRNA–protein interaction net-

works. We introduce here a novel computational method,
lncRNA–protein bipartite network inference (LPBNI), for
the prediction of lncRNA–protein interactions. LPBNI iden-

tifies novel lncRNA–protein pairs by efficiently using the
lncRNA–protein bipartite network. In order to evaluate the
performance of the proposed method, we compared LPBNI

with other network-based methods, including random walk
(RWR) [31] and protein-based collaborative filtering (ProCF)
[33]. RWR [31] has been used to predict genes associated with
potential diseases. ProCF is derived from the recommenda-

tion algorithms, similar to the item-based collaborative filter-
ing method [33]. The performance evaluation is based on
leave-one-out cross validation (LOOCV) of the known

lncRNA–protein interactions extracted from NPInter [34].
To further demonstrate the effectiveness of lncRNA–protein
bipartite network, six lncRNAs were used to evaluate the per-

formance of LPBNI in comparison with the existing methods,
lncPro [29] and RPISeq [26]. These evaluation tests demon-
strated that LPBNI outperforms the other methods signifi-

cantly. In a case study, several potential interactions
between lncRNAs and proteins identified by LPBNI were
well supported by starBase [35], indicating the superior
predictive ability of LPBNI.
Results

Performance comparison with other network-based methods on

lncRNA–protein interactions prediction
We compared the performance of LPBNI with RWR [31] and
ProCF [33]. ProCF is based on the idea that if a protein inter-
acts with an lncRNA, similar proteins will be recommended as

interacting with this lncRNA. The linkage between pi and lj

can be defined as: scoreij ¼
Pm

k¼1;k–i
SPðpi ;pkÞakjPm

k�1;k–i
SPðpi ;pkÞ

, where SPðpi; pkÞ
is the similarity between proteins pi and pk. Here, we used

cosine vector similarity to measure the similarity of proteins:

SPðpi; pkÞ ¼ jdðiÞ\dðkÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdðiÞjjdðkÞj

p , where d(i) and d(k) are the degrees of

proteins i and k, respectively.

We extracted 4870 lncRNA–protein interactions from

NPInter 2.0 [34] (see ‘‘Data collection and preprocessing” for
detail). In LPBNI, for one node, at least two interactions are
required to perform LOOCV. Therefore, the nodes that have

only one link are not considered in the performance evalua-
tion, so we further get 4796 lncRNA–protein interactions
which match that condition, and this dataset is taken as ‘gold

standard’ data in the LOOCV test. The receiver operating
characteristic (ROC) curves and the area under the curve
(AUC) obtained using these methods are shown in Figure 1.
It is obvious that LPBNI shows the highest true positive rate

(TPR) at each false positive rate (FPR). In addition, the
AUC value of LPBNI is 0.878 (Table 1), which is higher than
that obtained using RWR (0.765) and ProCF (0.738), respec-

tively. These data suggest that LPBNI has a better predictive
ability compared with RWR and ProCF. To validate the reli-
ability of LPBNI, we compared the sensitivity, accuracy, pre-

cision, and Matthew’s correlation coefficient (MCC) of
LPBNI, RWR, and ProCF with specificities of 99.0% and
95.0%, respectively. As shown in Table 1, with specificity of
99.0%, sensitivity, accuracy, precision, and MCC of LPBNI

are all higher than that with RWR and ProCF. When speci-
ficity was reduced to 95.0%, sensitivity and MCC increased
for all three methods, with decreased precision, although the

accuracy remained comparable. However, LPBNI still showed
a higher performance in terms of sensitivity, accuracy, preci-
sion, and MCC, compared to RWR and ProCF.

The fold enrichment is also used to evaluate the performance
of the proposed method, which can be defined as: N/2/n [37],
where N represents the number of candidate proteins, and n is

the ranking of the tested protein among the candidate proteins
for the evaluation. Based on the formula, the average fold
enrichments are 4.007, 3.590, and 1.653 for LPBNI, RWR,
and ProCF, respectively. These data suggest that LPBNI

outperforms the other methods in identifying lncRNA–related
proteins with a higher rank. Table 2 shows the number of
lncRNA–protein interactions that were correctly retrieved at

5%, 10%, 15%, 20%, and 50% of all the prediction results,
respectively. Among 4796 true interactions between lncRNAs
and proteins, LPBNI achieves a higher retrieval compared with

RWR and ProCF, at each of the investigated percentiles. The
biggest differencewas observed for 5%,whereLPBNI recovered
579 interactions successfully, and only 410 and 116 interactions

were retrieved using RWR and ProCF, respectively.



Table 1 Performance comparison of different methods with specificities of 99.0% and 95.0% in predicting lncRNA–protein interactions

Specificity Methods Sensitivity Accuracy Precision MCC

99.0% LPBNI 0.288 0.873 0.852 0.449

RWR 0.062 0.835 0.556 0.282

ProCF 0.118 0.844 0.703 0.334

95.0% LPBNI 0.532 0.880 0.681 0.534

RWR 0.156 0.817 0.384 0.480

ProCF 0.317 0.844 0.560 0.528

Note: LPBNI, lncRNA–protein bipartite network inference; RWR, random walk; ProCF, protein-based collaborative filtering; MCC, Matthew’s

correlation coefficient.

Figure 1 Performance comparison of different methods using ROC curves in predicting lncRNA–protein interactions

Shown in the plot is the ROC for the whole dataset using LPBNI (blue, AUC: 0.878), RWR (green, AUC: 0.765), and ProCF (red, AUC:

0.738), respectively. LOOCV is implemented and 4796 known lncRNA–protein interactions are used as gold standard dataset. ROC,

receiver operating characteristic; LPBNI, lncRNA–protein bipartite network inference; RWR, random walk; ProCF, protein-based

collaborative filtering; AUC, area under this curve. LOOCV, leave-one-out cross validation.

Table 2 Number of interactions that are correctly recovered from 69 true interactions using different methods

Method
No. of interactions recovered at each correct recovery percentile

5% 10% 15% 20% 50%

LPBNI 579 1031 1543 2566 4269

RWR 410 943 1409 2180 4092

ProCF 116 326 620 1180 2826

Note: Comparison was performed at different correct recovery percentiles including 5%, 10%, 15%, 20%, and 50%.
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Furthermore, 10-fold cross validation was applied, in order
to conduct a comprehensive performance evaluation of LPBNI

in predicting lncRNA–protein interactions. All lncRNA–pro-
tein interactions (4796) are randomly divided into 10 equal por-
tions. Each portion in turnwas left out as a test sample, while the
remaining ones were treated as training sets. During cross vali-

dation, some nodes are separated into the test sample and the
corresponding links cannot be predicted by LPBIN; therefore,
those links were not considered in the process of evaluation.

The ROC curves for LPBNI, RWR, and ProCF are shown in
Figure S1, supporting the superior performance of LPBNI as
well. Taken together, these analyses demonstrate the power of

LPBNI in the prediction of lncRNA–protein interactions.

Comparison with the existing methods in predicting

lncRNA–protein interactions

In order to further evaluate the performance of the proposed
method in predicting lncRNA–protein interactions, we
compared LPBNI with lncPro [29] and RPISeq [26]. RF or
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SVM can be used in RPISeq [26] for the prediction of
lncRNA–protein interactions, which correspond to RPISeq-
RF and RPI-SVM here. We performed the evaluation of these

methods using six lncRNAs, including NONHSAT009703,
NONHSAT023583, NONHSAT027070, NONHSAT090901,
NONHSAT121712, and NONHSAT138142, which we ran-

domly selected from the lncRNAs set and present 69
Figure 2 Performance comparison in terms of ROC curves for six lnc

Shown in the plot is the ROC curves for 6 lncRNAs (A–F) using LPB

(brown), respectively. For each lncRNA, LOOCV is performed and

standard dataset. The lncRNA IDs have been abbreviated without

‘‘NONHSAT009703”. ROC, receiver operating characteristic.

Table 3 AUC comparison of different methods for six lncRNAs

lncRNA ID LPBNI lncPr

NONHSAT009703 0.944 0.344

NONHSAT023583 0.932 0.368

NONHSAT027070 0.975 0.594

NONHSAT090901 0.910 0.654

NONHSAT121712 0.887 0.699

NONHSAT138142 0.944 0.681

Note: AUC, area under the curve.
lncRNA–protein interactions. The ROC curves for predicting
lncRNA–protein interactions are shown in Figure 2. For each
lncRNA, the corresponding ROC curve of LPBNI is signifi-

cantly higher compared with the results obtained by lncPro,
RPISeq-RF, and RPISeq-SVM. As presented in Table 3, the
average AUC of LPBNI is 0.375, 0.339, and 0.497 higher than

lncPro, RPISeq-RF, and RPISeq-SVM, respectively. The
RNAs tested

NI (blue), lncPro (cyan), RPISeq-RF (yellow), and RPISeq-SVM

the corresponding lncRNA–protein interactions are used as gold

the ‘‘NONHSAT” prefix, e.g., ‘‘009703” represents the lncRNA

o RPISeq-RF RPISeq-SVM

0.663 0.638

0.594 0.188

0.506 0.606

0.534 0.233

0.677 0.301

0.581 0.644
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comparisons among LPBNI, lncPro, and RPISeq, in terms of
sensitivity and specificity, are listed in Table S1. Taking NON-
HSAT138142 (RP6-24A23.7) as an example, the AUC value of

LPBNI was shown to be 0.944, which is 0.263, 0.363, and 0.300
higher compared with lncPro, RPISeq-RF, and RPISeq-SVM,
Figure 3 Number of interactions that are correctly recovered from 47

4796 known lncRNA–protein interactions are taken as gold standard d

taken as different percentiles. The number of lncRNA–protein interacti

rank distribution of the lncRNA–related proteins, the higher the num

Table 4 Top 5 ranked candidate proteins for four selected lncRNAs

lncRNA ID (NONCODE 4.0 ID)
Top 5

STRING ID Na

NONHSAT037119 (RP11-349A22.5) 9606.ENSP00000254108 RN

9606.ENSP00000220592 Sig

9606.ENSP00000240185 TA

9606.ENSP00000401371 Nu

9606.ENSP00000349428 Pol

NONHSAT010657 (HNRNPU-AS1) 9606.ENSP00000290341 Ins

pro

9606.ENSP00000240185 TA

9606.ENSP00000258962 Ser

9606.ENSP00000350028 Put

9606.ENSP00000338371 Tri

pro

NONHSAT016118 (RP11-18I14.10) 9606.ENSP00000385269 EL

9606.ENSP00000254108 RN

9606.ENSP00000220592 Sig

9606.ENSP00000381031 RN

9606.ENSP00000401371 Nu

NONHSAT027801 (RP11-350F4.2) 9606.ENSP00000254108 RN

9606.ENSP00000240185 TA

9606.ENSP00000220592 Sig

9606.ENSP00000381031 RN

9606.ENSP00000349428 Pol

Note: The corresponding score of each interaction is calculated by LPBNI.

the query lncRNA. For each lncRNA, the proteins were ranked in a desce
respectively. For specificity of 95.0%, the sensitivity of LPBNI
was 0.563, which is 0.438, 0.500, and 0.125 higher compared
with lncPro, RPISeq-RF, and RPISeq-SVM, respectively.

As aforementioned, there are 69 lncRNA–protein interac-
tion pairs for these six lncRNAs. We next examined the num-
96 true interactions in different percentiles

ataset. 10%, 15%, 20%, and 50% of all the prediction results are

ons that are correctly retrieved at different percentiles indicated the

ber in each percentile, the better the performance of the method.

ranked proteins
LPBNI score Validated

me

A-binding protein FUS 0.528 starBase

nal recognition particle 54 kDa protein 0.278

R DNA-binding protein 43 0.275

cleolysin TIA-1 isoform p40 0.247 starBase

ypyrimidine tract-binding protein 1 0.192 starBase

ulin-like growth factor 2 mRNA-binding

tein 1

0.801 starBase

R DNA-binding protein 43 0.483

ine/arginine-rich splicing factor 1 0.315 starBase

ative helicase MOV-10 0.304 starBase

nucleotide repeat-containing gene 6B

tein

0.144

AV-like protein 1 0.396

A-binding protein FUS 0.175 starBase

nal recognition particle 54 kDa protein 0.121

A-binding protein EWS 0.096

cleolysin TIA-1 isoform p40 0.087

A-binding protein FUS 0.440 starBase

R DNA-binding protein 43 0.286

nal recognition particle 54 kDa protein 0.276

A-binding protein EWS 0.268

ypyrimidine tract-binding protein 1 0.187

The higher the score, the higher possibility of the protein interacts with

nding order based on the score.
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bers of lncRNA–protein interactions that were correctly recov-
ered with respect to different percentiles [32] of all the predic-
tion results. As shown in Figure 3, LPBNI had the best

performance for every percentile tested. Top-ranked results
are of great importance, due to the low occurrence of false pos-
itive results. When looking at the top 10% of the results, 12 of

69 lncRNA–protein interactions were correctly retrieved by
LPBNI, whereas only five, eight, and six interactions were cor-
rectly retrieved by lncPro, RPISeq-RF, and RPISeq-SVM,

respectively. As for top 50%, LPBNI correctly recovers 57
lncRNA–protein interactions, which represent 18, 17, and 25
interactions more than lncPro, RPISeq-RF, and RPISeq-
SVM, respectively. These comparisons indicate that LPBNI

outperforms lncPro and RPISeq in the prediction of
lncRNA–protein interactions.
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Prediction of novel lncRNA–protein interactions

Following the validation of the superior performance of
LPBNI using LOOCV, we applied LPBNI onto the 4796

known lncRNA–protein interactions downloaded from NPIn-
ter [34], which includes 1113 lncRNAs and 26 proteins to pre-
dict novel lncRNA–protein interactions. For each lncRNA, all

the collected proteins were ranked according to the scores cal-
culated by LPBNI, and the top five proteins are considered
potential lncRNA–interacting proteins. We present here the
results for four lncRNAs, which include NONHSAT037119

(RP11-349A22.5), NONHSAT010657 (HNRNPU-AS1),
NONHSAT016118 (RP11-18I14.10), and NONHSAT027801
(RP11-350F4.2). Top five proteins and the corresponding

scores for these lncRNAs are presented in Table 4. We
searched other databases such as starBase [35] and lncRNome
[36], and found that some top ranked proteins that are pre-

dicted to interact with these lncRNAs are supported by star-
Base [35], which is designed to decipher miRNA-target
interactions and protein-RNA interactions. As shown in

Table 4 and 9606.ENSP00000254108 (RNA-binding protein
FUS), 9606.ENSP00000401371 (Nucleolysin TIA-1 isoform
p40), and 9606.ENSP00000349428 (Polypyrimidine tract-
binding protein 1) are predicted to interact with RP11-

349A22.5. 9606. ENSP00000290341 (Insulin-like growth factor
2 mRNA-binding protein 1), and 9606.ENSP00000258962
(Serine/arginine-rich splicing factor 1), and 9606.

ENSP00000350028 (Putative helicase MOV-10) are predicted
to interact with HNRNPU-AS1. FUS is predicted to interact
with RP11-18I14.10 and RP11-350F4.2. These predictions

were all confirmed by starBase [35].
Furthermore, we extracted the predictions confirmed by

starBase and compared their ranks predicted by LPBNI,
lncPro, RPISeq-RF, and RPI-SVM (Table 5). The results

showed that for these lncRNAs, there exist large differences
in the ranks of most of the candidate proteins predicted by
LPBNI, lncPro, RPISeq-RF, and RPI-SVM. Despite these

great variations, candidate proteins are consistently ranked
higher by LPBNI relative to the other three methods. For
instance, for lncRNA RP11-350F4.2, FUS is ranked first by

LPBNI, but it is ranked 12th, 15th, and 24th by lncPro,
RPISeq-RF, and RPI-SVM, respectively. The results above
show that LPBNI can identify potential lncRNA–interacting

proteins as top candidates, implying that the use of LPBNI
T l N N N N
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is a very effective way to predict novel lncRNA–protein
interactions.
Figure 4 Example of the lncRNA–protein interaction bipartite

network

The left panel is the adjacent matrix A extracted from the known

lncRNA–protein interactions, where aij = 1 if pi interacts with lj,

otherwise aij = 0. The right panel is the bipartite network

constructed based on the adjacent matrix. The red circles represent

lncRNAs and blue hexagons represent proteins, while the known

lncRNA–protein interactions are represented in blue lines.
Discussion

In this study, we proposed and tested a novel computational

method, LPBNI, for the prediction of potential lncRNA–pro-
tein interactions. We constructed an lncRNA–protein bipartite
network, using the information about lncRNA–protein inter-

actions, lncRNA and proteins are connected if they were
known to interact with each other. Following this, two-step
propagation was carried out in the bipartite network to score
and rank candidate proteins for each lncRNA. The proposed

method has some important features. Firstly, LPBNI uses only
the network constructed based on the known lncRNA–protein
interactions to perform this prediction. Secondly, with an

increasing degree of a node, less information is assigned to
its direct neighbors. Finally, the propagation matrix is not
symmetrical. The results of comparisons between LPBNI

and other network-based methods show that LPBNI has
higher AUC, compared to RWR and ProCF. In order to fur-
ther evaluate the performance of the proposed method, we
compare LPBNI with the existing methods for lncRNA–pro-

tein pair prediction and obtain consistently higher ROC curves
using LPBNI in relative to lncPro, RPISeq-RF, and RPISeq-
SVM for the six lncRNAs tested. All the comparisons show

that our method can effectively predict interactions between
lncRNAs and proteins, largely by taking advantage of
lncRNA–protein interaction network. The case study shows

further that LPBNI is powerful not only for the recovery of
known lncRNA–protein interactions, but also for the predic-
tion of potential candidate proteins. This suggests that LPBNI

may be a useful tool for predicting candidate lncRNA–inter-
acting proteins that could be subjected to further experimental
investigation for potential functional studies.

Despite the efficiency of LPBNI in the prediction of the

candidate proteins for interacting with lncRNAs, some limita-
tions exist. Firstly, LPBNI can only be implemented for a
bipartite network, in which each node has at least two links.

Since LPBNI only uses the prior information about the known
lncRNA–protein interactions, LPBNI cannot predict candi-
date proteins if there is no information about the lncRNAs

in the training set. This limitation may be addressed by extend-
ing the bipartite network to a bipartite network model based
on lncRNA/protein functional domains or by adding the

expression profile of lncRNAs [38]. Secondly, some proteins
interact with a lot of lncRNAs, which may tend to get more
information during the procedure of information propagation,
and in consequence have higher scores in the prediction.

Finally, the shortage of known lncRNA–protein interactions
limits the further analysis of lncRNA mechanisms in a larger
network, which may be addressed by a rapid increase in

lncRNA datasets.

Conclusion

The prediction of lncRNA–protein interactions is extremely
important for the studies of the complex function of lncRNAs.
Existing methods are using the sequence information of

lncRNAs and proteins, but in this study, we introduce a
network-based method, LPBNI, which takes full advantage
of the information about the known lncRNA–protein interac-
tions. We performed the evaluation and case study of this

method, which further demonstrate its superior performance.

Materials and methods

Data collection and preprocessing

7576 ncRNA–protein interactions were downloaded from the
NPInter 2.0 database [34] (http://www.bioinfo.org/NPInter/)
in November, 2013, with the restriction of type ‘‘NONCODE”

and organism ‘‘Homo sapiens”. Furthermore, we extracted
2380 lncRNAs from a human lncRNA dataset downloaded
from NONCODE 4.0 database [39], and converted the IDs

of lncRNAs and proteins, into NONCODE 4.0 IDs and string
IDs, separately. Finally, we got 4870 lncRNA–protein interac-
tions, including 2380 lncRNAs and 106 proteins.

The lncRNA–protein bipartite network

The lncRNA–protein interaction network can be described as

a graph G(L,P,E), in which L = {l1,l2,. . .,ln} is defined as
lncRNA set, P = {p1,p2,. . .,pm} is defined as the protein set,
and E = {ei,j|Li2L,Pj2P} is the edge set, where ei,j represents
the edge connecting the nodes pi and lj. A= {ai,j|i2P,j2L} rep-
resents the adjacent matrix, where aij = 1 if pi interacts with lj,
otherwise aij = 0. For lncRNA lj, positive samples referred to
the proteins that are known to interact with lj, and the remain-

ing proteins were considered negative samples. A simple illus-
tration of lncRNA–protein bipartite network construction is
shown in Figure 4. Finally, the network was constructed and

a propagation method was applied to compute the interaction
score.

LPBNI method

The propagation process of LPBNI was derived from the rec-
ommendation algorithms proposed by Zhou et al. [40], and
developed for the prediction of lncRNA–protein interactions.

The proposed method makes full use of the information about

http://www.bioinfo.org/NPInter/
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the known lncRNA–protein interactions, and scores candidate
proteins for each lncRNA. We classified the nodes of
lncRNA–protein interaction network into two different sets,

named P and L as aforementioned and only the connections
between different sets were allowed. LPBNI procedure is illus-
trated in Figure 5. For example, if the initial information of

three proteins was 1, 1, and 0, we first propagated information
from proteins to the corresponding lncRNAs. Afterward, the
information was allocated from lncRNAs back to proteins.

Since the network is unweighted, the information in a protein
is equally propagated to its direct neighbors in the lncRNA set,
and vice versa. The propagation of information after each step
is shown in Figure 5B and C, respectively. This two-step prop-

agation can be represented as:

5=4

5=8

1=8

0
B@

1
CA ¼

3=4 1=2 1=2

1=8 1=2 0

1=8 0 1=2

0
B@

1
CA

1

1

0

0
B@

1
CA ð1Þ

Here, 3 � 3 matrix represents the propagation matrix.

Following the two-step propagation on the bipartite network,
the final information of these three proteins becomes 5/4, 5/8,
and 1/8, respectively.

For the lncRNA–protein interaction bipartite network G(L,
P,E), W is defined as the propagation matrix, where wik repre-
sents the information transferred from pk to pi node, and can

be interpreted as the importance of pi for node pk. For an
lncRNA lj, we define S0(i) = sij, i2{1,2. . .m} as the initial
Figure 5 Illustration of the LPBNI in bipartite network

A. The process of the initial information propagated from proteins to th

of three proteins is 1, 1 and 0, respectively. B. The score on red circles

process of the information propagated from lncRNAs back to proteins

each protein after the two-step propagation. The red circles represent
information of protein P, sij = 1 if pi interacts with lj, other-
wise sij = 0. SL(lj), j2{1,2. . .n} represents the score on lj after
the first step of information propagation, which can be calcu-

lated as:

SLðljÞ ¼
Xm
i¼1

aijS0ðiÞ
dðpiÞ

ð2Þ

where dðpiÞ ¼
Pn

j¼0aij is the number of lncRNAs that interact

with pi.

In the second step, all the information in L propagates back
to P. SF(pi) is defined as the final information of protein pi, rep-
resenting the interaction score of protein pi with lj. SF can be

defined as

SFðiÞ ¼
Xn

j¼1

aijSLðljÞ
dðljÞ ¼

Xn

j¼1

aij
dðljÞ

Xm
k¼1

akjS0ðkÞ
dðpkÞ

ð3Þ

where dðljÞ ¼
Pm

1¼0aij) is the number of proteins that interact

with lj.

The final information SF can be defined in the matrix form
as

SF

!
¼ WS0

!
ð4Þ

where S0

!
is the column vector of S0, and SF

!
is the final score of

query lncRNA after the two-step information propagation in
eir direct neighbor lncRNAs. For example, the initial information

is the information of each lncRNA received from proteins. C. The

. The score on blue hexagon in panel C is the final information of

lncRNAs and the blue hexagons represent proteins.



70 Genomics Proteomics Bioinformatics 14 (2016) 62–71
lncRNA–protein interaction network. Eq. (3) can be repre-

sented as:

SFðiÞ ¼
Xm
k¼1

wikS0ðkÞ ð5Þ

where

Wij ¼ 1

dðpiÞ
Xn

j¼1

aijakj
dðljÞ ð6Þ

Following the calculations, the proteins were ranked for lj
by the final score SF. All of the candidate proteins are listed
in a descending order, and highly-ranked proteins are consid-

ered to interact with lncRNA lj. The data and source code are
freely available at https://github.com/USTC-HILAB.

Experimental design

LOOCV was performed on the lncRNA–protein interaction
network for performance evaluation of the proposed method.
In this process, each lncRNA–protein pair was left out in turn

as a test sample, by setting the corresponding value in the adja-
cent matrix A to 0. The performance of LPBNI was estimated
by the success rate it achieves in recovering the known

lncRNA–protein interactions. In order to assess the perfor-
mance of LPBNI, we plotted the ROC curves, and compared
the AUC values obtained using LPBNI, RWR, and ProCF.

Additionally, we computed Sp, Sn, Acc, Pre, and MCC values.
The propagation matrix W presented in this paper relies on the
adjacent matrix A of the bipartite network. When LOOCV was

implemented, we obtained different W values, due to the
change of A values in each step of LOOCV. Therefore, W
value was recalculated for each lncRNA–protein pair that
was left out as test sample. Furthermore, during LOOCV pro-

cess, no information was propagated on the nodes with less
than two links, and these nodes were not considered during
the performance evaluation.
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