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Abstract: During the past two decades, tissue engineering and the regenerative medicine field
have invested in the regeneration and reconstruction of pathologically altered tissues, such as
cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured
scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to
guide the development of functional engineered tissues, and provide mechanical support during
in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials,
and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials,
owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials,
current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing,
and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein
highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and
multi-cellular interactions of native tissues for further use for in vitro model processing are also
outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds
and hydrogels, challenges, and future prospects of research in the regenerative medicine field are
also presented.

Keywords: biomaterials; biopolymers; inorganic materials; scaffolds; hydrogels; porous structures;
bioprinting; regenerative medicine; tissue engineering

1. Introduction

Tissue engineering (TE) and regenerative medicine (TERM) have arisen as new biomedical fields
that bring advanced approaches for damaged tissue regeneration and healing [1]. The field of TERM
has significantly increased over the past decades, and its advances have involved a multitude of
research, including biomaterials design and processing, surface characterization, and functionalization
for improved cell-material interactions and imaging. Diverse approaches proposed include: (i)
direct implantation into the defects of cells isolated from the patient [2]; (ii) bioactive molecules and
growth factor delivery targeting tissue specificity [3]; (iii) cell-free scaffolding biomaterials [4]; and (iv)
cell-laden scaffolding structures mimicking the natural extracellular matrix (ECM) of the tissues [5,6].
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The latter ones are the most commonly used, which typically involve three-dimensional (3D) porous
and hydrogels scaffolds, on which the cells grow and organize to form an ECM used in the regenerative
process [5]. These 3D constructs deliver the physicochemical and mechanical maintenance for in vitro
ECM formation, being slowly degraded, resorbed, or metabolized upon in vivo implantation [7,8].
The porosity, pore sizes, and interconnectivity of these structures hold a direct influence over their
functionality. High porosity is important for allowing cell infiltration and ECM colonization, which
is also directly influenced by pore size. Open and interconnected pores will benefit the growth,
proliferation, and migration of the cells to an extent on ECM production. Additionally, the tissue
vascularization and formation of new tissue may be faster [9]. On the other hand, the microporosity is
also required for efficient cell adhesion and spreading, as well as for facilitating the initial mechanical
strength between the scaffold and the tissue [10,11]. The degradation, biocompatibility, safety, stability,
and cost-efficiency are also important considerations for clinical scenarios [12,13].

A broad variety of naturally derived and synthetic-based polymers have been applied for scaffold
processing. The natural polymers have been showing biological properties that better fit to the
regular microenvironment of tissues, promoting desirable cellular responses, biocompatibility, and
degradability [14]. More recently, materials derived from decellularized ECM (dECM) have been
widely explored in TERM. In fact, dECM preserves the native tissue composition, not only in terms of
structural proteins as collagen, but also preserves growth factors and cytokines, which can improve
cell growth and viability, and tissue repair and remodeling [15]. Further, dECM has been obtained by
means of employing different processing methodologies and from a diversity of tissues, such as bone,
cartilage, meniscus, tendons, skin and adipose tissue, urinary bladder, small intestinal submucosa,
liver, and brain [16–21]. On the other hand, the lack of mechanical properties of those biomaterials
can be overcome by means of using synthetic-based polymers or combining them with inorganic
and ceramic materials to form composite structures with superior strength, osteoconductivity, and
bioresorbability [22–24]. Using synthetic polymers can also improve the chemical stability and the
micro and nano-structural features of the scaffolds, which positively affect the cell adhesion, spreading,
growth, and ECM infiltration [25]. Thus, depending on the TERM strategy, different biomaterials and
processing technologies should be considered in order to optimize the scaffold’s performance in terms of
surface morphology and internal configuration. The most promising technologies proposed for scaffold
processing include, among others, solvent casting with particulate leaching [26], freeze-drying [27],
gas foaming [28], fiber bonding and electrospinning [29], phase separation [30], and more advanced
technologies, such as 3D printing methodologies [31–33]. All of them have a great impact on mimicking
human tissues for regeneration when combating chronic and degenerative diseases [34]. Nowadays, the
field of TE has been revolutionized by the application of such technologies for developing bio-inspired
models of complex tissue diseases for novel therapeutic drug screening and specific biomarker
identification in patient-specific theranostic approaches [35]. Several studies have focused on the
3D character and multi-cellular interactions of native tissues, envisioning these 3D technologies as
ideal for TERM in vitro model processing. The superior complexity and hierarchy of 3D engineered
models have proved to better mimic the natural ECM of damaged tissues, simulating interactions
between healthy–unhealthy cell types and the influence of the physical microstructure and mechanical
properties of the native tissues [36]. Thus, the biomaterials, approaches, and emerging technologies
applied for 3D scaffolds and processing of hydrogel matrices according to the final TERM application
and native tissue complexity are herein presented. The multifunctional scaffolds with more complex
biological functions and their usefulness for different TERM strategies are also explored. Clinical
trials involving 3D scaffolds and hydrogel matrices, challenges, and future prospects of research in the
TERM field are also underlined.

2. Biomaterials for Tissue Engineering and Regenerative Medicine

Current strategies for TERM involve the use of a wide pallet of materials, consisting of natural
and synthetic polymers (e.g., proteins, polysaccharides glycosaminoglycans, poly-glycolic acid (PLG),
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polyl-actic acid (PLA), poly-ε-caprolactone (PCL), etc.), inorganic biomaterials, which include metals
(e.g., titanium and its alloys, etc.) and ceramics (e.g., alumina, zirconia, CaPs, calcium phosphate
cements (CPCs), etc.), and their hybrid combinations. Polymers have great stiffness and advantages are
added to the natural polymers, namely from their similarity with the ECM, specific degradation owing
to the susceptibility of the enzyme action, and improved recognition by the living body. Inorganic
biomaterials are recognized for their biocompatibility, osteoconductivity and bioresorbability. The
most promising polymers and inorganic biomaterials, as well as their hybrids, are described as follows.

2.1. Natural and Synthetic Polymers

Natural and synthetic polymeric materials are popular for engineering and regenerating hard and
soft tissues due to their vast diversity of properties, such as biodegradation, mechanical properties,
high porosity and surface-to-volume ratio, as well as small pore size [22,23,37]. Multiple applications
for different type of polymers have been exploited in the current market for bone, cartilage, skin,
wound healing vascular grafts, and tracheal splints [38,39].

Natural polymers obtained from renewable resources, such as algae, plant, animal, and
microorganisms, are similar to biological macromolecules, and easily recognized by the environment
(Figure 1) [40]. Owing to their similarity with the ECM, natural polymers, also known as biopolymers,
may also elude chronic inflammation toxicity or immunological reactions, frequently noticed with
synthetic polymers. Therefore, these types of polymers are crucial for designing therapeutic systems to
be used as bioactive compounds and drug delivery systems for disease treatment, or even to bioengineer
functional tissues. Biopolymers that have been clinically used for implant fabrication include proteins
(e.g., silk fibroin, collagen, gelatin, keratin, fibrinogen, elastin, and actin), polysaccharides (e.g., chitosan,
chitin, alginate, gellan gum, and derivatives), and glycosaminoglycans (e.g., hyaluronic acid) [40].
Structural proteins, such as elastin, fibrin, silk, and albumin, have been applied as sutures for scaffolds
fabrication and as drug delivery systems [41,42].
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Figure 1. Some biopolymers derived from renewable resources and respective chemical structures: silk
fibroin, alginate, and chitin.

Synthetic polymers, on the other hand, have excellent processing characteristics in terms of their
molecular weight, degradation, and mechanical properties, with the advantage of having tailored
property profiles for specific applications [43]. Hydrolytically degradable polymers are mostly chosen
as implants due to their minimal site and patient-to-patient variations when compared to enzymatically
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degradable polymers [44]. However, many of these polymers present an immune response or toxicity,
particularly when combined with certain polymers and not being capable of being incorporated with
host tissues [45]. A strategy is to develop hybrid materials by combining them with natural polymers
to improve hydrophilicity, cell attachment, and biodegradability. The most-used synthetic polymers
in TE are polyglycolide (or poly glycol acid (PGA)), polylactide (or PLA), poly-lactide-co-glycolide
(PLGA), poly-(D,L-lactic acid) (PDLLA), poly-ethylene-glycol (PEG), and PCL. These polymers can be
self-reinforced to enhance their mechanical strength [46].

2.2. Inorganic Biomaterials

An assortment of natural and synthetic inorganic biomaterials (metallic and ceramics) with
particular compositions, microstructures, and long-term reproducibility have been proposed to repair
or substitute diseased and damaged parts of the musculoskeletal system and periodontal anomalies
(Figure 2). These types of biomaterials have been established for orthopedic load-bearing coatings (hip
acetabular cups), bone grafting and cements, and dental restorations [47]. Metallic biomaterials (e.g.,
titanium and its alloys) possess high strength, low modulus of elasticity, and low density, while ceramics
biomaterials, also known as bioceramics (e.g., alumina, zirconia, CaPs, calcium phosphate cements
(CPCs), and silicates), are considered for their biocompatibility, osteoconductivity, and osteogenic
capacity (Figure 2A–C) [48,49].

Inorganic biomaterials can be classified as bioinert, bioactive, or bioresorbable depending on their
ability to bond directly with native tissues once implanted. Bioinert materials (e.g., alumina, zirconia,
titanium, and its alloys) have no interaction with their adjacent tissue after implantation, typically
being applied as structural-support implants, such as bone devices and femoral heads. On the other
hand, bioactive materials (e.g., bioglasses and glass-ceramics) bond directly with living tissues, and
have been applied to fill small bone defects and periodontal irregularities. Bioresorbable materials
(e.g., CaPs, CPCs, and calcium carbonates or calcium silicates) gradually absorbed in vivo and are
replaced by bone over time.

Naturally-derived inorganic biomaterials from marine shells, corals, sponges, nacres, and animal
(fish and chicken) bones offer an abundant source of calcium compounds (e.g., calcium carbonate and
calcium phosphate) for TERM applications (Figure 2D) [50]. Coral-derived materials have been used
as raw materials to obtain CaPs-based biomaterials for bone tissue repair and regeneration, owing to
their microstructural and mechanical properties. Our group has been involved in the production of
porous bioceramics using a variety of red algae (e.g., Coralline officinallis) [51,52]. This process involves
a thermal and chemical treatment to convert calcium carbonate skeletons of C. officinallis particulates
into CaPs with hydroxyapatite (HAp) nanocrystallites, while keeping the natural microstructure of the
red algae [51].

Synthetic inorganic biomaterials, such as alumina and zirconia, bioactive glasses and
glass-ceramics, and CaPs-based materials (e.g., sintered, coatings and cement pastes), are the ones
commonly applied in TERM [53,54]. These biomaterials can be obtained by numerous methods
(e.g., aqueous precipitation, hydrolysis, sol-gel synthesis, hydrothermal synthesis, mechanochemical
synthesis, microwave processing, and spray drying), resulting in materials with increased crystal size
and morphology [55–57]. Among them, the wet precipitation method offers an advantage on the
material synthesis, which involves a precise control of the pH, temperature, particle morphologies,
and the presence of additives [58].

A number of studies are dedicated to functionalizing bioactive inorganic materials by doping them
with ionic elements (e.g., strontium, zinc, magnesium, manganese, silicon) that are slowly released
during bone resorption, and therefore can boost biocompatibility and the mechanical strength of the
implants [59–64]. Moreover, these minerals afford physicochemical modifications, thus accelerating
bone formation and resorption in vivo [65,66].
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Figure 2. (A) Alumina/zirconia bioceramics for hip joint prosthesis and dentistry [67,68]; (B) (i)
Bioactive glass-ceramics for dental applications and (ii) robocast glass scaffolds produced by scientists
at Missouri University of Science and Technology [69,70]; (C) CaPs-based bone graft materials, such as
porous blocks, powders and granules, hydroxyapatite (HAp) coating on a femoral metal stem, and
self-setting CPC pastes that can be injected into the bone defect. Adapted from previous studies [71,72]
with permission. (D) Images of marine organisms, namely shells, corals, sponges, and nacres, and
microstructure image of the nacre structure, evidencing the plate-like aragonite crystals (i) and glass
sponge (ii). Reprinted from a previous study [50] with permission.

2.3. Organic-Inorganic Hybrid Biomaterials

Hybrid biomaterials formed by combining organic and inorganic compounds result in
multifunctional materials with tailored mechanical, thermal, and structural stability properties [73].
Concerning the fabrication of composite scaffolds, it is essential above all to attain a good
compatibility between the phases and maintain the porous structure and the mechanical strength
of the scaffolds [74,75]. Furthermore, nanostructured hybrids have also been preferred due to the
nanosized features of the fillers, thus enhancing the bonding capacity of the tissue to the organic
matrices that the individual materials cannot accomplish [76]. The nanoparticles have large surface
areas when compared to the micro-sized fillers, thus contributing to upgraded mechanical properties,
while retaining the biocompatibility and osteoconductivity, cell adhesion, and proliferation of the
fillers [77,78].

Many combinations of polymers and inorganic materials have been proposed to engineer different
tissues with enhanced osteoconductivity and mechanical properties, including polymers of natural
origins (collagen, gelatin, silk, chitosan, alginate, hyaluronic acid, and gellan gum), synthetic polymers
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(e.g., PEG, PLA, PGA, PLGA and PCL), and bioceramics, silicates, bioactive glasses, and carbon
nanotubes [79–86].

3. Scaffolding Strategies for Tissue Engineering and Regeneration

Recently, the approaches used in TERM have mainly been committed to 3D porous scaffolds and
hydrogels, resulting in mechanically stable structures with controlled degradation rates and porosity
for the transport of gases, nutrients, and regulatory factors.

A number of traditional technological approaches categorized into the foam replica method,
particulate-leaching, freeze drying, gas foaming, and phase separation, have been applied for scaffold
production, showing inexpensive and optimized physicochemical property structures. Lately, advanced
manufacturing (e.g., 3D printing and robocasting), supercritical fluid technology, and microfluidics
have emerged to produce complex structures for defective tissue regeneration, with boosted porosity,
structural and mechanical properties, and cellular adhesion, providing several advantages over the
conventional ones.

A description of 3D porous scaffolds and hydrogel strategies is provided below.

3.1. 3D Porous Scaffolds

With the increasing need for advanced therapeutics for TERM, 3D scaffolds arise as porous
matrices capable of providing a proper microenvironment for such purposes. The scaffolds should
allow: (i) the transport of the nutrients needed to the cell attachment, proliferation, and differentiation;
(ii) stimulation of cell-biomaterial attachment, growth, and migration; (iii) mechanical support; and
(iv) a controlled degradation rate with no toxicity or inflammation risk to the cells [87].

As mentioned previously, different technologies and biomaterials have been applied in order to
fabricate porous scaffolds with organized porosity and pore sizes, such as foam replicas, freeze-drying,
phase separation, particulate-leaching, gas foaming, photolithography, microfluidics, supercritical
fluid technology, stereolithography, robocasting, and 3D printing and bioprinting [81,88–99].

3.1.1. Natural 3D Porous Scaffolds

Over the past years, our group has been involved in the fabrication of 3D porous scaffolds for
hard TE applications, mainly using materials of natural origin [53,100–104]. In particular, the use of
marine resources are an alternative to extract bioactive compounds, with which resources are isolated
from by-products at low cost, thus creating value from products that are considered waste for the fish
transformation industry. In a study by Diogo et al. [105], the fabrication of 3D scaffolds is reported using
collagen from shark skin (Prionace glauca) combined with CaPs obtained from the teeth of two different
shark species (Prionace glauca and Isurus oxyrinchus) through freeze-drying technique (Figure 3A). The
produced scaffolds showed a homogeneous distribution of apatite particles throughout the collagen
matrix able to support the attachment and proliferation of osteoblast-like cells (Figure 3B,C) [105].

In another study from our group, the development of biofunctional scaffolds was reported using a
natural biopolymer containing silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating
strontium, zinc, and manganese via salt-leaching and a freeze-drying technique [64]. The scaffolds
revealed highly interconnected macroporosity of 500 µm, and a microporous structure with a size
range of 1–10 µm (Figure 4A). The scaffolds presented biomineralized globule-like structures of apatite
crystals and porous spherulite-like structures with the incorporation of the ceramic part into the silk
upon immersion in simulated body fluid for 15 days (Figure 4B). Remarkably, in vitro assays conducted
with these biomaterials and human adipose-derived stem cells (hASCs) have shown different responses
in terms of cell proliferation and differentiation when varying the doping elements in the scaffolds
(Figure 4C). The presence of Zn led to improved cell proliferation, while the Sr- and Mn-doped
scaffolds presented higher osteogenic potential, as demonstrated by DNA quantification and alkaline
phosphatase (ALP) activity, respectively. The combination of Sr with Zn led to a significant influence
on cell proliferation and osteogenesis in comparison to the single ions. Several studies have been
reported using dECM-based scaffolds for TERM [17–19,106,107]. In fact, those types of scaffolds confer
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an ideal microenvironment, with instructive biological molecules and reduced immuno responses [108].
For example, Zhang et al. [17] prepared dECM from swine menisci together with gelatin/chitosan
composite scaffolds, with enhanced elastic modulus and non-cytotoxicity properties for meniscus TE.
The dECM-based scaffolds improved rat bone marrow stem cells (BMSC) proliferation when compared
with scaffolds without dECM. In another study, Parmaksiz et al. [19] developed a multilayer scaffold
of decellularized bovine small intestinal submucosa (bSIS) layers, together with HAp microparticles
and PCL, with potential for bone TE. For that, bSIS layers were stacked with PCL solutions that acted
as a glue, in order to improve the mechanical properties. Then, the multilayered PCL/bSIS scaffold was
uniformly composited with ~30 µm HAp microparticles in the structure. In vitro studies have shown
that rat BMSCs proliferated and differentiated along the osteoblastic lineage on the scaffolds within
21 days. Furthermore, the cell-laden scaffold revealed a maximum strength after 21 days of culture,
close to the values of the cell-free multilayered scaffolds in wet conditions.
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Figure 3. (A) Scaffolds of marine collagen: marine biopatite particles composite. Representative images
of 12.5% 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride/N-Hydroxysuccinimide
(EDC/NHS) crosslinked scaffolds obtained by microcomputed tomography (micro-CT). (B) X-ray 2D
projection and respective (C) 3D reconstruction of acquired structures, in which the first column
shows a reconstruction of both polymeric and ceramic phases, and the second column shows only
the ceramic phase. Homogeneous distribution of the materials is observed, according to a color scale:
blue = soft material (marine collagen); brown = hard material (marine biopatite particles). Adapted
from a previous study [105] with permission.
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Figure 4. Scanning electron micrographs of silk fibroin (SF), SF/tricalcium phosphate (TCP), and
SF/ionic-doped TCP scaffolds before (A) and after 15 days of mineralization (B). Viability and
proliferation of the scaffolds seeded with human adipose-derived stem cells (hASCs): Alamar blue
assay of hASCs cultured for 14 days (left), and DNA quantification at different time points (right)
(C); *significant differences compared with SF and SF/Mn-doped TCP (MnTCP) and with SF/MnTCP
and SF/Sr-doped TCP (SrTCP) (p < 0.05); **significant differences compared between SF and SF/TCP
(p < 0.005); ***significant differences compared between SF at 3 d and the different compositions at
28 d (p < 0.0005); ****significant differences compared between with SF and SF/SrTCP and SF/ZnTCP
(p < 0.0001). Adapted from a previous study [64] with permission.

3.1.2. 3D Printed Scaffolds

The development of TE scaffolding for soft-to-hard tissue regeneration by additive manufacturing
(AM) has been widely reported [109,110]. Among the available AM techniques, robocasting (also
called direct-write assembly) is a versatile technique that allows the production of scaffolds with
predefined morphologies and structures, capable of fully supporting their own weight during assembly,
allowing precise control of pore size, shape, and alignment [111–113]. Miranda et al. [114] optimized
the morphological properties of TCP powders by reducing the particle size and increasing the specific
surface area for robocasting use. The β-TCP scaffolds were printed with various geometries in the
range of 10–20 mm/s. Moreover, the compressive strength of the scaffolds achieved was 10–20 MPa,
similar to the corresponding values for the cancellous bone (7–10 MPa). Additionally, Heo et al. [115]
produced HAp/PCL composite scaffolds through robocasting technique with a well interconnected
macroporosity yielding a final porosity of 73% and a pore size of 500 µm. The compressive modulus
of the micro-HAp/PCL and nano-HAp/PCL scaffolds obtained was 1.3 and 3.2 MPa, respectively.
The more hydrophilic surface of nano-HA/PCL, which resulted from the higher surface area of
nano-size HAp, could promote better cell attachment and proliferation compared with micro-HAp/PCL.
Martinez-Vazquez et al. [116] reported that the incorporation of PCL or PLA intoβ-TCP porous scaffolds,
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fabricated by robocasting, increased the compressive strength of the scaffolds. More recently, Marques
et al. [117] studied pure and Sr- and Ag-doped biphasic CaPs scaffolds, obtained via robocasting,
for bone tissue regeneration. The scaffolds showed different pore sizes with compressive strengths
comparable to or even higher than that of cancellous bone. Moreover, the presence of Sr and Ag
improved the mechanical strength and cell proliferation, and granted good antimicrobial activity
against Staphylococcus aureus and Escherichia coli.

The incorporation of biomolecules in the scaffolds, such as growth factors, antibiotic, or
anti-inflammatory drugs aimed at the acceleration of local bone healing, is currently under extensive
research [118]. The robocasting technique is able to use a broad range of materials for the manufacture
of scaffolds incorporating several biomolecules. Marques et al. [119] studied the processing conditions
to obtain sintering-free composite scaffolds through robocasting (Figure 5), constituted by biphasic
CaP (with Ca/P ratio of 1.65 and 1.59), chitosan, and levofloxacin (LEV) in the absence of processing
additives (dispersant and binders). After robotic deposition, the scaffolds maintained the shape and
no filament collapsing could be observed (Figure 5A,B). However, the overlapping of scaffolds, with
and without antibiotics, shows that they could not be totally superimposed, because the LEV modified
the viscoelastic behavior of the inks (Figure 5C). The LEV-loaded scaffolds exhibited an early and fast
drug release, but also presented bacteria growth inhibition ability, proving that the antibiotic was not
degraded during the fabrication process. Furthermore, its bactericidal effectiveness was preserved,
which opens a new path for local bone regeneration and infection treatments, since a more direct
administration of a drug might be a better solution than the conventional treatment strategies. With
the same purpose of including relevant biomolecules in the scaffolds, bioprinted scaffolds coated with
dECM were developed [107,120]. Wu et al. [107] prepared calcium silicate (CS) and PCL scaffolds and
then cultured an osteoblastic cell line (MG63) on top of the scaffolds in order to produce a relevant
ECM coating for bone TE. Upon removal of the cellular content, human Wharton’s Jelly mesenchymal
stem cells (WJMSCs) were seeded on the scaffolds. In vivo studies using a rat critical defect were then
performed. In turn, Kim et al. [120] developed PCL/β-TCP scaffolds and then immersed the scaffolds
in a porcine bone dECM solution. After lyophilization, pre-osteoblastic cells (MC3T3-E1 cell line)
were cultured onto the scaffolds, and in vivo studies were evaluated in a rabbit critical calvarial defect.
In both studies, the printed scaffolds coated with dECM have been shown to enhance osteogenic
differentiation in vitro, and the implantation of the scaffolds showed new bone formation, which
validate the use of dECM in the improvement of scaffolds for bone TE.

Recently, the 3D bioprinting technique has been commonly used in TERM. This technique has
the advantage of allowing high freedom for cell and biomolecule positioning in diverse biomaterials
with predefined designs and geometries [121]. Alginate is one of the most used biopolymer for 3D cell
printing because it forms a stable hydrogel in the presence of divalent cations (e.g., Ca2+ or Ba2+) by
ionic crosslinking [121,122]. However, alginate-based bioinks have some disadvantages, namely their
biological activity, since they do not provide mammalian cell-adhesive ligands [123].This fact can be
overcome by modifying the alginate surface with peptides, such as arginine-glycine-aspartate (RGD),
to provide molecule binding sites for cell adhesion [124], for example by blending it with gelatin, which
also allows the viscosity of the hydrogel to be altered to satisfy extrusion and printing criteria [125].
Another study investigated 3D bioprinting scaffolds for cartilage tissue by combining collagen type I
or agarose (AG) with sodium alginate (SA) incorporated with chondrocytes [126]. The results showed
that the addition of collagen or AG had a little impact on the gelling behaviour and can improve the
mechanical strength when compared to SA alone. Furthermore, the presence of collagen facilitated cell
adhesion, accelerated cell proliferation, and enhanced the expression of the cartilage specific genes,
namely Acan, Sox9, and Col2a1 [126]. Also, Lee et al. [127] produced cell-laden collagen-based scaffolds
using a dispensing system with tannic acid as a crosslinker. The cellular activities using MC3T3-E1 cells
and the tannic acid crosslinking process revealed their capability of supporting high cell viability with
reasonable biocompatibility of the developed scaffolds. In another study, Kim et al. [128] developed a
new strategy to fabricate a α-TCP/collagen cell-laden scaffold with pre-osteoblasts MC3T3-E1 cells
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for bone tissue repair. The results showed that the α-TCP/collagen scaffolds had significantly higher
cellular activities compared with those of the controls, including metabolic activity and mineralization,
as well as good mechanical properties.
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are summarized in Table 1.

Figure 5. (A) Scanning electron micrographs showing morphological aspects of S1.65 (Ca/P = 1.65)
and S1.59 (Ca/P = 1.59) scaffolds with and without levofloxacin: (a–d) lateral views; (e,f) top-views;
(g) filament detail, (h) pore detail; (B) 2D (top plane and cross-section views) and 3D images of S1.65
scaffolds with and without drug (levofloxacin) obtained through Metrology CT and 3D reconstruction
of the scaffolds mapped with color-coded for the internal porosity of filaments. (C) The 3D and 2D
views of overlapped S1.65 and S1.65- levofloxacin (LEV) mapped with color-coding. Adapted from a
previous study [119] with permission.

Recent cellular and acellular reported studies using different scaffold strategies for TE purposes
are summarized in Table 1.
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Table 1. The most recent studies of cellular and acellular 3D porous scaffold strategies for TE purposes.

Technology Materials Cells/Growth Factors Outcomes Application Ref.

Freezing and
lyophilization

Collagen (Col)/carbon
nanotube (CNT)/chitosan

(CS)/hydroxyapatite
(HAp)

-

Increased hydrophilicity from 87.8◦ to 76.7◦

and improved mechanical properties of the
composite scaffolds compared to Col (211

kPa), CS (284 kPa), Col/CNT (311 kPa), and
Col/CNT/CS (524 kPa) scaffolds

Bone tissue engineering

[129]

Na-alginate
/hydroxyethylcellulose

/HAp
-

After loading with Hap, the mechanical
properties of the scaffolds increased

deformation energy and rigidity gradient
(19.44 ± 0.85 Pa), with bioactivity and
biocompatibility in vitro and in vivo

(implanted in femur of adult male Wistar
rats for 6 weeks)

[80]

Collagen from shark skin/
CaPs from shark teeth Saos-2 cells seeding

Use of EDC/NHS crosslinking increased the
attachment and proliferation of

osteoblast-like cells
[82]

Silk fibroin and
β-tricalcium phosphate

(TCP)

Human adipose stem cells
(hASCs) seeded on the

scaffolds

Highly interconnected macroporosity.;
significant responses of hASCs proliferation
and differentiation when varying the ionic

dopants in the scaffolds

[64]

Collagen and denatured
collagen (DCol)

Rabbit chondrocytes
seeding

Adhesion, proliferation, and
re-differentiation of chondrocytes by Col

scaffolds with triple helix and the
regeneration of cartilage defects, compared

with the DCol scaffolds

Cartilage tissue [130]

PLLA, PCL, and collagen
type I

Adipose tissue-derived
mesenchymal stem cells

seeding

Mechanically stronger mesh support,
provided by PCL-PLLA and cell adhesion,

and tissue formation promoted by the
collagen type I microsponges

Skin [131]

Silk fibroin - Elastic modules of the scaffolds between 100
and 900 kPa n.d. [132]
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Table 1. Cont.

Technology Materials Cells/Growth Factors Outcomes Application Ref.

Decellularized
extracellular matrix

(dECM)/gelatin/chitosan
rat BMSCs seeding Enhanced elastic modulus, no cytotoxicity,

and enhanced proliferation Meniscus tissue [17]

bovine small intestinal
submucosa (bSIS)

layers/HAp
microparticles/PCL

rat BMSCs seeding

Enhanced cell proliferation and osteoblastic
differentiation within 21 days. Maximum
strength similar in cell-laden scaffolds and

cell-free scaffolds in wet conditions.

Bone [19]

Robocasting
Biphasic CaP doped with

Sr and Ag MG-63 cells

Different pore sizes with compressive
strengths comparable to cancellous bone. Sr
and Ag improved the mechanical strength

and cell proliferation and granted good
antimicrobial activity against Staphylococcus

aureus and Escherichia coli

Bone tissue engineering [117]

Biphasic CaP and chitosan hDNFs (human dermal
neonatal fibroblasts)

Produced levofloxacin loaded scaffolds
without the sintering step. The antibiotic was
not degraded during the fabrication process
and its bactericidal efficacy was preserved

[119]

3D bioprinting

PCL and bioactive borate
glass hASCs-laden

Controlled release of bioactive glass; more
than 60% viable hASCs on the scaffolds after

1 week of incubation.

Bone tissue engineering

[133]

Polycaprolactone (PCL) Saos-2 cells seeding

The non-orthogonal structures showed
higher E moduli than the orthogonal one,
with a positive influence on the biological
performance of the cells; higher values for

the mineralization, activity of
osteogenic-related genes, and deposition of

the mineralized matrix

[104]

Alginate/alginate-sulfate MC3T3-E1 cells/BMP-2

Alginate/alginate sulfate bioinks allowed
good 3D cell printing. Improvement of the

release of BMP-2 was achieved using
alginate sulfate. Proliferation and

differentiation of the printed osteoblasts
were enhanced

[90]
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Table 1. Cont.

Technology Materials Cells/Growth Factors Outcomes Application Ref.

GelMA and
methacrylated hyaluronic
acid (HA) modified with

HAp

hASCs Positive effects on bone matrix production
and remodelling [134]

Collagen/dECM/silk
fibroin (SF) MC3T3-E1 cells

High compressive modulus mainly due to
the methanol-treated SF; high cellular

activities in in vitro tests using MC3T3-E1
cells, induced by Collagen and dECM.

[135]

α-TCP/collagen MC3T3-E1 cells The scaffold showed good mechanical
properties and cellular activities [128]

collagen type I/agarose
with sodium alginate Primary chondrocytes

Addition of collagen or agarose had an
impact on gelling behavior and improving

mechanical strength. The collagen facilitated
cell adhesion, accelerated cell proliferation,

and enhanced the expression of
cartilage-specific genes, (Acan, Sox9, and

Col2a1)

[126]

Fibrin and wollastonite Loaded with rabbit
BMSCs

Possible extensive regeneration of both
cartilage and subchondral bone induced by

in vivo transplantation of the scaffolds
Osteochondral tissue [136]

Collagen MC3T3-E1

Cell-laden scaffold using tannic acid for
crosslinking process. TA crosslinking

increased mechanical properties and high
cell viability

n.d. [127]

CS/PCL dECM coating/WJMSCs
seeding

Improved osteogenic differentiation in vitro
and bone regenerative potential in vivo Bone [107]

PCL/β-TCP dECM coating/MC3T3-E1
seeding

Improved osteogenic differentiation in vitro
and bone regenerative potential in vivo Bone [120]

Laser sintering
technique PCL and HAp - Subchondral bone regeneration and articular

cartilage formation in a rabbit model Osteochondral tissue [137]

Sol-gel method
combined with 3D

plotting
HAp/chitosan/silica Mouse BMSCs seeding Compressive strength comparable to the

human trabecular bone Bone regeneration
[138]
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Table 1. Cont.

Technology Materials Cells/Growth Factors Outcomes Application Ref.

BG obtained by sol-gel
method Zein/bioactive glass (BG) MG-63 cells seeding Ag-doped BG scaffolds showed antibacterial

properties. [139]

Electrospinning
combined with

electro-spraying
PCL/HAp Murine embryonic cell

seeding

High capacity to guide the migration of
differentiated bone cells throughout the

cavities and the ridge of the scaffolds
[140]

PCL/gelatin and
multi-walled carbon
nanotubes (MWNTs)

Adult rabbit chondrocytes
seeding

Increased hydrophilicity and tensile strength,
and higher bioactivity and slower

degradation rate due to presence of MWNTs;
Cartilage tissue [141]

Electrospinning

Graphene-incorporated
electrospun PCL/gelatin PC12 cells

99% antibacterial properties against
gram-positive and gram-negative bacteria.

Good cell attachment and proliferation
Nerve tissue engineering [142]

PCL/collagen Human endometrial stem
cells seeding

Higher wettability, attachment, and
proliferation rates of hEnSCs on the

PCL/collagen scaffold
Skin [143]

Polyhydroxybutyrate-co-
hydroxyvaletare (PHBV)

containing bredigite
-

Bredigite nanoparticles increased the
mechanical properties, biodegradability, and

bioactivity of the scaffolds
Bone tissue [144]

PLLA/β-TCP hMSCs seeding
Enhanced water uptake ability, in vitro

bio-mineralization, and bioactivity promoted
by the incorporation of β-TCP

Bone [145]

PCL/Silk fibroin (SF) Human fibroblast seeding
Good tensile strength, elasticity, and

increased degradation rate, as well enhanced
cell proliferation, with the presence of SF

n.d. [146]

Electrospinning
combined with 3D

bioprinting
PCL Laden with L929 mouse

fibroblasts

Multi-layered structures—3D
scaffolds—with loosely packed nanofibers,

with better surface wettability (when
compared to the 2D scaffolds)

n.d. [147]

Phase separation
process

Cartilage
ECM-derived/PLGA-β-

TCP-collagen type I
BMSCs seeding

Enhanced OC regeneration. Chondro and
osteogenic-induced BMSCs with

independent environments
Osteochondral tissue [148]

Note: n.d.: not defined; BMSCs: bone marrow stem cells; bSIS: bovine small intestinal submucosa; ECM: extracellular matrix; HA: hyaluronic acid; hMSCs: human mesenchymal stem
cells; hASCs: human adipose stem cells; HAp: hydroxyapatite; PCL: polycaprolactone; PLLA: poly-L-lactic acid; SF: silk fibroin; TCP: tricalcium phosphate.
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3.2. Hydrogel-Based Scaffolds

Hydrogels are of particular interest for TE applications due to the distinctive properties of matrices
formed through 3D networks. Particularly, hydrogel-based systems are highly hydrated structures
that result from crosslinking reactions of polymers with hydrophilic natures that resemble the natural
ECM of tissues [149]. Such properties ensure a suitable microenvironment for cells to grow, drug
incorporation, and controlled release of biologically active agents. The elastic behavior and swelling
capability of hydrogels makes them desired for injectable purposes and bioprinting applications, which
is an emerging technology for the 3D fabrication of structures used for the construction of complex
functional tissues and artificial organs, from nano- to macro-scales [150]. This innovative technology
revolutionized the TERM field, not only because of the complexity of the biocompatible matrices, but
also because of the opportunity to integrate cells and supporting components into the complex 3D
functional architectures produced for transplantation. Compared with non-biological 3D printing,
technical challenges related to the sensitivity of living cells to the shear stress during the bioprinting
process can be found [151], which requires the integration of knowledge in the fields of engineering,
biomaterials science, cell biology, and physics. Bioprinting techniques have already been proposed
for the fabrication of 3D hydrogel-based structures, envisioning several tissue transplantations or
substitutions, including skin [152], bone [153], vascular grafts [154], intervertebral disc (IVD) [102],
meniscus, and cartilage [155]. More recently, the development of high-throughput in vitro platforms
of healthy and diseased tissues of the human body came to address the TE field to a different level
of precision medicine [156], and the 3D bioprinted hydrogels emerged as highly precise biomimetic
matrices [157]. Apart from their use as aqueous-based systems for cell encapsulation [158], as injectable
fillers [159], or in bioprinting technologies [160], different processing methodologies can be applied for
structuring hydrogels into highly porous and composite matrices with superior mechanical properties,
including solvent casting and particulate leaching, freeze-drying, phase separation, gas foaming,
electroforming, and polymer blending [161–163]. These technologies have been proposed using
different natural- and synthetic-based polymers, whose selection criteria depends on their chemistry,
molecular weight, solubility, and hydrophilicity or hydrophobicity [164]. As aforementioned, the
polymers of natural origin are in most cases an attractive option, mainly due to their similarities to
the ECM and suitable biological performance [40]. However, their chemical versatility also brings
molecular instability that can compromise hydrogel stability, degradability, and reproducibility [165].
On the other hand, the synthetic polymers are of controlled reproducibility and usually present superior
mechanical properties and slow biological degradation, making them ideal for hard tissue applications
or as indirect scaffolding strategies, serving as the structural basis for natural-origin hydrogels [166].

3.2.1. Injectable Hydrogels

Injectable hydrogels are highly attractive, especially as fillers of soft and hard tissues, promoting
a good physical integration into the defect site and possibly avoiding open surgeries with hard
recovery of the patients. The high water content of these hydrogels make them adjustable and easy to
manipulate for the delivery of cells and growth factors. Usually, the hydrogel precursors are injected
into the wound site in a solution-to-gelation transition (sol-gel) due to physical or chemical stimuli and
crosslinking reactions [167]. The most common physical crosslinking methods for in situ hydrogelation
reactions take place by the physical association between polymeric chains or nanoparticles, and include
thermal gelation, ionic interactions, physical self-assembly, or photopolymerization [168–170]. The
formation of chemically-induced hydrogels occurs via covalent bonds between polymeric chains
promoted by agents such as glutaraldehyde or genipin and enzymes [171,172]. The physical methods
of crosslinking, such as thermal gelation in physiological conditions, are easy to process and do not
involve limitations of injection depth, as in the case of photopolymerization methods [173]. These
crosslinking mechanisms can be even harder to control when applied in natural polymers, such as
collagen or fibrin, which limits the final structural properties of the produced hydrogels. Kim et al. [174]
reported chitosan/β-glycerophosphate (Ch/β-GP) thermo-sensitive hydrogels formed to deliver ellagic
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acid in cancer treatment. The heat-induced hydrogels were formed at body temperature but the final
pH of the Ch/β-GP solution affected the gelation temperature, time, and biocompatibility within
the gels. The suitability of chitosan/β-glycerophosphate to produce injectable thermosensitive and
pH-dependent hydrogels was also investigated in combination with starch, showing that its addition
to the chitosan/β-glycerophosphate solution did not alter the transition temperature and allowed
the heating induced hydrogelation for applications in minimally invasive injectable systems [175].
Furthermore, thermal gelation is the main crosslinking method for obtaining dECM hydrogels. An
example is the study of Alom et al. [176] that developed a decellularized and demineralized bovine
bone ECM (bECM), and upon thermal induction, obtained a hydrogel suitable for bone regeneration.
In fact, it was observed that Pluripotent myoblast C2C12 cell line and mouse primary calvarial cells
(mPCs) cultured on top of bECM differentiated even in the absence of osteoinductive supplements.

Injectable hydrogels were proposed by Park et al. [177] as cartilaginous fillers composed of
methacrylated glycol chitosan and hyaluronic acid photo-crosslinked with a riboflavin photoinitiator
under visible light. The authors showed that a minimum radiation time was needed to produce stable
hydrogels for cell encapsulation and chondrocyte viability. However, superior irradiation times that
improved the hydrogels’ mechanical properties for deep hydrogelation also compromised cell viability.
Townsend et al. [178] pursued a photo-crosslinked method in order to develop a methacrylated
decellularized cartilage hydrogel (MeSDCC) with HAp nanofibers (HAPnf), bioglass microparticles
(BG), or rat BMSCs for calvarial bone regeneration. Despite the increase of the mechanical stiffness
provided by the HAPnf and BG, the authors observed minimal bone regeneration in vivo for all
conditions. The chemical methods used for producing hydrogels have been shown to offer controllable
structural properties due to the covalent bonds between the polymeric chains, particularly due to the
crosslinking density, which can be adjusted according to the polymer origin and tissue application [167].
Silk fibroin (SF) is a natural polymer proposed as an injectable filler of bone and cartilage tissues defects,
due to its superior mechanical properties, biocompatibility, and in vivo degradation profile [179,180].
Different studies have shown that the sol-gel transition on SF hydrogelation can occur due to different
physical and chemical methods, including mechanical agitation, ultra-sonication, thermal treatment,
pH variations, organic solvents (methanol), ionic species (Ca2+), or blending with other polymers
containing hydroxyl groups (alginate, chitosan, or hyaluronic acid) [179,181–185] that induce the
protein conformation transition from random coil to β-sheet (β-sheet aggregates formation) [186]
(Figure 6), or the crosslinking of fibroin molecules in the aqueous solution [187]. A different approach
was recently proposed for SF hydrogel formation in random coil conformation, involving the enzymatic
crosslinking of aqueous SF solutions promoted by the horseradish peroxidase (HRP)/hydrogen peroxide
(H2O2) complex [188,189]. In this system, the hydrogelation process was conducted in physiological
conditions and the formed hydrogels underwent a spontaneous conformation transition to β-sheet
over time. They showed timely and thermally responsive gelation properties, with tunable mechanical
properties and viscoelastic properties of injectable matrices. Moreover, the possibility of encapsulating
cells allow their viability and proliferation in the amorphous state, suggesting their use as artificial
in vitro models for 3D microenvironment of tissue disorders and tumours.
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by the injected silk hydrogel. Reprinted from a previous study [179] with permission. 
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order to achieve the precise shape of the OC defects. Thus, the combination of 3D digital technologies 
with 3D printing was suggested as a possible solution to treat complex skeletal lesions in patient-
specific approaches. Also, Costa et al. [102] have proposed a reverse engineering strategy to fabricate 
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morphological segmentation from magnetic resonance was used to image the dataset of human IVD, 
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Figure 6. Sonication-induced silk fibroin hydrogel preparation. (a) Ultra-sonication procedure used
for aqueous silk solution transformation into a solid silk hydrogel. (b) Schematic illustration of the
mechanism of silk sol-gel transition due to physical crosslinking and β-sheet aggregate formation after
ultra-sonication. (c) Injectable properties of the silk hydrogels. (d) Silk hydrogel being injected into
rabbit maxillary sinus cavity. (e) Illustration of the elevated sinus in a sagittal plane being filled by the
injected silk hydrogel. Reprinted from a previous study [179] with permission.

3.2.2. 3D Printed Hydrogels

3D printed hydrogels are produced through computer-assisted technologies, allowing fabrication
of engineered tissues or matrices with superior control over their shape and reproducibility, with
controlled physical and mechanical properties, and different layers and gradients, allowing generation
of more complex tissue-like 3D architectures [190]. 3D printing technologies applied in cell-free
approaches are well standardized and have been proposed using different hydrogel-based systems for
conventional TERM strategies. For instance, Li et al. [191] proposed 3D printed hydrogels as OC defect
fillers using alginate and hyaluronic acid as photo-polymerized bioinks. The OC tissue was restored
by reverse engineering using high-resolution 3D scanning to obtain digital models of sample defects
and corresponding parts after regeneration. The information was translated to the 3D printer, which
extruded the combined hydrogel filaments in order to achieve the precise shape of the OC defects.
Thus, the combination of 3D digital technologies with 3D printing was suggested as a possible solution
to treat complex skeletal lesions in patient-specific approaches. Also, Costa et al. [102] have proposed
a reverse engineering strategy to fabricate 3D models of annulus fibrosus (AF) as the outer region
of IVD. In this strategy, semi-automatic morphological segmentation from magnetic resonance was
used to image the dataset of human IVD, and then HRP-crosslinked SF/elastin hydrogels were used as
bioinks for the printing of AF substitutes. In this study, HRP-crosslinked SF hydrogels are proposed
for the first time as fast-setting bioinks for 3D printing of hydrogels in the amorphous state [192]. Their
properties were fine-tuned for specific uses, presenting good resolution, reproducibility, and reliability
(Figure 7). Moreover, the structures presented excellent mechanical properties and memory-shape
features after processing, exhibiting potential applications in patient-specific strategies. A fourth
(4D) generation of printed hydrogels was proposed by Gladman et al. [193] thatprinted composite
hydrogels encoded with localized and anisotropic swelling properties promoted by the alignment
of cellulose fibrils pre-established in the printing settings. It was shown that this nature-inspired
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shaper-morphing system presented biocompatible and flexible bioink properties, opening the design
of new stimuli-responsive architectures for TE and biomedical applications.
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Figure 7. Silk fibroin bioinks and 3D printing of hydrogel-based scaffolds. (a) Schematic illustration
of silk being extruded by a spider. (b) (i–iii) Rheological properties and (iv) adhesion measurements
of the 3D printed hydrogels. (c) Extruded horseradish peroxidase (HRP)-crosslinked SF bioinks.
(d) HRP-crosslinked SF scaffolds in the (i,iii,v) amorphous state and (ii,iv,vi) β-sheet crystalline
conformation after freeze-drying and ethanol treatment. Reprinted from a previous study [192]
with permission.

While the 3D printing technology is actually being applied for several TE and biomedical
applications, it is a complex technology, since it involves not only computing and materials sciences,
but also the interplay with other disciplines, such as cell-loading and developmental biological
factors [31]. The interaction of multi-disciplinary technologies allows the development of more
complex systems that better mimic the microarchitecture of tissues and organs. However, such
complexity also creates a challenge in the design of functional 3D bioprinting. For example, the
bioprinting parameters need to consider not only the heterogeneity of the polymeric materials (natural
or synthetic) selected as bioinks, but also the influence of the cell-material dynamisms in the printing
process. The shear-stress provoked during bioprinting not only affects the printing resolution but
also cell viability and integrity [151]. Recent developments on creating spatial and temporal gradients
within bioinks for regulating different cellular and molecular distributions along the hydrogels have
also proved the increasing complexity in 3D bioprinting technologies [194]. For example, multiphase
complex tissue structures of tendon-bone interface were obtained by creating multilayered gradients
of encapsulated human mesenchymal stem cells (hMSCs) and growth factors (BMP-2 and TGF-β1)
embedded in anisotropic 3D hydrogels [195]. The controlled deposition of two or more cell populations
in co-culture systems using 3D bioprinting has been attracting much attention for the production of
engineered tissues with superior biological, biochemical, and physical properties. Duan et al. [196]
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implemented a 3D bioprinting system for the direct incorporation of dual cell types, sinus smooth
muscle cells (SMC), and aortic valve leaflet interstitial cells (VIC) encapsulated in alginate and gelatin
hydrogels for cardiovascular tissue. Reverse engineering was applied using micro-CT imaging of heart
valves for the direct recreation of anatomically accurate aortic valve conduits through 3D bioprinting
(Figure 8).
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Figure 8. The 3D bioprinting of an aortic valve conduit. (A) The 3D reconstruction of an aortic valve
model. The green color indicates valve root and the red color indicates valve leaflets. Schematic
illustration of the 3D bioprinting process using alginate and gelatin as bioinks encapsulated with (B)
sinus smooth muscle cells (SMCs) and (C) aortic valve leaflet interstitial cells (VIC) cells. (D) Fluorescent
image of two 3D bioprinted layers representing an aortic valve conduit. (E) Macroscopic image of a 3D
bioprinted aortic valve conduit. Reprinted from a previous study [196] with permission.

In a different study, Gaebel et al. [197] applied a Laser-Induced-Forward-Transfer (LIFT) cell
printing technique to prepare cardiac patches for cardiac regeneration. A Polyester Urethane Urea
(PEUU) was used as bioink for umbilical vein endothelial cells (HUVECs) and hMSCs bioprinting as
pre-defined cardiac patches. The authors showed that the LIFT-derived cell seeding pattern affected
cell growth of co-cultured HUVECs and hMSCs that migrated and accelerated vessel formation in
the simulated cardiac patches. An increase in capillary density was also observed after cardiac patch
transplantation in the myocardium of infarct-induced rats. All of these systems were optimized in order
to recreate heterogeneous tissue and organs by precisely co-printing multiple cell-loaded materials
with 3D architecture. Kolesky et al. [198] implemented a new custom-designed 3D bioprinter with four
independent printheads able to sustain four different bioinks. Heterogeneous constructs consisting of
HUVECs, human neonatal dermal fibroblasts (HNDFs), and 10T1/2 mouse fibroblasts were printed
with a perfusable microvasculature network using gelatin methacrylate (GelMA) as bulk matrix and
cell carrier. Using this highly scalable platform, the vascular network and multiple cell types were
programmed to be precisely placed within the ECM simulator, refining the multi possibilities of 3D
reconstruction of complex tissues and organs using bioprinting technologies.

In a different approach, the complex microstructure of the musculoskeletal system was mimicked
using 3D integrated organ printing technology [199]. This system was used for processing and
depositing four different components of an integrated muscle-tendon unit (MTU). Polyurethane
(PU)-based hydrogels were used as bioinks and co-printed with C2C12 cells to develop the muscle
region, and with NIH/3T3 cells for tendon development. The authors showed that the single construct
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was able to comprise the elastic properties of the muscle region and the stiffness of the tendon region
only by using different cell types. The complex cell–matrix interactions were recaptured to form tissue
constructs with region-specific biological and mechanical features.

3.2.3. Porous Hydrogels

As mentioned previously, the biocompatibility and structural similarities of hydrogels to the
native ECM make them desirable for engineering different complex tissues. However, the big challenge
remains to obtain precise control of certain hydrogel properties, such as porosity and mechanical
properties. For certain tissues, especially those of the musculoskeletal system, a substantial amount of
scaffold porosity is necessary to allow cell infiltration for ECM formation and secretion throughout
the engineered tissues. Increased porosity and pore size can benefit the structure interconnectivity
and the diffusion of nutrients and oxygen, especially in the absence of a pre-vascularized system,
which is part of the microarchitectural composition of some tissues, such as cartilage, meniscus and
IVD [166,200]. Another issue associated with hydrogels are their low mechanical properties and
structural stability associated with the high-water-content that mimics the native ECM of tissues
and allow cell encapsulation [201]. Thus, for some engineered tissues the possibility of structuring
hydrogel-based matrices is a key role for regulating their microarchitecture and to improve many
aspects of cell orientation, aggregation, and ECM function [202]. For example, in genipin crosslinked
gelatin hydrogels with low porosity and pore size, the tendency of cells was to grow indiscriminately
rather than produce and secrete ECM [203]. Consequently, the extent of ECM secretion was lower
in these matrices as compared to that observed in gelatin hydrogels with larger pores, confirming
that the porosity and pore interconnectivity greatly affect cell growth and penetration in the 3D
structure of hydrogels. In a different study reported by our group [103], HRP-crosslinked SF
hydrogels were structured using combined salt-leaching and freeze-drying methodologies for cartilage
TE applications. The produced macro- and micro-porous SF hydrogels supported chondrogenic
differentiation of human adipose-derived stem cells (hASCs) with a high degree of ECM formation
and distribution within the porous matrices. The same matrices were further combined with macro-
and micro-porous HRP-crosslinked SF hydrogels incorporating β-TCP particles and used as bone-like
layers in an osteochondral (OC) TE approach [162]. The bilayered structures presented high porosity
and homogeneous pore distribution, with mechanical properties suitable for bone-cartilage tissue
applications. The co-culture of human osteoblasts and human articular chondrocytes on the respective
layers of the bilayered structures showed that both cell types adhered, proliferated, and produced
their respective ECM in the cartilage- and bone-like compartments. As previously mentioned, the
same HRP-crosslinked SF hydrogels have been proposed as aqueous hydrogel systems for 3D printing
applications, and possibly injectable purposes [189,192]. However, some stability drawbacks were
detected during the printing process of the amorphous SF, namely the hydrogel’s mechanical resistance
and stability in aqueous solution. Thus, through the salt-leaching processing or ethanol treatment
applied to the HRP-crosslinked SF hydrogels, it was possible to induce a desired porosity and improve
the hydrogel’s structural stability due to the protein folding andβ-sheet formation [102,161,162]. A new
methodology to produce SF-based hollow tubular conduits (TCs) was described by Carvalho et al. [204],
using the HRP-crosslinked SF hydrogels processed through three different methods (freeze-drying,
drying at 50 ◦C, permanent hydrated state), forming a crystalline β-sheet conformation after ethanol
treatment. This approach allowed modulation of different characteristics of the final TCs, showing the
hydrogel-based tubes with microstructures that ranged from nonporous to highly porous networks,
which were selectively permeable to 4 kDa molecules but not to human skin fibroblasts. The porous
conduits also presented high tensile properties and good resistance to the applied loads. The fabrication
of gradient structures brings a particular interest in the TE field, not only for the development of
high-throughput 3D bioprinted materials, but also for the creation of hydrogel-based structures with
controlled porosity and pore size [196]. Following this strategy, Canadas et al. [205,206] proposed in
different studies the fabrication of innovative 3D architectures with linear or random porosity produced
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using gradient distributions induced by freeze-drying processing, varying temperatures, and guided
crosslinking. ECM-like networks of OC tissue [205] and neuronal organization [207] were made of
a photo-crosslinkable blend of methacrylated gellan gum (MAGG) and gelatin (GelMA) hydrogels,
showing the ability to form different isotropic and anisotropic structures with tunable pore sizes
and porosities according to the desired application (Figure 9). The possibility of forming gradient
distributions using HAp microparticles in combination with growth factors was also demonstrated,
as well as the development of a heterotypic-like OC tissue with cell orientation guided by a dual
chamber bioreactor [205]. It was shown that by using a control over polymeric matrices composition,
crosslinking directional properties, and freezing gradient dynamics, it was possible to develop 3D
hydrogel-based structures with top-down tunable properties in terms of macro- and micro-porosity,
and capable of guiding cell orientation and ECM formation. These works opened new opportunities
of developing more complex tissue models for new drug testing and patient-specific therapies in
regenerative medicine.
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Figure 9. Structural characterization of gradient-induced 3D hydrogels. (A) The 3D reconstructions
of: (i) random and (ii) linear porous architectures (isotropic and anisotropic). Red color represents
methacrylated gelatin (GelMA)-methacrylated gellan gum (MAGG) blended polymers and blue color
represents the hydroxyapatite (HAp) (Scale bar = 0.5 mm). Coronal and transaxial sections of the
bilayered phased structures are represented, showing the continuous interface created throughout
the matrices. The ceramic phase distribution is shown in purple inside the structure’s volume (Scale
bar = 1 mm). (B) Quantification profiles of (i) HAp distribution, (ii) porosity percentage, and (iii)
mean pore size traced for isotropic and anisotropic structures with linear and random pore distribution.
(iv) Anisotropic degree assessed for each porous architecture, showing higher values on the linear
porous anisotropic structures. Data of anisotropic degree was represented as mean ± SD, ranging
from 0 (isotropic) to 1 (anisotropic) (P-value = 0.05, N = 3). Reprinted from a previous study [205]
with permission.
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The formation of bioactive polymer/inorganic hybrid hydrogels emerged as a new strategy for
improving hydrogel mechanical stability, while porosity could also be increased [208]. Most of these
strategies were developed for hard tissue applications, such as bone or OC complex, and include
CaPs (HAp, α,β-TCP, or biphasic CaP) or bioactive glass or glass-ceramics incorporation within the
polymer-based hydrogel matrix [162,207–210]. For example, Ma et al. [211] proposed biomimetic
hybrid hydrogels consisting of collagen, Hap, and alendronate for bone TE applications. First, the
anti-osteoporosis drug alendronate was conjugated with bioactive HAp particles, further incorporated
within the hydrogel matrix formed from collagen, and using genipin as the crosslinker. The authors
have showed that the hybrid hydrogels formed in physiological conditions exhibited remarkable
mechanical properties, higher gel content, and lower swelling rations as compared to the non-hybrid
hydrogels prepared exclusively from collagen. In a different study, injectable composites were proposed
for bone regeneration applications by combining alginate as a hydrogel matrix with crystalline CaP
powders as dispersed minerals or used as sources of calcium for alginate crosslinking [212]. The
viscoelastic properties of hydrogels were tunable according to CaP content, while still maintaining
their injectability to fill bone defects. The biocompatibility and viscoelastic properties of alginate-based
hydrogel matrices combined with the osteoconductivity of CaP particles were beneficial for bone
regeneration and showed promising results as minimally invasive bone-filler materials. Jiang et
al. [213], designed stratified OC grafts with multi-tissue regions, based on an agarose hydrogel matrix
integrating composite microspheres of PLGA and 45S5 bioactive glass (BG). The authors observed the
ability of producing three distinct yet continuous regions of cartilage, calcified cartilage, and bone-like
matrices by the incorporation of the PLGA-BG composite that promoted chondrocytes mineralization
in the interface and the formation of a mineralized matrix in the osteoblast-cultured bone-like region.
In addition, the PLGA-BG phase improved the mechanical properties of the multi-phased scaffolds, as
compared to those prepared with PLGA alone and used as control.

In Table 2 some of the most recently reported studies are summarized using the aforementioned
technologies and crosslinking methods to produce hydrogel-based matrices for TE purposes.
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Table 2. Technologies and crosslinking methods for producing innovative hydrogel-based matrices for TE applications.

Technology Materials Crosslinking Method Outcomes Application Ref.

Injectable hydrogels

Carboxymethyl chitosan and
alginate integrated with HAp

nanoparticles and calcium
carbonate microspheres

(CMs)

Chemical crosslinking between
amino and aldehyde groups of

carboxymethyl chitosan
(CMCS) and oxidized alginate

(OAlg)

Controlled gelation time, morphology,
mechanical properties, swelling ratio,
and in vitro degradation by varying

HAp and CMs contents; sustained drug
release and antibiotic activity against

bacteria

Bone tissue engineering
and drug delivery [214]

Poly(ethylene
glycol)-N-hydroxysuccinimide

(PEG-NHS)

Physical crosslinking using
gelatin functionalized with
norbornene groups (GelNB)

and crosslinked with
thiol-functionalized

poly(ethylene glycol)
(PEGdiSH) using a LAP

initiator

Cell-laden ability inside the microgels
formed as 3D constructs; human BMSC

viability and function preservation
within the structures; upregulation of

chondrogenic activity and
glycosaminoglycans (GAGs) formation
encouraged by the assembled microgels

Articular cartilage
regeneration [215]

Methacrylated decellularized
cartilage hydrogel (MeSDCC)

with HAp nanofibers
(HAPnf), or bioglass (BG)

Photo-crosslinking Increased mechanical stiffness and
minimal bone regeneration in vivo Bone regeneration [178]

3D printing

Alginate (AL),
Methylcellulose (MC),

Halloysite Nanotube (HNT),
and Polyvinylidene Fluoride

(PVDF)

Chemical crosslinking using
calcium chloride (CaCl2) after

printing

High water content and good miscibility
in the printed structures; chondrocyte

viability after 4 days of culture increased
by the presence of PVDF

Cartilage applications [216]

Sodium alginate (SA) and
gelatin (Gel)

Chemical crosslinking induced
after printing by soaking in
CaCl2 and glutaraldehyde

The hydrogels showed high transparency
and excellent fluidic properties;

interconnected porous formation after 3D
architecting according to pre-established

operating parameters; 3D printed
architectures allowed chondrocyte

viability and proliferation with efficient
distribution within the porous structures

Cartilage repair [217]

Ultrapure alginate and
methylcellulose (Alg/MC)

Chemical crosslinking by
Alg/MC blending

Successful encapsulation of pancreatic
islets in hydrogels; good diffusion of

glucose and insulin within the structures,
with the embedded islets continuously
producing insulin and glucagon, while

still reacting to glucose stimulation

Pancreatic islets
transplantation [218]
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Table 2. Cont.

Technology Materials Crosslinking Method Outcomes Application Ref.

Polycaprolactone
(PCL)/β-tricalcium phosphate

(TCP)/bone decellularized
ECM (dECM)

No crosslinking

The scaffolds compressive modulus
ranged from 31.3 to 39.9 MPa, having
excellent bone regeneration efficacy

in vitro and in vivo

Bone tissue [120]

Freeze-drying
Silk fibroin (SF) and sodium

alginate (SA)

Ionic crosslinking utilizing Ca2+

from calcium silicate (CS) to
simultaneously crosslink SF

and SA

CS inside the porous SF/CS/SA
hydrogel-based structures remarkably
enhanced hydrophilicity, degradation,

compression resistance, bioactivity and
pH of structures; the presence of CS

stimulated BMSCs proliferation and ALP
activity at certain concentrations

Bone tissue engineering [219]

Gelatin (Gel) and
polycaprolactone−polyethylene

glycol (PCEC)

Chemical crosslinking of Gel
solution with glutaraldehyde,

incorporation PCEC
nanoparticles added to the Gel

solution

Gel porous hydrogels incorporating
PCEC nanoparticles loaded with TGF-β

presented a sustained release of the
growth factor and positively affected
structures porosity; nanocomposite

hydrogels cultured with h-AD-MSCs
expressed chondrogenic-related markers

with potential for chondrocytes
differentiation

Cartilage tissue
engineering [220]

Salt-leaching
Poly(ethylene glycol) (PEG)
and sodium chloride (NaCl)

Physical crosslinking of
functionalized PEG solution

induced by a photoinitiator and
irradiated with UV light; NaCl

particles added to PEG
precursor solution for porosity

inducement

Microporous PEG-based hydrogels
supported low blood glucose levels at

earlier times and provided the
restoration of normoglycemia

Pancreatic islets
transplantation [221]

Poly(lactide-co-glycolide)
(PLGA), magnesium

hydroxide, and renal dECM
No crosslinking

Magnesium hydroxide and dECM
alleviated the inflammatory response

and activated cell morphogenetic
behaviors, influencing cell attachment

and differentiation; the scaffold
promoted the reconstruction of

glomerular structure in renal tissue,
contributing to the full recovery of the

nephrectomized kidney

Kidney tissue [222]

Note: ALP: alkaline phosphatase; BMSCs: bone marrow stem cells; h-AD-MSCs: human adipose-derived mesenchymal stem cells; HAp: hydroxyapatite.
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4. Clinical Trials on Tissue Engineering/Regeneration

Human clinical trials or interventional studies are conducted to evaluate biomedical or behavior
interventions, including new treatments, after approval of the health ethics committee. This process
involves multiple stages of R&D studies before reaching the final stages of approval from the U.S. Food
and Drug Administration (FDA). The FDA is a science-based agency in the US Public Health Service
possessing legislative authority for premarket approval and post-market surveillance, and enforcement
for a wide range of products in its regulatory preview. Research and development stages ensure the
effectiveness and safety of new products and devices, which involve the production of medical grade
scaffolds followed by animal testing under regulatory approved conditions. Over the last years, the
research in TERM has resulted in few clinically approved therapeutics, but many more products are
under development. Table 3 provides the completed and ongoing (with no reported results so far)
preclinical research trials for TE applications using scaffolds and hydrogels in the last 5 years.
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Table 3. Overview of the complete and ongoing clinical trials, in the last 5 years, using scaffolds and hydrogel strategies for tissue engineering and regeneration.
Information obtained from https://clinicaltrials.gov/.

ClinicalTrials.Gov
Identifier (NCT) Date and Status Study Procedure Patients Age Follow-Up Primary Outcomes

NCT01301664 2013–2016 Completed Cartilage Tissue Engineering

Harvested human
cartilage tissues from
osteoarthritic patient

during total knee
arthroplasty surgery

30–70 years n.d. n.d.

NCT01791062 2013–2016 Completed Safety and Efficacy Study of HYTOP® in
the Treatment of Focal Chondral Defects

Focal chondral defect in
femoro-tibial

compartment of the knee
joint

18–50 years 12 weeks

Adverse events with
causal relationship to the
investigational medical
device evaluated with

respect to type, incidence,
and intensity up to study

termination of each
subject

NCT01879046 2013–2017 Completed

Regenerative Medicine of Articular
Cartilage: Characterization and

Comparison of Chondrogenic Potential
and Immunomodulatory Adult

Mesenchymal Stem Cells

Total Knee arthroplasty ≥18 years 3 years Increased expression of
chondrogenic markers

NCT01813188 2013–2017 Completed
(Phase 2)

Use of bone marrow mononuclear cells
seeded onto a porous matrix of

tricalcium phosphate ceramic and
demineralized bone matrix, for the
consolidation of tibial bone defects

(pseudoarthrosis)

Autologous bone graft 18–75 years 6 months

Time needed to repair the
focus of necrosis

measured by pain
radiography

NCT02033226 2014–2015 Completed
(Phase 3)

Evaluation of Clinical,
Anti-Inflammatory, and Anti-Infective

Properties of Amniotic Membranes Used
for Guided Tissue Regeneration in

Contained Defects

Chronic Periodontitis 30–55 years 6 months The mean difference in
levels of hBD-2/IL-1β

https://clinicaltrials.gov/
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Table 3. Cont.

ClinicalTrials.Gov
Identifier (NCT) Date and Status Study Procedure Patients Age Follow-Up Primary Outcomes

NCT01362413 2014–2015 Completed
Validation of Laboratory Test for

Predicting Bone Tissue Regeneration
(Rebone-test)

Nonunion of Fracture
(Pseudarthrosis) ≥ 18 years 12 months

Correlation between
laboratory results at the
surgery and clinical and

radiographic results at 12
months, when patients
will be considered as
healed or not healed

NCT02409628 2015–2017 Completed
EktoTherix™ Regenerative Tissue

Scaffold for Repair of Surgical Excision
Wounds

Application of the
EktoTherix scaffold to a
fresh wound created by
the surgical removal of

non-melanoma skin
cancers

≥18 years 3 months Incidence of device
related adverse events

NCT02513368 2015 Completed
(Phase 2)

Peri Implant Soft Tissue Healing in
Single Implant Restoration Using Two

Different Techniques

Augmentation procedure
with Bio-Oss® and

Bio-Gide®
18–75 years 1 year and 1

month

Change from baseline in
the clinical characteristics

of the peri implant
mucosa

NCT00900718 2016 Completed

Comparison of Straumann Bone
Ceramic and Bio-Oss With Guided

Tissue Regeneration for Alveolar Ridge
Preservation

Bone augmentation, after
tooth extraction 18–75 years 32 weeks

The changes of bone level
between baseline and

32-weeks post-extraction

NCT02859025 2016 Completed
(Phase 1)

Concomitant Use of Buccal Fat Pad
Derived Cells and Autogenous Bone in

Alveolar Cleft Osteoplasty
Cleft of Alveolar Ridge

Child, adult
and older

adult
6 months Change in bone volume

NCT03113747 2017 Completed
(Phase 1–2)

Allogeneic Adipose derived stem cells
(ADSCs) and Platelet-Poor Plasma

Fibrin Hydrogel to Treat Patients with
Burn Wounds

Application over
perforated autologous
skin graft following the

covering with
hypoadhesive bandage

18–65 years 1 month
The degree of healing of

skin flap after autologous
skin grafting

NCT03076138 2017-2019 Completed Gene-activated Bone Substitute for
Maxillofacial Bone Regeneration

Bone grafting with
gene-activated matrix

maxillofacial
regeneration

18–60 years 6 months

Bone tissue formation in
the field of gene-activated

bone substitute
implantation
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Table 3. Cont.

ClinicalTrials.Gov
Identifier (NCT) Date and Status Study Procedure Patients Age Follow-Up Primary Outcomes

NCT01605201 2018 Completed
(Phase 1)

Tissue Engineered Nasal Cartilage for
Regeneration of Articular Cartilage

(Nose2Knee)

Implantation of a graft in
a degenerative lesion of

articular cartilage of knee
18–55 years 24 months Safety for the patient and

stability of the graft

NCT02673905 2018 Recruiting
Clinical Trial for the Regeneration of

Cartilage Lesions in the Knee
(NosetoKnee2)

Articular cartilage lesions
in the knee 18–65 years 24 months

Comparison of the
efficacy of the two

investigational medicinal
products (IMPs)

NCT02145130 2018 Recruiting
(Phase 1)

Phase I Study for Autologous Dermal
Substitutes and Dermo-epidermal Skin
Substitutes for Treatment of Skin Defects

Transplantation of an
autologous

tissue-engineered dermal
substitute

1–70 years 21 days

Assessment and
reporting of local

infection rate and graft
take

NCT03613090 2019 Not yet
recruiting (Phase 2)

Novel Collagen Scaffold versus
Conventional Scaffold in Regeneration

of Human Dental Pulp Tissue

FDA-approved
collagen-hydroxyapatite
material called Syn-Oss
for regeneration of pulp

tissue

≥12 years 15 months

Observation of:
Radiodensity at apex at
1mm from root vertex;
increase in dentin wall

thickness; increase in root
length, in mm, and
Periradicular status

NCT02090140 2015–2020 Ongoing Microfracture Versus ADSCs for the
Treatment of Articular Cartilage Defects

Microfracture followed
by the application of

ADSCs to the defect site
18–50 years 6, 12, 24

months

Health Scores on the Knee
injury and Osteoarthritis
Outcome Score (KOOS)

Questionnaire
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Table 3. Cont.

ClinicalTrials.Gov
Identifier (NCT) Date and Status Study Procedure Patients Age Follow-Up Primary Outcomes

NCT01765244 2013–2020 Ongoing
(Phase I–II)

Allogeneic Tissue Engineering
(Nanostructured Artificial Human

Cornea) in Patients with Corneal Trophic
Ulcers in Advanced Stages, Refractory to
Conventional (Ophthalmic) Treatment

Implantation of an
anterior lamellar

nanostructured artificial
human cornea with

allogeneic cells from dead
donors embedded in a
fibrin-agarose scaffold

≥18 years 24 months

Adverse events (and
serious adverse events)

causally related to
experimental treatment;
implant status (integrity,

detachment, and
reabsorption); local,
regional, or systemic

infections related with the
implant; induced corneal

neovascularization

NCT03698721 2018–2026 Ongoing
Urothelium Tissue Engineering Using

Biopsies from Transurethral Resection of
Prostate

Transurethral Resection
of Prostate ≥18 years 6, 12, 36

months
Histological analysis of

biopsy

NCT03103295 2018 Ongoing
(Phase 1–2)

3D Tissue Engineered Bone Equivalent
for Treatment of Traumatic Bone Defects

Tissue-engineered
bone-like construct

transplantation
18–60 years 12, 36 months Radiographic and MRI

assessment in progression

Note: n.d.: not defined; ADSCs: adipose-derived stem cells.
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There are already some products with regulatory approval, such as: (i) bioceramics-based bone
grafts substitutes, specifically CERAMENT™G, Bonalive (Vivoxid Ltd., Turku, Finland), NovoMax®

(BioAlpha Inc., Bandar Baru Bangi, Malaysia), ChronOs (DePuySynthes, Raynham, MA, USA),
Straumann® BoneCeramic™ (Basel, Switzerland), and Geistlich Bio-Oss® (Wolhusen, Switzerland); (ii)
scaffolding materials for cartilage repair and regeneration, namely Cartilage Repair Device (Kensey
Nash Corp., Exton, PA, USA); and (iii) biomaterials for OC defect regeneration, such as MaioRegen®

(Finceramic, Faenza, Italy), TruFit® (Smith and Nephew, Andover, MA, USA), and Cartilage Repair
Device (Kensey Nash Corp., Exton, PA, USA). For small chondral and subchondral lesions treatment,
there are also three off-the-shelf implants, namely ChondroMimetic® (TiGenix, Cambridge, UK), which
is a collagen and CaP-bilayered scaffold, Agili-CTM (Rizzoli Orthopedic Institute, Bologna, Italy), an
aragonite-based cell-free implant, and Chondrofix® (Zimmer Biomet, Warsaw) Allograft, which is
a human decellularized hyaline cartilage and cancellous bone scaffold [220–224]. Marketed dECM
scaffolds, harvested from several allogenic or xenogenic tissue sources, currently used in TERM are for
the porcine small intestine (RestoreTM, DePuy Orthopedics; SurgiSIS®, Cook Medical, Bloomington,
IN, USA) and liver (MIRODERM®; MIROMESH®; Miromatrix Medical Inc., Eden Prairie, MN,
USA), human dermis (AlloDermTM, LifeCell Corp., Branchburg, NJ, USA), porcine urinary bladder
(MatriStemTM, ACellr, Inc., Lafayette, IN, USA), bovine pericardium (PhotoFix TEM, CryoLife Inc.,
Kennesaw, GA, USA), and porcine heart valve (PrimaTM Plus, Edwards Lifesciences LLC, Synergraft®;
CryoLife, Kennesaw, GA, USA) [225–228].

5. Concluding Remarks and Future Perspectives

There is a socioeconomic need to fully treat and replace damaged or non-functional tissues with
pioneering approaches, designs, and technologies, converging on functional tissue reconstitution.
TERM has appeared as a developing field based on materials engineering, biology, and medical
knowledge struggling to produce alternative methods for the regeneration and repair of damaged
tissues. Innovative strategies, such as the ones mentioned in this study, present out-of-the-box solutions
for some of the current challenges in the TERM field, and may constitute foremost breakthroughs in the
future. Such approaches will provide the production of bulk bioactive temporary implants with specific
porosity and structure to contribute to the formation of new tissues for completing the medical tasks.
The 3D scaffolds and hydrogel-based matrices are capable of meeting the challenges of personalized
medicine, bringing effective treatments for an extensive assortment of pathologies. Hydrogel-based
matrices have received a considerable interest for engineered tissue scaffolds owing to their structural
similarities to natural ECM, as well as high water content, stiffness, and desirable structure for cellular
proliferation. Furthermore, 3D bioprinted hydrogels arose as highly precise biomimetic matrices for
the development of high-throughput in vitro models. Indeed, among the existing manufacturing
technology, 3D bioprinting has been rapidly increasing with unlimited advantages of micro scale, high
throughput, and cell deposition. Parallel to these advances, dECM has become popular in the TERM
field owing to its ability to inherit the native ECM. In fact, besides the retention of the structure and
biomolecules of the original tissues, dECM can be used for scaffolds, hydrogels, or even bioinks, alone
or in combination with other materials, embracing different tissues. Nevertheless, there are still some
issues, namely its low reproducibility among similar studies, which can be overcome through the
standardization of the methods used for the decellularization process.

Considering the clinical trials status quo, although there are limited clinically approved
tissue-engineered products, a rapid move toward more targeted therapies and customized treatments
supported by 3D technologies has been noticed, particularly for cellular scaffold-based approaches.

Amongst the assortment of bioactive materials used for the production of 3D structures, composite
materials appear to be the most promising ones. By combining polymer and ceramic biomaterials and
simulating the natural tissues, better strength, adequate immune response, and biodegradability can be
ensured. Although current research shows promising results, both from the mechanical and biological
points of view, long-term studies are needed to ensure the implant-tissue interactions, resorption, and
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hierarchical structure, and finally to turn them into a clinically viable strategy. In this sense, some
prospective improvements are under investigation to create enhanced TERM products, as demanded
by regulatory approval bodies, before application in human patients. Improvement of cell-scaffold
interaction with the use of cell-adhesive ligands, and changing cell morphology, alignment, and
phenotype by functionalizing the surface of the scaffolds or even by mechanobiological stimulation of
the cells open tremendous opportunities for regulation of TERM products.
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