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In the era of precision medicine, radiation medicine is currently focused on the precise
delivery of highly conformal radiation treatments. However, the tremendous developments
in targeted therapy are yet to fulfill their full promise and arguably have the potential to
dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly
profile tumors both at diagnosis and at relapse and the co-incident progress in the field of
radiogenomics could potentially pave the way for a more personalized approach to
radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials
to date have shown an improved clinical outcome when combining targeted agents with
radiation therapy, however, most have failed to show benefit, which is arguably due to
limited preclinical data. Several key molecular pathways could theoretically enhance
therapeutic effect of radiation when rationally targeted either by directly enhancing
tumor cell kill or indirectly through the abscopal effect of radiation when combined with
novel immunotherapies. The timing of combining molecular targeted therapy with
radiation is also important to determine and could greatly affect the outcome
depending on which pathway is being inhibited.

Keywords: cancer, DNA damage, combination (combined) therapy, radiation therapy, radiosenisitizing agent,
targeted therapy
INTRODUCTION

A plethora of factors are involved in the development and progression of cancer in individuals such
as family history, age, sex, primary site of origin and driver mutations; thus, treatment depends
upon the goal of therapy - curative or palliative. Treatment for cancer involves multiple approaches
including surgery, chemotherapy, immunotherapy, small molecules that target certain cancer
signaling pathways, and radiation depending on cancer type or status. The use of multiple
treatments concurrently is referred to as multi-modality treatment. Radiation therapy plays a
crucial role in the management of cancer. Also known as radiotherapy (RT), it is a method of
impeding cancer cell division by using high-energy ionizing radiation to induce DNA damage and
disrupt cell cycle progression. In the treatment of cancer, RT can be given alone or coupled with
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chemotherapy or surgery and is aimed at reducing local tumor
burden. The primary advantage, however, that RT confers over
chemotherapy is the ability to precisely target the tumor and
reduce systemic side effects. Epidemiological studies have
reported that almost 54% of breast cancer survivors were
treated with radiation therapy in 2016 and this is projected to
become 60% by 2030 (1). Treatment mode is usually determined
by stage and type of cancer, genetic mutations, age, and overall
health of patient.

RT can be delivered in several ways; the most commonly used
modality is broadly defined as External Beam Radiation Therapy
(EBRT), which includes Stereotactic Body Radiation therapy
(SBRT) and Stereotactic Radiosurgery (SRS). EBRT most
typically uses a linear accelerator to deliver radiation directly
into the cancer site in the form of photons. Depending on the
location of the tumor, this radiation can be of high or low energy.
For instance, high energy EBRT is used in the treatment of head
and neck cancer, breast, lung, and eye cancer (2–5) while lower
energy photons are used for more superficial cancers such as
melanoma (6). Another modality of delivery is brachytherapy,
which utilizes a radioactive source placed as close to the tumor as
possible and can be given in conjunction with EBRT (5, 7, 8).
Some examples of cancers where brachytherapy is frequently
administered are cervical, vaginal, and prostate cancer (8–11).
Ideally, RT will preferentially or more frequently damage DNA of
cancer cells, with less or reparable damage to surrounding healthy
cells. Similar to the brachytherapy concept, IntraOperative
Radiation Therapy (IORT) constitutes the precise delivery of
radiation to the tumor/tumor bed during surgery while
minimizing exposure to the surrounding healthy tissues. IORT
can be done utilizing electrons, low-kV X-rays, and high dose rate
(HDR) brachytherapy. TARGIT, an international randomized
clinical trial designed to test the hypothesis that delivering a
single dose of targeted IORT in patients eligible for breast
conserving surgery (+ EBRT in patients at high risk for local
recurrence) is equivalent to a conventional course of post-
operative EBRT showed that there was no statistically significant
difference between EBRT and the IORT approach with respect to
local recurrence-free survival, invasive local recurrence-free
survival, mastectomy-free survival, distant disease-free survival
or breast cancer mortality (12). In a study looking at brain
metastases, retrospective data suggests that IORT is a safe and
effective tool in the adjuvant setting following surgical resection of
brain metastases; an area that continues to be under debate (13).
IORT is currently under investigation in the adjuvant setting
following the maximal safe resection of recurrent glioblastoma
multiforme (GBM) (NCT04763031, NCT04681677).

Conventional fractionated EBRT was traditionally based off
the classical “four R’s” of radiation biology: reassortment, repair,
reoxygenation, and repopulation (14), to which radiosensitivity
was later added (15). IORT on the other hand is generally
performed with either low energy X-rays or electrons; both of
which are considered low linear energy transfer (LET) radiation
compared to high energy X-rays used in conventional EBRT.
Unlike high LET radiation where the linear quadratic model
(L-Q) model predicts that radiobiological effectiveness (RBE)
should decrease as the dose per fraction increases (16), evidence
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suggests that this may not be true for low-LET radiation. With a
predicted higher RBE, emerging evidence suggests that IORT can
be effective by overwhelming the repair system leading to
increased genomic instability and thus more cancer cell killing.
Additionally, IORT performed during surgery eliminates
repopulation of residual tumor cells in the tumor bed, which
could theoretically happen during wound healing (17). The
ability of IORT to eliminate repopulation could also be
attributed to the radiation-induced bystander effect (RIBE)
which is thought to be more common with high dose/fraction
as is the case with IORT. Abscopal effect in normal non-
irradiated cells in the vicinity of tumor could reduce tumor
recurrence, modifying the wound microenvironment, and
eradicating residual tumor cells when applied immediately
after surgical procedure (18).

Additionally, SBRT or SRS is used to deliver very high doses
of radiation to the primary sites or metastatic sites in few
treatments (1–5), with extraordinary precision made possible
by real-time monitoring of the patient under CT scan
throughout the duration of therapy. Together they can be
combined into a term Stereotactic Ablative Radiotherapy
(SABR). Unlike IORT, which arguably does not fit the current
L-Q model, current data suggests that this is not the case for
SABR, which behaves biologically similar to conventionally
fractionated EBRT. However, the higher tumor control that is
achievable with SABR when compared to conventional EBRT is
attributed to a more geometrically precise technique of dose
delivery that allows for prescribing high biological effective doses
(BED), which were simply unachievable with conventional dose
delivery techniques (19). Additionally, ablative effect on the
surrounding tumor endothelium provides additional
mechanism of death that is not as prominent in conventionally
fractionated EBRT. Emerging data suggest that better tumor
control with SABR could also partly be attributable to the
abscopal effect brought about by high dose radiation in non-
irradiated cells such as enhanced endothelial cell damage and/or
enhanced tumor immunity similar to what was suggested in the
setting of IORT (20).
HOW DOES RADIATION WORK: THE
BIOLOGIC EFFECTS OF RADIATION

Effects of Radiation Therapy:
DNA Damage
Ionizing radiation introduces energy into molecular structures
which then releases electrons creating ions that are capable of
breaking covalent bonds. The breakdown of these covalent bonds
within DNA produces DNA breaks, including double-stranded
breaks. Radiation also leads to the generation of reactive oxygen
species (ROS) which oxidize lipids and proteins and are capable
of damaging DNA in many ways, including single-strand breaks.
This damage leads to cell death and failure of mitosis.

Consequently, highly proliferating cells are most susceptible
to damage due to radiation. DNA damage is not an uncommon
phenomenon, with as many as 50,000 lesions, or instances of
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DNA damage, in each cell, every day. Cellular mechanisms of
DNA repair are able to fix this continuous damage and maintain
functional DNA. Endogenously induced lesions are generally
isolated and more evenly distributed throughout DNA. Damage
resulting from radiation is far less dispersed. When two or more
lesions are found within two helical turns, this is referred to as a
clustered damage site, and these are far more difficult to repair
than isolated lesions (21, 22). The most highly damaging effect of
ionizing radiation is considered to be the double-stranded DNA
breaks where both phosphodiester backbones of the two strands
of DNA are broken within 10 base pairs (23–28). Double-
stranded DNA breaks are likely particularly cytotoxic as they
are not regularly induced endogenously (28–30). The linear
energy transfer (LET) ratio of the radiation determines the
type of damage it induces in the DNA. Particles with a higher
LET (e.g., protons, neutrons, alpha particles) results in roughly
90% of the damage occurring in the form of clustered damage
sites, while low LET radiation (e.g., gamma rays, x-rays, and
electrons) produces roughly 70% of its damage as isolated lesions
and the remaining 30% in the form of clustered damage sites
(23, 31).

Radiation kills cancer cells either by damaging the DNA
directly or generating excessive ROS which damages the DNA
(Figure 1). However, cancer cells can become resistant to RT via
several mechanisms which enhance their DNA repair capacity or
suppress the functions of tumor suppressors (32). Therefore,
strategies that disrupt the DNA repair machinery or the
detection of DNA damage has largely been explored to
enhance radiosensitization of tumors. Inhibitors of DNA repair
proteins have widely been studied alone or in conjunction with
radiotherapy to enhance tumor suppression. For instance, the
inhibition of the DNA base excision repair (BER) protein
apurinic/apyrimidinic endonuclease, APE1, has been shown to
suppress growth of several cancers (33, 34). Similarly,
overexpression of APE1 has been linked to radioresistance (35,
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36), and suppression has been shown to enhance cancer cells to
RT (37). Inhibition of several other DNA repair proteins such as
Poly (ADP-ribose) polymerase (PARP) and ataxia telangiectasia
mutated (ATM) have demonstrated similar effects (38, 39). The
quantity and characteristics of DNA damage are also impacted
by the tumor microenvironment, with the oxygen levels of the
tumor being of particular importance. Hypoxic tumors do not
respond as well to radiation therapy compared to tumors that are
well oxygenated. This is because oxygen reacts very quickly with
DNA radicals that result from radiation to produce DNA lesions
when it is present. Molecules that will react with the DNA
radicals can be introduced and function in a similar capacity to
oxygen, such as nitroaromatic compounds (e.g., nimorazole,
nitrotriazole or sanazole) (40, 41). Nitric oxide is another
molecule that is of interest in this regard, though some of its
effect may be due to increased oxygen tension of the tumor
microenvironment (TME) (42). Due to the potential clinical
impact, many preclinical studies have investigated the use of
radiosensitizing agents to increase tumor cells’ susceptibility to
RT which will be discussed in the sections below (43–46).

Effects of Radiation Therapy:
Cellular Damage
Traditionally, RT has been reported to arrest cancer cell
proliferation by inducing DNA damage through stimulation of
cell death mechanisms such as apoptosis, necrosis, and
senescence. However, radiation can also inhibit cell
proliferation by disrupting the neoplastic cells physically
through damage to the cell membrane and organelles, and
thereby interfering with signal transduction (47–49). Damage
to several organelles including the endoplasmic reticulum,
ribosome, lysosome, and mitochondria have been implicated in
the effects of RT-induced tumor cell death (50–59).

The mitochondria, in particular, is an important target of RT
as it regulates cellular respiration and metabolism, and altered
FIGURE 1 | Mechanism of DNA Damage Induced by Ionizing Radiation. Created in BioRender.com.
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metabolism is considered a hallmark of cancer (Figure 1) (60).
RT-induced damage within the mitochondrial DNA can induce
programmed cell death in cancer cells (61). The mitochondrial
respiratory chain generates ROS as a byproduct of cellular
respiration in normal cells. On the other hand, excess ROS
production can potentiate tumor growth. Together, this
suggests that cellular response to ROS varies according to
levels of ROS generated in the cells. For instance, tumorigenic
events such as hypoxia or oncogene activation can induce tumor
growth by generating abundant ROS to drive cell cycle
progression, metastasis, angiogenesis, etc. However, RT can
generate an ROS overload which can arrest the cell cycle and
induce apoptosis through mitochondrial collapse in cancer cells
(62, 63). For example, FLASH radiation is a novel radiotherapy
technology, defined as a single ultra-high dose-rate (≥40 Gy/s)
radiotherapy, which unlike conventional dose-rate radiation
(described above) leads to strikingly differential responses
between healthy and tumor tissues. This differential effect has
been attributed to multiple theoretical mechanisms such as
distinct mechanisms of DNA damage and the significantly
higher ability of FLASH to produce ROS at a rate that can’t be
scavenged by tumor cells compared to healthy cells which have a
lower oxidant load and higher catalase reduction reserve
capacity. More future studies are needed to better understand
the mechanism of FLASH and its clinical implications (64).

Several strategies targeting the mitochondria to sensitize
cancer cells to RT have been investigated (65–67). The
mitochondrial respiratory chain generates ROS as a byproduct
of cellular respiration, and RT also generates an ROS overload
which can induce apoptosis through mitochondrial collapse in
cancer cells (62). LKB1 (also known as serine-threonine kinase
11, STK11) is a tumor suppressor and functions in the AMPK
(adenosine monophosphate-activated protein kinase) pathway
necessary for cell metabolism, homeostasis, and autophagy (68).
In esophageal cancer, overexpressed LKB1 has been reported to
confer resistance to radiation therapy, activate autophagy, and
inhibit apoptosis (69). One of the metabolic changes that cancer
cells initiate during low glucose conditions is the switch from
glycolysis to oxidative phosphorylation (OXPHOS) to adjust to
fluctuating microenvironmental conditions (70, 71). Irradiated
human esophageal adenocarcinoma cells had a higher number of
mitochondria with additional mitochondrial mutations
compared to their non-irradiated counterparts. Analysis of
patient tumors of esophageal adenocarcinoma showed an
increase of ATP5B, a marker of OXPHOS, in patients who had
poor response to neoadjuvant chemoradiation therapy,
suggesting that changes in mitochondrial metabolism can
potentially play a role in radioresistance (71).
RADIOGENOMICS AND RATIONAL
DESIGN FOR RADIATION-TARGETED
THERAPY COMBINATIONS

The combination of radiation therapy and traditional cytotoxic
chemotherapy is a clinically well-established approach to
Frontiers in Oncology | www.frontiersin.org 4
improve overall survival of cancer patients (72). However, to
date, despite the significant advancements in developing
molecularly targeted therapy, little progress has been made in
identifying and defining optimal targeted therapy and
radiotherapy combinations to improve the efficacy of cancer
treatment (73). The rapidly growing arsenal of targeted therapies
can be categorized according to their respective effects on one or
more of the hallmarks of carcinogenesis which were coined by
Hanahan and Weinberg (74, 75). Importantly, the clinical
success of these agents was largely based on the identification
of predictive biomarkers of response, which enabled the selection
of patients and/or tumors that would benefit from these novel
agents. This subsequently led to the rise of precision medicine
and simultaneously sparked interest in the concept of ‘precision
radiation medicine’, yet that concept remains in its infancy.

Precision radiation medicine proposes to leverage genomic
information derived from human cancers or preclinical tumor
models to identify subsets that are sensitive to specific radiation/
drug combinations, radiation alone at tailored doses or predict
those at high risk for radiation-related normal tissue side effects
(76, 77). As our knowledge of how radiation works evolved over
time (as outlined above), several groups have attempted to
characterize preclinical models, particularly cell lines to
identify genomic signatures that are predictive of radiation
sensitivity. The largest effort to date was done by Yard et al.,
who underwent large-scale profiling of cellular survival after
exposure to radiation in a diverse collection of 533 genetically
annotated human tumor cell lines and were able to demonstrate
the wide range of radiation susceptibility and the novel genetic
features driving that diversity (78). Currently, there are several
genomic signatures that have been clinically validated for guiding
radiation treatment. For example, OncotypeDX®, a 21 gene
classifier that was initially validated to predict the benefit of
adjuvant chemotherapy in hormone receptor positive breast
cancer, is currently used to estimate the risk of locoregional
recurrence after radiation for invasive breast cancer and
therefore guide addition or omission of radiation in the
adjuvant setting (79). Similarly, for ductal carcinoma in situ
(DCIS), DCISionRT® is a multigene assay (80) that has been
prospectively validated in 327 patients with DCIS that
participated in the E5194 trial (81) to help inform decision-
making regarding the addition of radiation in the adjuvant
setting in conjunction with clinic-pathologic criteria (82, 83).
Decipher® is a 22 gene classifier that was developed as a
prognostic tool for men with high-risk prostate cancer and was
prospectively validated to guide that addition of post-
prostatectomy radiation in that risk group whether in the
adjuvant or salvage setting (84, 85). In the 2019, the American
Society of Clinical Oncology (ASCO) guideline on molecular
markers in localized prostate cancer, only Decipher was
recommended to guide the decision between salvage and
adjuvant radiation and Decipher® PORTOS was the only
predictive signature of radiation response (86). Nonetheless,
salvage radiation is generally preferred based on randomized
data (87) and so far genetic testing is not part of the standard of
care to guide radiation timing until validated in the randomized
October 2021 | Volume 11 | Article 749496
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setting (NCT02783950) (88). In a collaborative novel effort to
personalize radiation dose based on genetics and transcend the
‘one size fits all’ paradigm, a novel algorithm that uses genomic
adjusted radiation dose (GARD) was proposed to independently
quantify differences in clinical outcomes across different cancers
that are not attributed to the physical radiation dose alone. This
effort aims to guide the integration of genomics into radiation
dose decisions (89–92).

While several genomic signatures have been studied in the
preclinical setting and a few have been clinically validated to
better tailor radiation therapy, limited clinical trials with RT were
designed to prospectively test whether specific patient
subpopulations with distinct genomic signatures would benefit
from radiation or not. For example, HN002 is a phase II study
that evaluated radiation dose de-escalation in patients with
human papilloma virus (HPV) positive oropharyngeal cancers
who are thought to have improved survival outcomes due to
impaired DNA repair (93–95). In that study, radiation dose de-
escalation was found to be non-inferior to standard dose, which
justifies hypothesis testing in the phase III setting. Another
eloquent example is in pediatric medulloblastoma where
several trials are investigating tailoring radiation dose and
technique based on distinct molecular subgroups rather than
clinic-pathologic characteristics per say (96). Recently, the
ACNS0331 trial demonstrated that reduction of boost volume
but not craniospinal radiation dose is safe in average risk
medulloblastoma patients and this may occur in a genetic
subgroup-dependent manner (97).

The equally important aspect of radiation therapy, which is
crucial for an optimal therapeutic ratio, is better understanding
and prediction of normal tissue toxicity, particularly late side
effects, which are usually irreversible and can severely impact
quality of life. While demographic and clinical factors are well-
recognized culprits of late tissue toxicity, the evolving field of
radiogenomics proposed genetic factors as key players as well.
Kerns et al. proposed two arching goals for the field: first,
identifying key molecular pathways that can predict radiation-
induced normal tissue toxicity and second, developing an assay
to identify the patients who are more likely to develop late tissue
toxicities and therefore require tailored treatment (98). Several
genome-wide association studies have identified associations
between specific single nucleotide polymorphisms (SNPs) and
radiation toxicity (99–101). The REQUITE international
prospective toxicity profiling effort, initiated by The
Radiogenomics Consortium, represents the largest study to
date in that regard and has led to the creation of a centralized
database of relevant clinical information including treatment,
dosimetry, toxicity, and genome-wide SNP genotyping data in an
effort to prospectively validate these findings for clinical use
(102, 103).

Despite the efforts outlined above, the radiation oncology field
significantly lags behind in designing clinical trials that are
poised to prospectively test whether specific combinations of
radiation and targeted therapy can particularly benefit a
genomically distinct patient population. To that end, several
collaborative efforts aimed to outline guidelines to usher the field
Frontiers in Oncology | www.frontiersin.org 5
toward optimizing the clinical development of novel drug-
radiotherapy combinations. Two key points were proposed: 1)
reconsidering novel endpoints in clinical trial design such as
local control, organ preservation, and patient reported outcomes,
and 2) prioritizing the development of promising therapeutics
that target relevant pathways to radiation such as DNA repair
inhibitors and immunotherapies (104–106).

Traditional radiosensitizing agents (such as cisplatin and 5-
fluorouracil) typically exert their effect by augmenting DNA
damage (72). As large genomic studies continue to unravel the
landscape of DNA repair pathway deficiencies across different
tumor types, it will be critical to propose novel rationally
designed combinations of radiation and targeted therapy that
fit specific genomic contexts (77). PARP1, WEE1, DNA-PK,
ATM, ATR, and CHK1 are among the most critical mediators of
DNA damage response (DDR) (Figure 1). DDR inhibitors (such
as PARP inhibitors) were initially developed as monotherapy to
target DDR defects that are present in tumor cells, but not in
normal cells. This selectivity gave rise to the concept of synthetic
lethality (107). Theoretically radiation is an attractive DNA-
damaging agent that can be combined with novel DDR inhibitors
to promote cell-selective radio-sensitization by three
mechanisms: firstly, by increasing the amount of DNA damage
to levels that induce apoptosis or cell death mechanisms rather
than DNA repair or cell cycle arrest, secondly by exploiting
synthetic lethality, and thirdly, by augmenting DNA damage and
thus increasing the tumor mutation burden which in turn
enhances tumor antigenicity and thus T-cell mediated
killing (108).

Preclinical evidence suggests that DDR inhibitors can act as
potent radiosensitizers and potentially have greater cytotoxic effects
in cancer cells compared to normal cells (Figure 2). This also
brought about the idea of synthetic lethality in which cancer cells,
unlike their healthy counterparts, carry DNA repair defects, making
them particularly vulnerable to DDR inhibitors, especially when
simultaneously targeted with a DNA damaging agent such as
radiation (109, 110). For example, PARP inhibitors have been
shown to be potent radiosensitizers, irrespective of the tumor’s
homologous recombination (HR) status (111), albeit at lower doses
in HR-deficient tumors (112). Similarly, Adavosertib, a WEE1
inhibitor is also an effective radiosensitizer (113, 114). Inhibition
of WEE1 abrogates the G2/M checkpoint which is crucial for P53
mutant cancer cells, which also lack the G1 checkpoint. Therefore,
WEE1 inhibition represents another form of tumor-selective
radiosensitization (115). Induction of replication stress is another
appealing mechanism that can selectively enhance radiation
sensitivity in cancer cells particularly in the context of cMyc and
KRAS mutations (116, 117). Several DDR inhibitors including
PARP, WEE1, and ATR inhibitors have been implicated in the
induction of replication stress either as monotherapy or in
combination with other DDR inhibitors together with RT (118).
Several clinical trials are currently testing the premise of combining
radiation with DDR inhibitors in various disease sites.

In the era of immunotherapy, modulation of the host and the
tumor microenvironment holds a lot of promise when combined
with radiation as demonstrated in a plethora of eloquent
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preclinical studies. Radiation and immunotherapy agents are
thought to interact through five distinct mechanisms based of the
modified Steel hypothesis (119): (1) spatial cooperation,
(2) temporal modulation, (3) biological cooperation, (4)
cytotoxic enhancement, and (5) normal tissue protection (120).
Radiation has immunostimulatory and immunosuppressive
effects. Radiation can induce immunogenic cell death and
increase expression of tumor specific antigens and thus
sensitize tumors to the effects of immunotherapy (121, 122). In
the preclinical setting, Twyman-Saint Victor et al. demonstrated
synergy between radiation therapy and combined anti-PD-1/PD-
L1 and anti-CTLA4 blockade. In this study, the combination led
to an increased response within the tumor as the radiation
induced the diversification of the T-cell repertoire in tumor-
associated lymphocytes and the immune checkpoint inhibitors
inhibited T-regulatory cells (Tregs), which resulted in an increase
in the CD8/Treg ratio and subsequently led to improved
outcomes compared to either modality alone in a variety of
tumor models (123). The abscopal effect of radiation refers to
another form of RT-immunotherapy synergy where anecdotal
studies (mostly in patients with melanoma) have shown tumor
response in non-irradiated lesions presumably due to an incited
systemic immune response resulting from local radiation
treatment (20, 124–127). Conversely, radiation can promote
tumor infiltration by suppressive regulatory T cells, inhibitory
macrophage and myeloid-derived suppressor cell lineages (128,
129), therefore combination with immunotherapy in that context
is crucial to maintain the anticipated cytotoxic effect of RT. The
optimal dose, fractionation, volume, and sequencing of RT with
immunotherapy remain to be elucidated to strike the balance
Frontiers in Oncology | www.frontiersin.org 6
between the immunostimulatory and immunosuppressive effects
of radiation and to fulfill the modified Steel criteria (76, 77, 120).

Thus far, the failure to predict treatment efficacy using genetic
variables represents one of the most significant obstacles to the
personalization of radiation-based treatment regimens. The
potential success of radiosensitizing-targeted therapy is
contingent upon our better understanding of radiogenomics,
which pertain to defining biomarkers of response and genetic
determinants of late tissue toxicity (106, 130, 131). Moving
forward, two key concepts need to be considered in order to
facilitate rational design of novel radiation-targeted therapy
combinations that are effective: redefining end points of interest
and efficacy and identifying and validating biomarkers that can
enable the early identification of ineffective or toxic compounds.
These two key concepts will require the optimization of preclinical
models that can accurately recapitulate the complexity of human
tumors and thus faithfully predict promising combinations and
subsequently re-thinking clinical trial design in a way that is
relevant to radiation and its paradigm.
BUILDING PREDICTIVE EXPERIMENTAL
MODELS IN THE VALIDATION OF
COMBINATION THERAPY THAT
INCLUDES RADIATION

For a small molecule to be maximally effective as radiosensitizer,
it must be highly specific and directly toxic to the tumor. Tumor
cells depend more heavily on certain signaling pathways over
FIGURE 2 | Potential pathways and representative small molecule inhibitors of the key proteins in those pathways with potential to enhance the sensitivity of tumor
cells to RT. Created in BioRender.com.
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normal tissues, therefore combination of RT with small molecule
inhibitors of these pathways offers an alternative strategy to
chemoradiation that is potentially less toxic to surrounding
healthy tissues. A general limitation to this is the lack of
preclinical models that mimic the human cancer to a
molecular level which provides information regarding
predictive biomarkers that differentiate between radioresistance
and radiosensitivity.

Preclinical models for studying cancer radiogenomics as well as
cancer efficacy studies require recapitulation of human cancer on
an anatomical and histological level in a manner that closely
mimics the human tumor characteristics. The driver or passenger
mutations, microenvironment, hypoxia, angiogenesis, immune
components, and therapeutic response are all important factors
to consider. Therefore, several approaches are being used to build
multi-cellular in vitro models as well as in vivo models with
appropriate genetic manipulations to capture the aforementioned
characteristics in response to RT. Methods include genetic
knockdown, knock-in, activation, tissue-specific expression,
inducible expression, and sequential expression in traditional cell
culture, 3-dimensional (3D), organoid, and xenograft models. My
laboratory has focused on generating 3D mono- and co-cultures
using various cancers such as pancreatic, colon, and bladder (132–
135). The use of both tumor cells and CAFs with distinct
fluorescent markers allows us to monitor the effects of both cell
populations following selective pathway inhibition. For example,
we demonstrated the enhancement of tumor cell killing with dual
inhibition of APE1/Ref-1 as well as CA9 (carbonic anhydrase 9), a
HIF-1a target. Through blocking the full activation of HIF-1a
through APE1/Ref-1 and the cells ability to respond to changes in
pH through CA9, the spheroid growth was dramatically reduced
(135). This model is now being interrogated to understand the
effects of RT on growth of the spheroids and the impact on the cells
of the TME as well as RT in combination with targeted agents that
would impact hypoxia as well as metabolic signaling.

In vitro models often use a panel of radiosensitive and
radioresistant cell lines and compare the effects of select small
molecule inhibitors or the effects of knocking down potentially
important signaling molecules. Other approaches include
generation of radioresistant lines and determining which
molecular factors play a role in their resistance. 3D models can
aid in recapitulating the cell-cell interactions within tumor and
stroma, cytokine signaling, hypoxia response, and combination
therapy involving RT and allow us to quantitate the effects on the
tumor as well as cells from the TME such as CAFs (136–138). A
study comparing radiosensitive and radioresistant non-small cell
lung cancer (NSCLC) demonstrated that pathways previously
implicated including DNA repair, apoptosis, and NFkB
activation in NSCLC were involved in the cellular response to
RT (54). Prostate cancer cell lines and the transgenic mouse
model TRAMP (Transgenic adenocarcinoma of mouse prostate)
used natural product, Nexrutine (Nx), to sensitize the prostate
cancer cells to RT both in vivo and in vitro. Downregulation of
ribosomal and cell cycle proteins as well as HIF-1a were
implicated in the sensitization of the tumors to Nx (56). These
are just two examples of preclinical studies that utilize various
Frontiers in Oncology | www.frontiersin.org 7
models to test the radioresistance and sensitivity of various
cancer types. The predictability of the model and the
complexity of the 3D or monolayer system in response to RT
will enable the preclinical studies to have a greater impact on the
rationale design of combination therapy which will ultimately
lead to translational impact.
RATIONAL COMBINATIONS
OF RADIATION AND TARGETED
THERAPY IN THE PRECLINICAL SETTING

PARP proteins are involved in DDR and inhibitors of PARP have
been widely studied for radiosensitization both preclinically and
in the clinic (discussed below and Figure 2). Currently, there are
four PARP inhibitors in the clinic: Olaparib, Rucaparib,
Niraparib, and Talazoparib (Table 1). The efficacy of this
combination therapy has also been studied in preclinical
models of human non-small cell lung cancer (NSCLC): Calu-3
and Calu-6 cell lines. Even though both cell lines exhibited
increased radiosensitization following Olaparib treatment in
vitro, only xenografts of Clau-6 showed increased response to
combination RT in vivo. Difference in response between Clau-3
and Clau-6 were most likely due to microenvironmental factors
that contributed to the sensitivity of cells, indicating that
preclinical modeling must be approached unbiased and
carefully with the appropriate TME (139). Talazoparib and
Niraparib have also been studied for their sensitizing effects.
Primary melanoma cultures treated with combination therapy of
Talazoparib, Niraparib and radiation, demonstrate that both
PARP inhibitors sensitize melanoma cells to IR (162). A short-
term phase 1 clinical trial looking at the efficacy of combination
therapy of radiation and Olaparib has determined the safety of
the combination regimen in doses up to 200 mg/day without any
side effects (163).

Apurinic/apyrimidinic endonuclease 1/Redox factor-1
(APE1/Ref-1) possesses multiple functions that could affect the
cellular response to RT (Figure 2). APE1/Ref-1 is key in the base
excision repair (BER) pathway of DNA lesions, acting as the
major AP endonuclease in both the nucleus and mitochondria
and in eukaryotic transcriptional regulation of gene expression as
a reduction-oxidation (redox) factor (164–166). APE1
contributes to the repair of ionizing radiation through its
ability to repair a 3’-phosphoglycolate end within a DNA
strand break that is generated following ionizing radiation (IR)
(167). A decrease in expression of APE1/Ref-1 in cancer cells
results in apoptosis, cell cycle arrest, a decrease in proliferative
capacity, a blockade of mitochondrial metabolism, and
sensitization to various anti-cancer agents including RT (166,
168–170). Biochemical studies using oligonucleotides with
clustered damage sites as would be encountered in a cell
following RT demonstrate that APE1/Ref-1 can repair these
types of DNA lesions (171). An inhibitor of the DNA repair
activity of APE1/Ref-1 has been difficult to identify and develop
preclinically, therefore two recent studies in pediatric and adult
October 2021 | Volume 11 | Article 749496

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Elbanna et al. Radiation and Molecular Targeted Combinations
brain tumors utilized nanoparticle delivery of APE1/Ref-1
siRNA to achieve sensitivity to RT (168, 169). One of APE1/
Ref-1’s interacting protein partners is nucleophosmin 1 (NPM1)
and perturbation of the APE1/Ref-1 – NPM1 interaction can
lead to decreased DNA repair activity of APE1/Ref-1 and
increase in sensitivity to chemotherapeutic agents such as
b leomyc in (172 , 173) . Recen t l y in NSCLC ce l l s ,
radiosensitizing agent YTR107 was shown to bind to NPM1,
disrupt RAD51 foci formation, and synergize with PARP
inhibition (174). These findings highlight the complex
interplay between radiation-induced DNA damage and repair
and the potential proteins that can be exploited as drug targets to
sensitize cancer cells to RT. Due to APE1/Ref-1’s role in the
repair of DNA lesions induced by RT, the blockade of APE1/Ref-
1 DNA repair activity could be highly effective in combination
with RT. The caveat of course would be toxicity to normal
tissues, and therefore development of tumor targeting strategies
would be of paramount importance.

In addition to DNA repair activity, APE1/Ref-1 also plays an
important role in signaling within the tumor and TME through
the transcription factors (TFs) it regulates, and many of these
TFs also play a role in inflammation (166). Functioning as a
redox factor, APE1/Ref-1 stimulates the DNA binding activity of
TFs by reducing cysteine residues within the TF (175). APE1/
Ref-1 activates TFs including HIF1a, STAT3, p53, NF-kB and
others that directly govern critical cellular functions, including
hypoxia, DNA repair, inflammation, and angiogenesis (166).
Cells, both tumor and normal, possess reduction-oxidation
Frontiers in Oncology | www.frontiersin.org 8
systems such as NRF2, thioredoxin, peroxiredoxins, and
glutathione. In contrast, APE1/Ref-1 functions as a signaling
molecule rather than a general redox system (176, 177). Our
team has extensively characterized APE1/Ref-1 redox signaling
inhibitors in several indications including cancer as well as
chemotherapy- or IR-induced neuropathy (165, 178, 179).
Vasko et al. demonstrated that the DNA repair function of
APE1/Ref-1 was protective against the neurotoxicity induced
by IR and APE1/Ref-1 redox inhibitor, APX3330 could protect
dorsal root ganglia against IR-induced cytotoxicity (179).
Blockade of APE1/Ref-1’s redox activity could also sensitize
radioresistant cancer cells or remodel the TME to affect the
tumor’s response to RT as HIF, STAT3, NF-kB, and others have
been strongly implicated in the cellular response to RT
(180–183).

Finally, inhibition of DDR signals by enhancing p53 function
has also proven to be effective for radiosensitization in preclinical
models. Several strategies employed for this revolve around
suppressing the functions of proteins that inhibit p53. For
instance, mouse double minute 2 homolog (MDM2) inhibitors
have widely been studied for combination radiotherapy in
several different cancers which enhance anti-tumor effects in
vitro and in vivo (184–188).

Moving on from DNA damage, the traditional culprit in
radiation medicine, now significant interest exists in developing
radiosensitizers that more selectively radiosensitize tumors, but
not normal tissues, by targeting signal transduction pathways
that are more commonly activated in tumors, such as the EGFR
TABLE 1 | List of radiosensitizers, respective mechanism of actions and preclinical models used to study them.

Radiosensitizer Mechanism Cell models studied References

Olaparib Blocks DNA repair by inhibiting PARP Breast cancer: MCF-7, MDA-MB-231, MDA-MB-231, T47D,
BT-549, HCC-1954
NSCLC: Clau-3, Clau-6

(139, 140)

Rucaparib Blocks DNA repair by inhibiting PARP Cervical cancer: HeLa
Prostate cancer: PC3, LNCaP, DU145, VCaP
Neuroblastoma SK-N-BE(2c), UVW

(141–143)

Cetuximab Inhibits epidermal growth factor (EGF) from binding to its receptor HNSCC: HN30, HPV-negative HTB-43, UM-SCC1, UM-
SCC2, UM-SCC6, HPV-positive UM-SCC47, UPCI :
SCC090 cells

(144, 145)

Telaglenastat Interferes with mitochondrial metabolism by inhibiting the conversion of
glutamine into glutamate

HNSCC: FaDu, HN5, CAL-27
Lung Cancer: H460, A427, A549

(146, 147)

Tirapazamine Selective for hypoxic cells; Generates reactive oxygen species which
cause DNA damage

Human Nasopharyngeal Carcinoma: HNE-1
Cervical cancer: HeLa

(148, 149)

Everolimus Inhibits mTOR kinase NSCLC: NCI-H460, NCI-H661
Glioblastoma: GS-2

(150, 151)

Nimorazole Generates reactive oxygen species which cause DNA damage HNSC: HPV-negative FaDu, UTSCC5, UTSCC33 and HPV
positive: UMSCC47, UDSCC2 UPCISCC90

(152)

Trametinib Inhibits MEK NSCLC: A549, H460
Melanoma: A375, D04, WM1631, WM1791c

(153, 154)

Adavosertib Inhibits Wee1 and impairs the G2 DNA damage checkpoint Esophageal Cancer: OE33, FLO1 (155)
Peposertib Inhibits DNA-PK and impairs DNA repair Leukemia: Molm-13, Molt-4

HNSCC: FaDu
Colon Cancer: HCT116

(156, 157)

Silver NP Deposit high levels of energy in cells when exposed to ionizing
radiation; ROS generation and DNA damage

Glioma: C6
Colon cancer: HCT116, HT29

(158, 159)

Gold NP Deposit high levels of energy in cells when exposed to ionizing
radiation; ROS generation and DNA damage

Breast Cancer: SK-BR-3 (160)

Bismuth NP Not fully understood; Possibly by depositing high levels of energy in
cells when exposed to ionizing radiation; ROS generation and DNA
damage

Breast cancer: MCF-7, 4T1 (161)
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pathway (189, 190). Growth factors are essential for cancer cell
proliferation and inhibition of apoptosis, and therefore, can
contribute to radioresistance via several mechanisms, including
activating proteins or pathways involved in repairing radiation-
induced DNA damage (191, 192). Preclinical evidence has
supported a radiosensitizing role for EGFR inhibition (193)
and indeed, the addition of cetuximab to RT in patients with
head and neck squamous cell cancer was shown to improve
tumor control and overall survival compared with radiation
alone (189). However, understanding the impact of the
spectrum of EGFR alterations on radiosensitivity remains to be
understood (194, 195). Similarly, the blockage of ERBB2 (human
epidermal growth factor receptor2 [HER2]), which is commonly
amplified in a subset of breast cancer (196), can reverse ERBB2-
mediated radioresistance (197). These findings were translatable
into the clinic which was evident from a recent analysis of the
HERA trial which demonstrated the potential of combining
radiotherapy with trastuzumab in reducing loco-regional
recurrence rates in breast cancer patients with 1 to 3 positive
lymph nodes (198). In the prostate cancer field, the combination
of androgen deprivation therapy (ADT) and radiation in patients
with intermediate and high risk prostate cancer is a
well-established approach to prolonging survival in that subset
of patients (199). Despite being one of the earliest examples of
combining radiation with targeted therapy, the mechanism of
synergy between ADT and radiation remains controversial.
Initially much of the benefit was thought to be derived by the
orchestrated effect of radiation controlling disease locally in the
prostate and ADT treating micrometastatic disease elsewhere
(200). Newer preclinical data suggests that ADT has direct effects
in the prostate that result in radiosensitization via several
mechanisms including relieving hypoxia (201), suppressing
DNA repair (202) and deactivating androgen receptor (AR).
The blockade of AR signaling is thought to regulate the
transcription of DNA repair genes and thus mediate
radioresistance (203). The modulation of several other
oncogenic pathways could provide another approach to
enhance radiation sensitivity such as intracellular signaling (i.e.
PI3K/AKT pathway) (204) and tumor-associated epigenetic
changes (205).

As mentioned previously, the rationale for targeting tumor
metabolism to sensitize cancer cells to RT is well-established.
Mitochondrial metabolism is crucial to cancer cell survival and
RT-induced mitochondrial DNA damage as well as excess ROS
generation provides an attractive target to suppress cancer cell
proliferation and induce apoptosis (146, 147, 206). Glutamine
metabolism facilitates cancer cell survival, and breakdown of
glutamine is mediated by glutaminases, making them the focus
for development of small molecule inhibitors. Indeed, preclinical
data supports the combination of the glutaminase inhibitor,
Telaglenastat (CB-839), in radiosensitization of cancer cells
(Figure 2). Telaglenastat suppresses cancer cell proliferation
alone and in combination with 5-FU or EGFR in several
colorectal and lung cell lines (207, 208). Combination therapy
of radiation and Telaglenastat diminishes cancer progression in
cell culture and mouse models of head and neck squamous cell
Frontiers in Oncology | www.frontiersin.org 9
carcinoma. Clonogenic cell survival assays with FaDu (pharynx),
HN5 (tongue), and CAL-27 (tongue) cell lines treated with
radiation and Telaglenastat demonstrated significantly diminished
proliferation compared to radiation or Telaglenastat treatment
alone. These findings were confirmed using xenograft models in
which combination therapy was superior to monotherapy (147).
Similar results have been reported in lung cancer radiosensitization
where treatment with Telaglenastat increased efficacy of RT by 30%
in multiple cell lines and in H460-derived tumor xenografts (146).

Tumor hypoxia is another well-established mediator of
radioresistance (209) and typically indicative of aggressive and
treatment-resistant disease. Targeting tumor hypoxia by
traditional cytotoxic chemotherapy has served as a cornerstone
for concurrent chemoradiation regimens for decades. However,
the validation of biomarkers of tumor hypoxia in patients that
could guide the implementation of novel rationally designed
combinations of radiation and hypoxia-targeting agents remains
underexplored (105). Historically, several methods have been
investigated in order to override hypoxia-mediated
radioresistance. Such methods included: hyperbaric oxygen
(210), oxygen mimetics which belong to the nitroimidazole
class of agents (211), and hypoxia activated cytotoxic prodrugs
such as tirapazamine (212). More recently, with the advent of the
concept of normalizing tumor blood flow using anti-angiogenic
therapy (AAT), several studies proposed RT-AAT combinations
to alter oxygenation and improve therapeutic response. In
xenograft mouse models, PI3K targeted inhibition led to
improved tumor local control following radiation, which was
associated with normalization of vasculature and increasing
intrinsic radiosensitivity (213). In patients with NSCLC, PI3K
inhibition led to reduction in tumor hypoxia as measured by
FMISO PET in patients and was well tolerated in combination
with palliative thoracic radiation (214). In GBM where
angiogenesis is thought to be the hallmark of pathogenesis and
VEGF its main driver (215), combining VEGF/EGFR with RT
has been shown to halt the growth of glioma cells preclinically
(216) and to have a significant synergistic anti-tumor effect with
RT (217, 218).

The role of the tumor microenvironment on response to RT
alone and in combination with chemotherapy or targeted agents
is an important and understudied area. Stromal normalization is
one approach to modulating the tumor microenvironment and
reducing tumor hypoxia particularly with respect to radiation.
Cancer-associated fibroblasts (CAFs) are natural ly
radioresistant, and data suggests that radiation can induce their
pro-tumorigenic capabilities. However, the concept of
combining RT with CAF targeting has not been investigated to
date (219). Alternatively, another novel paradigm of targeting
tumor hypox i a i s th e modu l a t i on o f the tumor
microenvironment by altering tumor metabolism through the
inhibition of oxidative phosphorylation and thus decreasing
tumor oxygen consumption rate and relieving hypoxia (220).
Atovaquone, an FDA approved anti-malarial that functions
through inhibition of mitochondrial complex III has been
shown in pre-clinical models to alleviate tumor hypoxia and in
turn results in tumor radiosensitization (221).
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Finally, owing to rapid advances in nanotechnology,
nanomaterials have attracted particular attention to enhance
the anticancer efficacy of radiotherapy (158, 161, 222, 223).
Nanoparticle delivery enhances tumor targeting while
simultaneously improving effectiveness of radiotherapy by
increasing local deposition of ionizing radiation dose or by
augmenting production of ROS, DNA damage and cell cycle
arrest (224). Silver nanoparticles were reported to sensitize both
hypoxic and normoxic glioma U251 cells and C6 cells to
radiotherapy (222). In additional studies, silver nanoparticles
surface modified with polyethyleneglycol (PEG) and aptamer
improved nanoparticle penetration and targeting in 3D glioma
models, and conjugation with PEG/aptamer further enhanced
radiosensitization in C6 xenograft models as well (158). The
development of theragnostics further expand the scope of
nanoparticles for multifunctional use (161). For instance, PEG
conjugated bismuth gadolinium oxide nanoparticles (BiGdO3)
not only sensitized breast cancer MCF-7 and 4T1 lines and 4T1
xenograft models to radiation, but the bismuth and gadolinium
also allowed for MRI and CT imaging (161).

Even with the multitude of preclinical studies looking at
combining RT with targeted therapy, chemotherapy, or
immunotherapy, there are still very few examples of
combinations that have translated into success clinically. We
will now highlight some examples as well as future directions
(Table 1 and Figure 2).
RADIATION-TARGETED THERAPY
COMBINATIONS IN THE CLINIC: STORIES
OF SUCCESS AND FAILURE

A large body of preclinical evidence exists to support novel
radiation-targeted therapy combinations. However, to date the
EGFR inhibitor cetuximab remains to be the only molecular
targeted agent approved by the U.S. Food and Drug
Administration (FDA) for use with radiation therapy in head
and neck cancer (189). Interestingly however the equivalence of
cetuximab and cisplatin as radiosensitizers in head and neck
cancer has been a crucial point of contention in the field. A small
randomized trial by Margini et al. suggested that cetuximab was
inferior to cisplatin when combined with radiation in patients
with locoregionally advanced head and neck cancer (225). Two
recent large, randomized trials have provided more conclusive
evidence that cetuximab is indeed inferior. In the De-ESCALaTE
Human Papilloma Virus (HPV trial), patients with low-risk
HPV-positive oropharyngeal cancer had higher rates of local
recurrence and lower overall survival when treated with
cetuximab-RT compared to when treated with cisplatin-RT
(226). That was also the case in the RTOG 1016 trial (227).

Although cetuximab was relatively successful as a radiosensitizer
in the setting of head and neck cancer, it failed to show promising
results in other cancers where EGFR signaling is relevant (Figure 2)
(228–230). There is also a multitude of phase I/II data that
demonstrated similarly disappointing results for other EGFR
inhibitors. For example, EGFR is amplified in around 40% of
Frontiers in Oncology | www.frontiersin.org 10
GBM cases and its overexpression is associated with poor
prognosis (231–233). Three phase II studies have examined the
role of erlotinib, an oral tyrosine kinase inhibitor of the human EGF
receptor that is FDA approved for the treatment of non–small cell
lung and pancreatic cancers, given concurrently with RT plus
temozolomide and have demonstrated widely contrasting results
with respect to survival and toxicity. The overall trend however
pointed towards increased toxicity with no substantial survival
benefit. Phase I and II clinical trials have also been developed to
study the combination of RT with erlotinib in pancreatic cancer in
both the adjuvant and unresectable, locally advanced settings.
Although toxicity profile was acceptable, only modest increases in
efficacy have been observed (234–238). Alternative strategies for
EGFR targeting have also been attempted in the early clinical
settings. For instance, m-TOR targeting which is downstream of
the EGFR/PI3K pathway have been trialed in the GBM setting. Two
multi-institutional phase II studies have investigated the use of m-
TOR inhibitor, Everolimus, in combination with standard RT plus
TMZ, The North Central Cancer Treatment Group (NCCTG)
N057K trial (239) and The Radiation Therapy Oncology Group
(RTOG) 0913 trial (240). Despite having distinct designs, both trials
showed no improvement in survival and increased toxicity. The
rationale for the combination of EGFR inhibitors with RT is mainly
based on the role of EGFR in driving the disease rather than on how
the twomodalities might work together to kill the tumor. Perhaps in
future studies, combinations of RT with targeted agents need to be
more rationally designed in order to see greater success clinically.

Another targeted radiosensitizer that has been relatively
successful in the clinical setting is nimorazole. Nimorazole is a
targeted radiosensitizer which selectively targets hypoxic tumor
cells and has been shown in a phase III trial to significantly
improve locoregional control by 16% in patients with cancer of
the supraglottic larynx and pharynx when combined with
radiation compared to radiation alone (241). However,
nimorazole is currently only used in Denmark and has failed
to become adopted as standard of care in the United States and
elsewhere (242). In order to overcome hypoxia to sensitize
tumors to radiation, Accelerated Radiation, Carbogen, and
Nicotinamide, also known as the ARCON regimen, has
demonstrated promising locoregional control rates and yet
toxicity in a two large phase II studies in patients with head
and neck cancer (243) and bladder cancer, respectively (244).
This led to the phase III BCON trial which showed improved
locoregional control and overall survival in bladder cancer
patients who were treated using that regimen compared to
patients treated with conventionally fractionated radiation
alone (245). However, in a phase III study testing this regimen
in laryngeal cancer patients, there was no significant
improvement in either local control nor organ preservation
rates in ARCON treated patients albeit with benefit in patients
with hypoxic tumors (246). Taken together, this regimen has not
been widely adopted due to practical difficulties in delivering this
regimen, proper patient selection due difficulties in accurately
determining highly hypoxic tumors, and inconclusive results
from phase III data (247). Tirapazamine, the most clinically
developed drug among hypoxia-activated cytotoxic prodrugs,
which represent another class of hypoxia-targeted
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radiosensitizers (212), have failed in phase III trials to
demonstrate improved outcomes when combined with
chemoradiation compared to conventional chemoradiation
alone in both cervical (248) and head and neck cancers (249).
Similarly, VEGF targeting which theoretically represents another
attractive way of normalizing tumor vasculature and overcoming
hypoxia, failed to improve OS in GBM patients where VEGF
targeting was particularly alluring given its centrality to the
disease pathogenesis (250–252). Interestingly however, another
study showed that GBM patients that have increased tumor
oxygenation following anti-angiogenic therapy when combined
with conventional chemoradiation live significantly longer (253).
Alternatively, targeting the stroma has been clinically attempted
for radiosensitization with the goal of modulating RT-induced
inflammatory responses (247). Recently, a phase II trial in
patients with locally advanced pancreatic cancer has shown
that addition of losartan to chemoradiation enhanced tumor
shrinkage and enabled more margin negative resections likely
due to interfering with TGF-b signaling in CAFs which are
characteristic of the desmoplastic tumor microenvironment in
pancreatic cancer (254).

Predictive biomarkers of response, which served as the
premise of the systemic targeted therapy revolution, are needed
in the radiation oncology field to improve trial design and
success rates. To that goal, several early-stage clinical trials are
currently underway; testing radiation resistance pathways that
have been validated in the preclinical setting. For example, KRas,
a proto-oncogene that is frequently mutated in a wide range of
cancers (255) is a well-known driver of resistance to cancer
therapy including radiation (256–258). Several exploratory
clinical trials have demonstrated a link between KRas mutation
status and decreased likelihood of locoregional control following
radiation treatment (259–261). Midostaurin, a multikinase
inhibitor that is FDA approved for treatment of FLT3 mutant
acute myeloid leukemia (262) is currently being tested in phase
Ib trial to be given concurrently with conventional
chemoradiation in rectal cancer patients (263). This was based
on an in vitro screen of 32 cell lines that represented lung,
colorectal, head and neck, and genitourinary cell lines and
identified Midostaurin as a potential radiosensitizer for KRas
mutant cancers (264). Trametinib, a MEK inhibitor that is FDA
approved for treatment of metastatic melanoma, is also being
tested in a phase I trial in combination with chemoradiation for
locally advanced KRas mutant NSCLC (265). Importantly, KRas
has been so far inaccessible for direct inhibition until the recent
FDA approval of sotorasib for the management of KRas mutated
NSCLC based of the CodeBreaK 100 trial (266). It will be
interesting to see how this could change the landscape of
radiosensitization in the setting of KRas mutated cancer in the
near future.

As discussed previously, DNA damage response is central to
radiation response. However, so far there are many perceived
challenges to clinically implementing this combination such as
optimal sequencing, ideal genetic background, and importantly
therapeutic window to avoid increased toxicity (267). There are
numerous ongoing phase I/II trials combining radiation or
Frontiers in Oncology | www.frontiersin.org 11
conventional chemoradiation with novel targeted DDR
inhibitors. Among DDR inhibitors, PARP inhibitors are the
most clinically developed followed by WEE1 inhibitor,
Adavosertib (Figure 2). In inflammatory or locally recurrent
breast cancer, a phase I multicenter study evaluated veliparib, a
PARP inhibitor, and concurrent RT for 30 patients. The study
showed overall acceptable toxicity with only five (16.7%) patients
experiencing a dose limiting toxicity (DLT) within 10 weeks
from RT initiation. Although severe acute toxicity did not exceed
30% at even the highest dose, nearly half of the surviving patients
demonstrated G3 adverse events at 3 years. Of the 30 patients, 15
experienced disease control failures during the 3 years of follow-
up and 13 died which highlights the importance of long-term
monitoring of toxicity in trials of radiosensitizing agents (268). A
phase II trial comparing radiation with or without Olaparib in
patients with inflammatory breast cancer, which is known to be
particularly aggressive with dismal prognosis (269), is currently
recruiting (NCT03598257). In pancreatic cancer, if the patient is
homology recombination repair deficient (HRD), this may
render the tumor particularly vulnerable to PARPi (270).
Velaparib concurrent with chemo-RT was tested in a phase I
study of 30 patients with locally advanced disease. Sixteen DLTs
were detected in 12 patients (40%). Interestingly, median OS for
DDR pathway gene-altered- and DDR-intact patients was 19 and
14 months, respectively. The most commonly mutated DDR
gene was ARID1A (n = 4). Loss of ARID1A impairs both
checkpoint activation and the repair of DSBs, which sensitizes
cells to DSB-inducing treatments such as RT and PARP
inhibitors (271). PARP inhibitors are also being tested in
conjunction with other forms of targeted therapy such as
EGFR inhibitors. A recent phase I study showed that Olaparib
may be safely combined with concurrent cetuximab and
radiation for patients with locally advanced head and neck
squamous cell carcinoma who have a long smoking history.
That combination has also demonstrated improved 2 year OS in
that subset of patients compared to historical controls (72% vs
60% 2 year OS) (272). Other classes of DDR inhibitors such as
WEE1 (Adavosertib), ATM, and DNA-PK inhibitors are
currently being tested in phase I trials either in conjunction
with radiation alone or chemoradiation in multiple disease sites.
A recently completed phase I study evaluated Adavosertib in
combination with RT and full-dose gemcitabine for 34 patients
with locally advanced pancreatic cancer (273). In that study,
median OS was 21.7 months which compares favorably with that
of patients treated in the LAP07 trial (11.9–13.6 months), which
had similar eligibility criteria and used gemcitabine (274). This
sets Adavosertib as a promising drug in terms of clinical
development compared to PARP inhibitors. The DNA-PKc
inhibitor M3814 (Peposertib) has demonstrated promising
anti-tumor activity in a recently published phase Ia study and
is currently being tested concurrent with radiation in at least four
phase I clinical trials covering different disease sites and different
radiation fractionation regimens (275). ATM, ATR, and CHK1
inhibitors are also currently in several early phase clinical trials.
Taken together, validating biomarkers of response for these
novel agents to identify the subset of patients who will derive
October 2021 | Volume 11 | Article 749496

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Elbanna et al. Radiation and Molecular Targeted Combinations
the most benefit and the most acceptable toxicity in return
remains to be a challenge (276).

Nanotechnology offers a new area of exciting research where
nanoparticles can be used for targeted radiotherapy, either as
sensitizers of external beams or as delivery vehicles for
therapeutic radionuclides (277). In a phase II/III study,
NBTXR3, a first-in-class radiosensitizer hafnium oxide
nanoparticle, which is activated by radiation therapy, a
significantly higher pathologic complete response was observed
in the patients whose soft tissue sarcomas were injected with
NBTXR3 prior to radiation compared to those who were not.
There was no significant difference in toxicity between the two
groups and no treatment-related death occurred (278). Although
this is very promising data in the sarcoma field where very few
patients achieve pathologic complete response with preoperative
radiation and possibly in other cancers as well, a lot of challenges
lie ahead for the clinical implementation of this technology and
overcoming its limitations, particularly optimization of
delivery (279).

The PACIFIC trial has revolutionized the management and
therefore the outcomes of patients with locally advanced NSCLC.
It has also set unprecedented clinical evidence supporting the
interplay of chemoradiation and immunotherapy (280, 281).
Importantly however it has posed many pressing questions
regarding the optimal dosing, sequencing, and safety of
combining radiation with immunotherapy. Currently, a
plethora of clinical trials are attempting to answer those
questions. Recently, the DETERRED trial demonstrated the
safety and efficacy of adding Atezolizumab (anti-PD-L1)
concurrently with chemoradiation (282) as well as the Phase 2
KEYNOTE-799 with concurrent delivery of Pembrolizumab
(anti-PD-1) and radiation in locally advanced NSCLC (283). It
will therefore be important to compare that regimen with the
PACIFIC regimen where Durvalumab (anti-PD-L1) was given
after chemoradiation in the consolidation setting. In head and
neck cancer, a number of phase I/II clinical trials are testing the
feasibility of combining chemoradiation with immunotherapy in
the definitive setting. Collectively, those early studies have
demonstrated the safety of the combination (284–287). A
recent report by Weiss et al. showed that concurrent definitive
immunoradiotherapy for patients with stage III-IV head and
neck cancer who are ineligible for cisplatin had 24-month PFS
and overall survival rates were 71% which exceeded their
primary hypothesis (288). However, a substantial clinical
benefit is yet to be proven in the phase III setting.

In the metastatic setting, several prospective trials have been
conducted to test the abscopal effect of radiation, which stems from
many anecdotal reports and arguably stimulated much of the hype
regarding the combination of radiation and immunotherapy (289).
The abscopal effect of radiation refers to the shrinkage or
disappearance of sites of metastasis that were not directly treated
with radiation. Although the mechanisms of this observation are
still being elucidated, it is believed that the addition of
immunotherapy to radiation regimens allows the immune system
to mount a more systemic response against the tumor. PEMBRO-
RT is a phase II study which asked the question whether stereotactic
body radiotherapy (SBRT) enhances the effect of immune
Frontiers in Oncology | www.frontiersin.org 12
checkpoint inhibition in nonirradiated lung cancer lesions in
metastatic NSCLC. In that study, patients with metastatic NSCLC
were randomized to receiving pembrolizumab either alone or after
SBRT, which was delivered to a single tumor site. There was a trend
towards better overall response (ORR) and improved PFS in the
combination arm but did not reach statistical significance.
Interestingly, the benefit was more evident in patients with PD-L1
negative tumors and in subgroup analysis, improved ORR and PFS
reached statistical significance in that group of patients (290). This
again highlights the importance of discovering and understanding
what molecular markers are important in the response to RT alone
and in combination with targeted agents. In metastatic head and
neck cancer, a similar phase II study randomized patients to either
Nivolumab (anti-PD-1) alone or after SBRT to one metastatic site.
Unfortunately the study did not find improvement in response, PFS,
or OS between the two arms and there was no evidence of an
abscopal effect with the addition of SBRT to Nivolumab in
unselected patients with metastatic HNSCC (291). Interestingly
however, in the neoadjuvant setting in early stage resectable
NSCLC, concurrent SBRT and Durvalumab was safe and
associated with significantly better pathological response
compared to neoadjuvant Durvalumab alone demonstrating a
robust evidence of abscopal immune-modulatory effect of
radiation (292). These contrasting results could probably be
attributed to the hypothesis that immunotherapy is generally
more effective with less disease burden and therefore the abscopal
effect could be captured in that setting (293). Taken together, phase
III data is needed to validate the combinatorial benefit of radiation
and immunotherapy in the metastatic setting and also better
defining correlates of response based on biomarkers.

As outlined above there are many clinical trials testing
different radiosensitization paradigms. That is not meant to be
a comprehensive list but rather to paint a picture for the diverse
nature of signaling mechanisms that could potentially be
targeted to improve the therapeutic ratio of radiation.
Importantly, while there are examples of successful radiation-
targeted therapy combination in clinic, failures certainly
outweigh those few successes. Therefore, a lot remains to be
done in to decrease attrition rates of novel radiosensitizers in
the clinic.
THE CHALLENGES AHEAD FOR
CLINICAL IMPLEMENTATION

Oncology drug development has witnessed a significant growth over
the last decade that was coupled with improved cancer outcomes
and unprecedented drop in cancer related death rates (294).
However, the development of novel radiosensitizers lagged behind
reflecting lack of incentive by pharmaceutical industry to invest in
this pipeline. This huge gap led to holding a collaborative workshop
by the FDA-AACR-ASTRO in 2018 to bring together various
stakeholders including representatives of academia, industry,
patient advocacy groups and the FDA to identify key challenges
and design a roadmap for bridging this gap (104). This effort was
also preceded by similar efforts in the UK highlighting the
October 2021 | Volume 11 | Article 749496
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importance of this issue in the overall goal of improving cancer
control rates where radiation therapy plays a central role as a
curative and palliative treatment (105). As highlighted in Figure 3,
the main challenges identified were: (1) lack of regulatory guidance
by the FDA detailing the approval pathway for drug-radiotherapy
combination particularly with regard to the extent of required
preclinical data, (2) choice of adequate model systems that can
reflect tumor complexity and heterogeneity and enable testing
various radiation techniques and schedules, (3) complexity of the
definition of ‘safety’ in the radiation setting as it should take into
account normal tissue toxicity and long term toxicity which are not
traditionally considered in drug only studies, (4) perceived
impracticality of traditional clinical trial regulatory endpoints
(such as OS and PFS) when testing novel drug-radiotherapy
combinations particularly in the curative setting and finally (5)
historically limited collaboration among medical and radiation
oncologists particularly in the United states which is crucial for
aligning research perspectives and goals. Moving forward,
overcoming these hurdles and prioritizing communication among
key stakeholders in the field will be crucial to propel the
radiosensitizer pipeline. The year 2020 was arguably a landmark
year for drug-radiotherapy combinations, with two novel
radiosensitizers getting fast track and breakthrough designations:
Frontiers in Oncology | www.frontiersin.org 13
NBTXR3 and Debio 1143 respectively (294). However, the field is
yet to witness new market approvals as we strive to overcome
challenges and improve patient outcomes.
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