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Abstract
The family of aquaporins (AQPs), or major intrinsic proteins (MIPs), includes integral mem-

brane proteins that function as transmembrane channels for water and other small mole-

cules of physiological significance. MIPs are classified into five subfamilies in higher plants,

including plasma membrane (PIPs), tonoplast (TIPs), NOD26-like (NIPs), small basic

(SIPs) and unclassified X (XIPs) intrinsic proteins. This study reports a genome-wide survey

ofMIP encoding genes in sweet orange (Citrus sinensis L. Osb.), the most widely cultivated

Citrus spp. A total of 34 different genes encoding C. sinensisMIPs (CsMIPs) were identified

and assigned into five subfamilies (CsPIPs, CsTIPs, CsNIPs, CsSIPs and CsXIPs) based

on sequence analysis and also on their phylogenetic relationships with clearly classified

MIPs of Arabidopsis thaliana. Analysis of key amino acid residues allowed the assessment

of the substrate specificity of each CsMIP. Gene structure analysis revealed that the

CsMIPs possess an exon-intron organization that is highly conserved within each subfam-

ily. CsMIP loci were precisely mapped on every sweet orange chromosome, indicating a

wide distribution of the gene family in the sweet orange genome. Investigation of their

expression patterns in different tissues and upon drought and salt stress treatments, as well

as with ‘Candidatus Liberibacter asiaticus’ infection, revealed a tissue-specific and coordi-

nated regulation of the different CsMIP isoforms, consistent with the organization of the

stress-responsive cis-acting regulatory elements observed in their promoter regions. A spe-

cial role in regulating the flow of water and nutrients is proposed for CsTIPs and CsXIPs dur-
ing drought stress, and for most CsMIPs during salt stress and the development of HLB

disease. These results provide a valuable reference for further exploration of the CsMIPs
functions and applications to the genetic improvement of both abiotic and biotic stress toler-

ance in citrus.
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Introduction
Aquaporins (AQPs) are integral membrane proteins that assist the rapid movement of water as
well as other low molecular weight molecules across cellular membranes [1–3]. AQPs belong to
the ancient family of major intrinsic proteins (MIPs) found in microorganisms, plants and ani-
mals. While a small number of different AQPs have been identified (2 in E. coli, 9 in S. cerevisiae,
11 in C. elegans and 13 in mammals [4]), a surprisingly large number of MIP homologues have
been found in plants; for example, 35 AQPs were found in Arabidopsis [5], 36 in Zea mays [6],
33 in Oryza sativa [7], 28 in Vitis vinifera [8], 55 in Populus trichocarpa [9], 71 in Gossypium
hirsutum [10], 47 in Solanum lycopersicum [11] and 66 in Glycine max [12]. These observations
highlight a major role for plant MIPs as key regulators of the intricate flows of water and solutes
required for growth and adaptive responses to the ever-changing environment.

Plant MIPs were originally categorized into four subfamilies on the basis of sequence homol-
ogies and subcellular localization: plasma membrane (PIP), tonoplast (TIP), nodulin-like (NIP)
and small basic (SIP) intrinsic proteins [2,13]. More recently, studies in the moss Physcomitrella
patens revealed the presence of novel AQP isoforms in addition to the four conserved plant
AQP subfamilies: a homologue of the Escherichia coli intrinsic protein GlpF (GIPs), intrinsic
hybrid proteins (HIPs) and unclassified X intrinsic proteins (XIPs) [9,13–17]. XIP homologues
have also been identified in some higher plants, such as Solanum lycopersicum, Populus tricho-
carpa and Glycine max [9,11,12,15]. These findings suggest that the family of plant MIPs is
larger and much more complex than previously anticipated and, hence, may play critical roles
in a wide range of biological processes that go far beyond the current knowledge.

AQP-mediated water transport in plants has been implicated to play a central regulatory step
in diverse biological processes, including cell elongation, seed germination and osmoregulation
[18]. In addition, AQPs facilitate the transport of small uncharged molecules of physiological
significance like glycerol, urea, boric acid, silicic acid, hydrogen peroxide (H2O2), ammonia
(NH3) and carbon dioxide (CO2) through the plant cell membranes [1,2] and also regulate
phloem sap loading and unloading, stomatal and leaf movement, and cytoplasmic homeostasis
[1,2,13,19]. Therefore, it is not surprising that their expression and biological activities have
been shown to be developmentally and differentially regulated in a cell-specific manner, via phy-
tohormones such as abscisic acid (ABA), gibberellins and possibly brassinosteroids, and by envi-
ronmental signals such as light, water stress, nematode infection, low temperature, and salinity
[4]. However, a general expression pattern among the distinct MIP isoforms cannot be distin-
guished, as they are either up- or downregulated depending on the stimulus and/or the cell-type
studied [4,19,20]. This difference in transcriptional regulation suggests that each MIP isoform
may play a distinct role in plant growth, development and stress response [4].

As a major horticultural crop, the cultivated Citrus spp. face constant biotic and abiotic con-
straints in the main regions of production, including drought, salinity, extreme temperatures
and serious diseases like Huanglongbing (HLB, or citrus greening), which are predicted to
increase in intensity, frequency, and geographic extent as a consequence of global climate
change. Despite the highlighted importance of AQPs, there are only a few studies to date on cit-
rus MIPs and their predicted role in the transport of water and solutes required for plant
growth, development and adaptive responses to the environment. The expression of twoMIP
genes, PIP1 and PIP2, has been investigated in roots of Poncirus trifoliata (L.) Raf., Cleopatra
mandarin (C. reshniHort exTan.) and one of their hybrids, subjected to moderate water deficit
[21], and in roots of P. trifoliata, Cleopatra mandarin and Carrizo citrange (C. sinensis [L.]
Osb.×P. trifoliata [L.] Raf.), subjected to salt treatment [22]. PIP1 and PIP2 gene expression dif-
ferences were correlated with alterations in root hydraulic conductance (Kr) and chloride (Cl-)
exclusion from leaves and, hence, tolerance to water and salt stresses, respectively. With the
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recent completion and publication of the genome sequences of sweet orange [23–25], it is now
possible to identify and characterize the complete repertoire of MIPs in citrus, as well as to carry
out comparative genome analysis in order to understand their evolutionary history. Therefore,
the objective of the present study was to identify sweet orangeMIP genes through a genome-
wide analysis and to characterize their sequences, evolutionary relationships, putative functions
and expression patterns in various tissues and in response to abiotic and biotic stresses. This is
the first comprehensive study of theMIP gene family in sweet orange, providing valuable infor-
mation for further exploration of the functions of this important gene family in citrus.

Materials and Methods

Plant materials and stress treatments
Two-year-old sweet orange plants grafted on Rangpur lime (C. limoniaOsbeck), a rootstock
highly resistant to drought, were used in the drought stress experiment. Plants were first
pruned and acclimatized to greenhouse conditions (25±4°C, 16 h of light and relative humidity
oscillating between 80 and 95%) during 90 days to obtain adequate root development and uni-
form leaf flushes. During acclimatization, plants were grown in plastic pots of 45-L, containing
a mixture of soil and sand (ratio 3:1) and micronutrient mix FTE (50g per pot), irrigated with
tap water twice a week, and fertilized weekly with 1 liter of the following nutrient solution: 1.0g
l-1 Ca(NO3)2, 0.4g l

-1 KNO3, 0.6g l
-1 MgSO4 and 0.4g l

-1 NH4H2P04 (MAP). Thereafter, the
pots were closed with aluminum foil to prevent water loss by evaporation, and a set of 10 plants
was randomized over the experimental area and subjected to the following treatments: (i) 5
plants in control, in which plants were maintained at leaf predawn water potential values of
-0.2 to -0.4 MPa by daily irrigation and (ii) 5 plants in drought, in which the plants were
exposed to a progressive soil water deficit until their leaves reach predawn water potential val-
ues of -1.5 MPa. The leaf predawn water potential was recorded on the third fully expanded
mature leaf from the apex of each plant, between 2 AM and 4 AM, using a Scholander-type
pressure pump (m670, Pms Instrument Co., Albany, USA).

For salt treatment, sweet orange seeds were germinated in vitro as described by de Oliveira
et al. [26]. Twenty-day-old seedlings of nucellar origin were selected based on their uniformity,
and transferred to MS medium alone (control) or containing 150 mMNaCl (Merck, Darm-
stadt, Germany). Each treatment consisted of 15 nucellar plants (biological replicates). Leaves
and roots were harvested 20 days after the treatments and immediately frozen in liquid nitro-
gen and stored at -80°C.

Plants were infected with ‘Candidatus Liberibacter asiaticus’ as described in Fan et al. [27].
Briefly, two-year-old seedlings of rough lemon (C. jambhiri Lush.) and sweet orange (C. sinen-
sis L. Osbeck) were graft-inoculated with bud wood from ‘Ca. L. asiaticus’ infected ‘Carrizo’
citrange trees kept under greenhouse conditions. For controls, the plants were grafted with bud
wood from healthy Carrizo trees. All these plants were kept in a United States Department of
Agriculture Animal and Plant Health Inspection Service and Center for Disease Control-
approved and secured greenhouse at the University of Florida, Citrus Research and Education
Center, Lake Alfred. Three biological replicates were produced for each citrus species in each
treatment. Quantitative real-time PCR was performed to confirm the presence of ‘Ca. L. asiati-
cus’ in the inoculum source and inoculated plants as described in Li et al. [28]. Four fully
expanded leaves were sampled separately from ‘Ca. L. asiaticus’ inoculated plants and mock-
inoculated plants (used as controls) of each citrus species at 0, 7, 17, and 34 weeks after inocula-
tion (WAI). Leaves were immediately frozen in liquid nitrogen and stored at -80°C until use.
Three biological replicates were produced for each condition. In total, 12 plants with 48 leaf
samples were collected (2 species x 2 treatments x 3 replicates x 4 time points).
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Identification and classification of CsMIPs
The Hidden Markov Model profile of the PFAM (http://pfam.sanger.ac.uk/) [29] motif
PF00230 (major intrinsic protein) was used as a keyword to search the sweet orange genome
sequence database (http://www.phytozome.org/citrus/) [25]. The KEGG Orthology (KO)
terms K09872 (aquaporin PIP), K09873 (aquaporin TIP), K09874 (aquaporin NIP) and
K09875 (aquaporin SIP) were also used as keywords to search the sweet orange genome
sequence at Phytozome. To avoid the deficiencies of the automatic annotation, the 35 Arabi-
dopsis thalianaMIP protein sequences were retrieved from TAIR (http://www.arabidopsis.org/
), according to previous reports [5,30], and also used to align with the sweet orange genome
sequence assembly available at Phytozome using the TBLASTN tool. After merging the results
from all these strategies, unique entries (with unique locus ID) were identified to remove the
redundancy. The resulting sequences were manually inspected for the presence of characteris-
tic and functionally important MIP amino acids and motifs.

The sweet orange MIPs were classified in different isoforms based on sequence analysis of
the multiple alignments and on their phylogenetic relationship with those clearly classified
MIPs of Arabidopsis thaliana, Ricinus communis and Nicotiana benthamiana, downloaded
from the TAIR and NCBI databases. Multiple sequence alignments of the deduced amino acid
sequences of CsMIPs and those of A. thaliana, R. communis and N. benthamiana were per-
formed using the default parameters of ClustalW [31]. The dendrogram was generated by the
MEGA 6 program [32] using the Neighbor-Joining (NJ) method [33] and bootstrap analysis
(1,000 replications).

Analysis of CsMIP protein properties and conserved amino acid
residues
Information about coding sequence (CDS), full-length sequence and predicted amino acid
sequence was obtained for each sweet orangeMIP gene from the Phytozome database. The
GRAVY (grand average of hydropathy), molecular weight and isoelectric point (pI) of the
deduced amino acid sequences were predicted by the PROTPARAM tool available on the
Expert Protein Analysis System (ExPASy) proteomics server (www.expasy.ch/tools/protparam.
html). The subcellular localization of MIP proteins was predicted using the WoLF PSORT tool
available at http://www.genscript.com/psort/wolf_psort.html. Careful visual inspection of
amino acid sequence alignments were performed to identify the characteristic MIP amino
acids and motifs and the residues in seven key positions that have been reported to be specific
for each functional subgroup [12,30,34,35].

Analysis of promoter sequences and chromosomal locations of CsMIPs
One kb upstream region from the translation start site was extracted from all the sweet orange
MIP genes and subsequently analyzed in the PLACE database (http://www.dna.affrc.go.jp/
PLACE/signalscan.html) to identify the presence of the stress-responsive cis-acting regulatory
elements ABRE (ABA-responsive element; ACGTG), DRE/CRT (dehydration responsive ele-
ment/C-repeat; G/ACCGAC), MYBS (MYB binding site; TAACTG) and LTRE (low-tempera-
ture-responsive element; CCGAC) in their promoters. The physical locations of CsMIPs were
determined by confirming the starting position of all genes on each chromosome, using
BLASTN searching against the local database of the Citrus sinensis Annotation Project (CAP;
http://citrus.hzau.edu.cn/orange/). MapChart software was used to plot the gene loci on the
sweet orange chromosomes [36].
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Expression analysis of CsMIPs
Total RNA isolation, cDNA synthesis and quantitative real-time RT-PCR (qPCR) analysis
were performed as described previously [26]. qPCR primers were designed appropriately to
avoid the conserved regions. Primer sequences are shown in detail in S1 Table. Glyceralde-
hyde-3-phosphate dehydrogenase C2 (GAPC2) was used as an internal reference gene to nor-
malize expression among the different samples [37]. Data were obtained from a pool of three
biological replicates that were individually validated.

RNA-seq data were downloaded from CAP [24] and used to analyze the expression patterns
of CsMIPs in different tissues, namely callus (C), flower (Fl), leaf (L), fruit (Fr), and mixed tis-
sues from fruit at three developmental stages (Mix.1, Mix.2, and Mix.3). The heatmap was gen-
erated using R 3.1.0 software.

Results and Discussion

MIP encoding genes in the sweet orange genome
Searches in the sweet orange genome sequence database at Phytozome using annotation infor-
mation, as well as the 35 protein sequences of the complete set of A. thalianaMIPs (AtMIPs)
as query sequences, resulted in the identification of 34 different genes encoding C. sinensis
MIPs (CsMIPs) (Table 1). The retrieved sequences were manually inspected for the presence of
characteristic and functionally important MIP domains and motifs, such as the highly con-
served NPA (Asn-Pro-Ala) motifs, and considered to be correct. The number ofMIP genes
described in this study is similar to that found in the genomes of Arabidopsis [5], maize [6],
rice [7] and grape [8], but significantly lower than that identified in the genomes of poplar [9],
cotton [10], tomato [11] and soybean [12]. The absence of recent whole-genome duplication
(WGD) events in the sweet orange genome, as described by Xu et al. [23], could account for
the relatively small size of theMIP family in the citrus genome.

The CsMIPs were classified in five different subfamilies, PIPs, TIPs, NIPs, SIPs and XIPs,
based on analysis of the amino acid residues located in seven key positions (P1 to P7) that were
previously proposed [12,34,35] to discriminate the different subfamilies (S2 Table), as well as
on their phylogenetic relationships with the well classified MIPs of A. thaliana and XIPs of R.
communis and N. benthamiana (S1 Fig). Our analysis revealed the presence of 8 PIPs, 11 TIPs,
9 NIPs, 3 SIPs and 3 XIPs in the sweet orange genome (Table 1). The CsMIPs were named
according to the nomenclature proposed in classification of the MIPs of A. thaliana. This
nomenclature was based on phylogenetic analyses and where the names in a systematic way
reflect distinct clades that are evolutionarily stable [5]. PIPs, TIPs, NIPs and SIPs from sweet
orange grouped with their respective Arabidopsis counterparts, indicating the large extent of
conservation between the sweet orange and Arabidopsis MIP gene families (S1 Fig). The only
exception was CsTIP6;1, which was found to encode a N- and C-terminally truncated TIP pro-
tein compared to the rest of the subfamily.

To examine whether the number ofMIP genes found in the diploid sweet orange is compa-
rable to that of the dihaploid sweet orange and haploid Clementine mandarin, we also per-
formed homology searches against the dihaploid sweet orange draft genome available at the
Citrus sinensis Annotation Project (CAP) and the reference haploid Clementine mandarin (C.
clementina) genome available at Phytozome (S3 Table). Although the total number ofMIP
genes was roughly similar among the different citrus genomes, significant differences were
observed in the number of members within the subfamilies (Table 2). BLAST similarity analy-
sis revealed that the dihaploid sweet orange and haploid Clementine contained two additional
PIP isoforms closely related to the CsPIP2;1 (S3 Table). Clementine also contained one
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additional PIP isoform closely related to the CsPIP1;2 and one PIP, TIP and NIP isoform with-
out homology to anyMIP sequence from the diploid sweet orange (S3 Table). CsTIP1;2 and
CsTIP1;3, CsTIP2;1 and CsTIP2;2, CsTIP5;1 and CsTIP6;1, and CsNIP2;1 and CsNIP2;2 exhib-
ited significant hits to the sameMIP isoforms of the dihaploid sweet orange and haploid Clem-
entine (S3 Table). These observed variations in the size of theMIP subfamilies may be a
consequence of the different sequencing depth and assembly quality between the diploid and
dihaploid sweet orange genomes [23,25] and the evolutionary origin of Clementine, which is a
hybrid of Willowleaf mandarin and sweet-orange [25] and, thereby, it contains more C. reticu-
lata haplotype regions than found in sweet orange.

Table 1. Genes and encodedMIP proteins in sweet orange.

Gene
name

Locus Chromosome location Group Kegg
Orth ID

Polypeptide
length (MW)

pI GRAVY Predicted subcellular
localization

CsPIP1;1 orange1.1g018895m chr7: 31,253,722. . .31,256,103 PIP K09872 349 (37.56kDa) 9.39 0.397 plasma membrane

CsPIP1;2 orange1.1g023021m chr7: 31,247,369. . .31,248,902 288 (30.67kDa) 7.71 0.414 plasma membrane

CsPIP1;3 orange1.1g023107m chr5: 1,804,896. . .1,807,677 287 (30.70kDa) 8.97 0.344 plasma membrane

CsPIP1;4 orange1.1g023069m chr6: 9,907,825. . .9,909,541 287 (30.82kDa) 8.96 0.343 plasma membrane

CsPIP2;1 orange1.1g023108m chr6: 12,833,884. . .12,835,042 287 (30.67kDa) 8.74 0.376 plasma membrane

CsPIP2;2 orange1.1g022966m chr8: 19,657,287. . .19,659,497 289 (31.05kDa) 7.62 0.392 plasma membrane

CsPIP2;3 orange1.1g019681m chr7: 26,202,220. . .26,205,546 337 (36.34KDa) 9.77 0.403 plasma membrane

CsPIP2;4 orange1.1g023370m chr8: 981,841. . .983,571 283 (30.14kDa) 8.99 0.431 plasma membrane

CsTIP1;1 orange1.1g025548m chrUn: 46,663,407. . .46,665,011 TIP K09873 251 (26.06kDa) 6.12 0.675 vacuole

CsTIP1;2 orange1.1g025600m chr8: 20,659,157. . .20,660,437 250 (25.65kDa) 5.32 0.841 cytosol

CsTIP1;3 orange1.1g037978m chr8: 20,659,157. . .20,660,437 124 (12.92kDa) 4.37 0.734 cytosol

CsTIP1;4 orange1.1g025464m chr7: 29,135,182. . .29,136,531 252 (26.01kDa) 5,69 0,786 vacuole

CsTIP2;1 orange1.1g025817m chr1: 18,627,617. . .18,629,472 247 (25.15kDa) 5.59 0.894 vacuole

CsTIP2;2 orange1.1g025865m chr1: 18,627,617. . .18,629,472 247 (25.10kDa) 5.59 0.902 vacuole

CsTIP2;3 orange1.1g038895m chr5: 5,749,487. . .5,750,939 206 (20.55kDa) 4.72 0.979 vacuole

CsTIP3;1 orange1.1g025197m chr5: 16,938,542. . .16,940,192 256 (26.99kDa) 7.07 0.626 cytosol

CsTIP4;1 orange1.1g025864m chr4: 19,032,254. . .19,033,990 247 (16.27kDa) 6.27 0.825 vacuole

CsTIP5;1 orange1.1g046726m chr9: 14,144,215. . .14,145,199 161 (16.86kDa) 9.00 0.770 cytosol

CsTIP6;1 orange1.1g042738m chr9: 14,144,215. . .14,145,199 107 (11.11kDa) 4.54 0.636 secreted

CsNIP1;1 orange1.1g023184m chr2: 2,151,220. . .2,153,387 NIP K09874 286 (30.45kDa) 8.64 0.434 vacuole

CsNIP2;1 orange1.1g036721m chr6: 18,134,848. . .18,136,228 223 (23.70kDa) 9.69 0.889 cytosol

CsNIP2;2 orange1.1g040981m chr6: 18,134,848. . .18,136,228 211 (22.32kDa) 9.39 0.967 cytosol

CsNIP2;3 orange1.1g040755m chr2: 13,464,261. . .13,465,771 275 (29.39kDa) 8.88 0.628 plasma membrane

CsNIP3;1 orange1.1g023102m chr6: 20,482,599. . .20,486,038 287 (30.30kDa) 8.40 0.387 plasma membrane

CsNIP4;1 orange1.1g046511m chr3: 23,770,831. . .23,774,009 282 (29.28kDa) 8.84 0.372 vacuole

CsNIP5;1 orange1.1g035030m chr1: 13,680,675. . .13,682,992 75 (7.75kDa) 8.98 0.291 chloroplast

CsNIP5;2 orange1.1g027840m chr1: 13,678,241. . .13,681,090 218 (22.51kDa) 7.75 0.462 plasma membrane

CsNIP6;1 orange1.1g039196m chr9: 3,798,017. . .3,800,780 288 (30.20kDa) 7.53 0.718 plasma membrane

CsSIP1;1 orange1.1g026039m chr5: 28,968,880. . .28,972,401 SIP K09875 244 (25.92kDa) 9.35 0.727 plasma membrane

CsSIP1;2 orange1.1g026082m chr3: 1,234,876. . .1,236,556 244 (26.17kDa) 9.83 0.749 plasma membrane

CsSIP2;1 orange1.1g026600m chr6: 17,078,102. . .17,081,323 236 (25.57kDa) 9.70 0.600 chloroplast

CsXIP1;1 orange1.1g036381m chr8: 7,139,938. . .7,141,114 XIP - 235 (25.09kDa) 8.70 0.821 plasma membrane

CsXIP1;2 orange1.1g040654m chr8: 7,131,064. . .7,132,799 302 (32.68kDa) 8.74 0.573 plasma membrane

CsXIP2;1 orange1.1g045670m chr8: 7,128,184. . .7,129,448 319 (34.58kDa) 8.32 0.681 plasma membrane

doi:10.1371/journal.pone.0138786.t001
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CsMIP protein properties and conserved amino acid residues
The CsMIPs encode proteins ranging from 75 (7.7 kDa) to 349 (37.6 kDa) amino acids in
length, and pI values ranging from 4.37 to 9.77 (Table 1). The average protein length of PIPs,
TIPs, NIPs, SIPs and XIPs were 300.8 (32.2 kDa), 213.4 (21.1 kDa), 238.3 (25.1 kDa), 241.3
(25.9 kDa) and 285.3 (30.8 kDa) amino acids, respectively. The average pI of PIPs, TIPs, NIPs,
SIPs and XIPs were 8.77, 5.86, 8.68, 9.63, and 8.59, respectively. These data reveal that CsTIPs
are not only smaller, but most of them are also much more acidic than the other CsMIPs, as
reported for ArabidopsisMIPs [38]. The cause of these large differences in TIPs has been attrib-
uted to the smaller amount of basic residues found at the carboxyl termini of TIPs compared
with the other MIPs [5]. All the CsMIPs had a positive GRAVY score (Table 1), suggesting that
they are hydrophobic proteins, which is a necessary characteristic for AQPs [1]. Analysis of the
predicted subcellular localization showed that all CsPIPs and CsXIPs were localized to plasma
membrane (Table 1). The predicted localization of CsTIPs, CsNIPs and CsSIPs was more
diverse, including vacuole (CsTIP1;1, CsTIP1;4, CsTIP2;1, CsTIP2;2, CsTIP2;3, CsTIP4;1,
CsNIP1;1 and CsNIP4;1), cytosol (CsTIP1;2, CsTIP1;3, CsTIP3;1, CsTIP5;1, CsNIP2;1 and
CsNIP2;2), plasma membrane (CsNIP2;3, CsNIP3;1, CsNIP5;2, CsNIP6;1, CsSIP1;1 and
CsSIP1;2), chloroplast (CsNIP5;1 and CsSIP2;1) and secreted (CsTIP6;1) (Table 1). These
results seem to be in agreement with the experimentally determined localizations of MIPs
reported in the literature [13,39].

MIP folding is characterized by six transmembrane α-helices (H1 to H6) that are connected
by five loops (loops A-E), forming an aqueous transmembrane pore that constitutes the func-
tional core of MIPs [35]. Loops B (LB) and E (LE) contain two highly conserved NPA (Asn-
Pro-Ala) motifs that are considered to be critical for the substrate selectivity of MIPs [40,41].
Another set of four conserved residues forms the aromatic/Arginine selectivity filter (ar/R fil-
ter), which has been proposed to act as a size exclusion barrier for substrate molecules [42].
The first two residues are located in H2 and H5, while the latter two are found in LE (LE1 and
LE2). Finally, seven key amino acid residues (named positions P1 to P7) have been proposed to
discriminate the five subfamilies [12,34]. P1 is located in the terminal part of H3, while P2 and
P3 are located in LE, just behind the second NPA motif (2nd and 6th residues after 2nd NPA,
respectively). P4 and P5 correspond to two consecutive amino acids located in H6, while P6
and P7 also correspond to two consecutive amino acids located in H3. The multiple sequence
alignments were carefully analyzed and all these conserved motifs and amino acid residues
were identified in most CsMIPs, indicating that they are functional channels for water and
other solutes (S2 Table). All the CsPIPs showed the dual typical NPA motifs and an ar/R filter
configuration characteristic for a water-transporting MIP (F,H,T,R). Additional presence of
the S-A-F-W residues at P2-P5 positions, as observed in all CsPIPs, except for CsPIP1;1, has
been interpreted as a signature of CO2 transporter PIPs [35]. All the CsTIPs also had the two

Table 2. Comparison of the number of the different MIP family members in diploid (Phytozome) and dihaploid (CAP) sweet oranges (C. sinensis)
and haploid Clementine (C. clementina).

Subfamily Diploid C. sinensis Dihaploid C. sinensis C. clementina

PIP 8 10 11

TIP 11 8 9

NIP 9 8 8

SIP 3 3 3

XIP 3 3 2

Total 34 32 33

doi:10.1371/journal.pone.0138786.t002
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canonical NPA motifs, except CsTIP1;3, CsTIP5;1 and CsTIP6;1, which were found to encode
truncated proteins lacking either the first (CsTIP1;3) or the second NPA motif (CsTIP5;1 and
CsTIP6;1), as well as other conserved amino acid residues of the ar/R filter region (S2 Table).
TIPs containing the H-I-A-V or H-I-G-R residues in the ar/R filter and T-A-A-Y-W or
T-S-A-Y-W residues at P1-P5 positions, like CsTIP1s, CsTIP2s and CsTIP3, have been shown
to transport urea and H2O2 [35]. The CsNIP1;1, CsNIP2;1, CsNIP2;2 and CsNIP2;3 showed an
ar/R filter configuration identical to that of soybean Nodulin 26, indicating that they are also
able to facilitate water and solute transport capability [30]. The residue at the H5 position of
the ar/R filter of AtNIP5;1 was shown to play a key role in the membrane permeability to
water, silicic acid (Si) and boric acid (B) [42]. AtNIP5;1 with AIGR residues for the ar/R filter
was shown to transport water, B and arsenite (As), but not Si [42]. CsNIP3;1, with GSGR resi-
dues for ar/R filter, can be expected to transport water, Si and B, while CsNIP4;1 (AIGR resi-
dues) may transport water, B and As. The CsSIPs showed a less conserved first NPA motif,
while the second NPA motif was perfectly conserved in all members (S2 Table). AtSIP1 iso-
forms, but not AtSIP2;1, were shown to be functional water channels [43], suggesting that the
latter may be involved in the transport of solutes. However, SIP transport function and struc-
tural organization still await biochemical characterization. The CsXIPs also showed a modified
first NPA motif, NPL (CsXIP1s) or SPV (CsXIP2), and a conserved second NPA motif (S2
Table). The four positions in the ar/R filter region contained amino acid residues that were
strictly conserved among the CsXIPs. CsXIP1;1 was observed to contain an internal deletion of
13 amino acid residues in the H2 region that abolished the conserved amino acid V at position
H2 of the ar/R selective filter. Since the first three amino acid of the ar/R filter have rather
hydrophobic residues (VVAR or VVVR), the CsXIPs might be involved in the transport of
molecules other than water [35]. In fact, a recent study has indicated that the Solanaceae XIPs
are plasma membrane aquaporins involved in the transport of many uncharged substrates,
such as urea, H2O2 and B [44].

Genomic organization of CsMIPs
The exon-intron structure of all 34 CsMIP genes was analyzed using the sweet orange gene mod-
els annotated in Phytozome. With a few exceptions, the number and size of the exons, but not
of the introns, were observed to be conserved within each CsMIP subfamily (S2 Fig). All the
CsPIPs presented three introns and four exons, as reported for all Arabidopsis [5], poplar [9],
tomato [11] and soybean PIPs [12]. The majority of CsTIPs contained two introns and three
exons, with exception of CsTIP1;1, CsTIP2;3 and CsTIP6;1, which showed one intron and two
exons, and the truncated CsTIP1;3 (one exon) gene. Such a more varied pattern of exon-intron
structure has been also observed in Arabidopsis [5], poplar [9], tomato [11] and soybean TIPs
[12]. Most CsNIPs contained four introns and five exons, like all Arabidopsis [5] and most pop-
lar [9], tomato [11] and soybean NIPs [12]. The exceptions were CsNIP2;2 (three introns and
four exons), CsNIP5;2 (two introns and three exons) and the truncated CsNIP5;1 (one intron
and two exons) genes. The CsSIPs featured two introns and three exons, except CsSIP1;2 (one
exon and one intron in the 3’-UTR region). Similar patterns of exon-intron structure were also
reported for tomato SIPs [11], while all the Arabidopsis [5] and poplar SIPs [9] had two introns
and three exons. The gene structure of CsXIPs varied among all members, which contained two
introns and three exons (CsXIP1;2), either one intron and two exons (CsXIP2;1) or only one
exon (CsXIP1;1). The pattern of two intron and three exons has been reported for most poplar
[9] and tomato XIPs [11], while all soybean XIPs contained a single intron and two exons [12].

The positions of all 34 CsMIPs were mapped on the sweet orange chromosomes by homol-
ogy searches against the full-length sweet orange genome assembly available at the CAP
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database (Table 1 and S3 Table). Except for CsTIP1;1, which was not exactly located on any
chromosome because of an incomplete physical map for sweet orange, all the CsMIP loci were
precisely mapped on every sweet orange chromosome, indicating a wide distribution of the
gene family in the sweet orange genome (Table 1 and S3 Fig). The closely related CsMIP iso-
forms CsTIP1;2 and CsTIP1;3, CsTIP2;1 and CsTIP2;2, CsTIP5;1 and CsTIP6;1, and CsNIP2;1
and CsNIP2;2 were respectively mapped on identical chromosome positions since they showed
significant hits to the same genes in the CAP database (S3 Table). Seven CsMIPs were found to
be tandem duplicated genes according to the criteria of Hanada et al. [45], which defined tan-
dem duplicates as genes in any gene pair, T1 and T2, that (1) belong to the same gene family,
(2) are located within 100 kb each other, and (3) are separated by 10 or fewer nonhomologous
spacer genes. These were CsNIP5;1 and CsNIP5;2 on chromosome 1, CsPIP1;1 and CsPIP1;2 on
chromosome 7, and CsXIP1;1, CsXIP1;2 and CsXIP2;1 on chromosome 8 (Table 1 and S3 Fig).
These results suggest that all these CsMIPsmay have evolved from tandem duplication events,
as also recently proposed for the tomato XIPs [11].

Analysis of previously mapped traits revealed that the 282-kb region surrounding the Citrus
Tristeza Virus resistance (Ctv) locus is physically linked (~40-kb) to the CsNIP5;1 and
CsNIP5;2 genes, on the chromosome 1 [46]. This region was also reported to contain Tyr1, the
major locus controlling citrus nematode (Tylenchulus semipenetrans) resistance [47,48].

Expression patterns of CsMIP genes in different tissues
To investigate the expression patterns of CsMIPs in different tissues, RNA-seq data were down-
loaded from CAP [24]. The heatmap generated showed a differential transcript abundance of
the 34 CsMIPs in four major tissues, namely callus, flower, leaf, fruit, and mixed fruit tissues at
three developmental stages (S4 Fig). Some of the CsMIPs (CsPIP1;1, CsPIP1;3, CsPIP2;2,
CsPIP2;3 and CsSIP1;1) showed higher expression in all the seven tissues, indicating a role in
constitutive transport processes throughout the plant. Others genes were found to have a low
expression in all the tissues (CsTIP1;1, CsTIP1;2, CsTIP1;3, CsTIP2;3, CsTIP5;1, CsTIP6;1,
CsNIP2;1, CsNIP2;2, CsNIP2;3, CsNIP5;1, CsNIP5;2, CsXIP1;1 and CsXIP2;1). The putative tan-
dem duplicated CsMIP genes were observed to have divergent expression profiles, which prob-
ably has contributed to their maintenance through regulatory subfunctionalization and
neofunctionalization [49]. CsPIP1;1 showed a higher expression than CsPIP1;2 in all the seven
tissues analyzed. CsXIP1;1 and CsXIP2;1 showed low expression in all the seven tissues ana-
lyzed, while CsXIP1;2 exhibited a high expression in flower, leaf and mixed fruit tissue (Mix.3).

The cell type localization of aquaporin expression can also provide clues about their physio-
logical roles. For instance, expression of PIP aquaporins is generally localized in organs and tis-
sues characterized by large fluxes of water, such as vascular tissues, guard cells, flowers and
fruits [4]. Their expression in roots and leaves has been also correlated with the presence of
apoplastic barriers, the exodermis and endodermis in roots or in suberized bundle sheath cells
in leaves, suggesting their essential role in the transmembrane water diffusion when its move-
ment is hindered [19,20,50–55]. Except for CsPIP2;1, all the CsPIPs were found to be highly
expressed in flower, leaf, fruit and mixed fruit tissues (S4 Fig), supporting their active role in
the transport of water and solutes across these tissues. By contrast, the expression of TIP iso-
forms has been more related to developmental stages and/or organ specificity [56]. For
instance, the expression of AtTIP2;1 is especially high in the vascular system of the shoot but is
barely detectable in the root [57]. AtTIP3;1 is highly expressed in cotyledons and associated
with the membrane of protein storage vacuoles [4]. TIPs are also differentially expressed dur-
ing fruit maturation, e.g., the TIP1;1 homolog in pear is highly expressed in the young fruit,
whereas TIP proteins levels in grape gradually increase along with ripening [58,59]. Vacuoles
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participate in cell expansion and, thus, their enlargement by water compartmentation is essen-
tial to provoke the rapid fruit growth that is characteristic of the ripening process. The lack of
specific regulation observed along fruit ripening for PIPs isoforms points out the essential role
of TIPs in this process [60]. The differential expression of CsTIP1;3, CsTIP1;4, CsTIP2;1,
CsTIP2;2, CsTIP3;1, CsTIP4;1 and CsTIP5;1 highlights the functional importance of these
CsMIPs on each tissue and stage of fruit development analyzed (S4 Fig). The overall level of
NIP expression is usually lower than the expression of PIPs and TIPs, and it is usually associ-
ated with specialized organs and cells [10]. For instance, AtNIP2;1 is specifically expressed in
the endoplasmic reticulum (ER) of roots, whereas AtNIP5;1 is a plasma membrane MIP mainly
expressed in root elongation zones [39,61]. Our analysis showed that the CsNIPs had preferen-
tial expression either in flower (CsNIP6;1), leaf (CsNIP2;2 and CsNIP3;1) or mixed fruit tissues
at different developmental stages (CsNIP1;1, CsNIP2;2, CsNIP3;1, CsNIP4;1 and CsNIP6;1) (S4
Fig). SIPs seem to be expressed in a range of tissues in Arabidopsis, including young roots, flow-
ers and pollen [62]. It is remarkable that SIPs are also strongly expressed in suspension cultured
cells compared to otherMIPs [62]. CsSIP1;1 was observed to be constitutively expressed in all
the seven tissues analyzes, while the others were preferentially expressed in flower and fruit tis-
sues (S4 Fig). XIPs were reported to be expressed in almost all the poplar tissues [9]. By con-
trast, CsXIPs showed a low expression in all tissues analyzed, except CsXIP1;2, which show a
relatively high expression in flower, leaf and mixed fruit tissues at third developmental stage
(Mix.3) (S4 Fig).

Expression patterns of CsMIP genes under abiotic and biotic stresses
To identify CsMIPs with a potential role in abiotic and biotic stress response of sweet orange,
the expression patterns of all the 34 sweet orangeMIPs were investigated in plants exposed to
drought, high salinity and ‘Ca. L. asiaticus’ (HLB) infection, by qPCR. Considering the log2
fold change (LFC) of�1.00 or�-1.00 as cutoff threshold between stressed and control plants,
the qPCR analyses showed that all the CsMIPs were differentially expressed in at least one
stress condition and tissue analyzed (Figs 1–3). Twelve CsMIPs (CsPIP1;1, CsPIP2;4, CsTIP1;3,
CsTIP2;1, CsTIP2;2, CsTIP3;1, CsTIP4;1, CsNIP1;1, CsSIP1;2, CsXIP1;1, CsXIP1;2 and
CsXIP2;1) were observed to be differentially expressed in response to all the three stress condi-
tions analyzed, in at least one tissue studied. Interestingly, only CsTIP1;1 showed differential
expression exclusively in response to the abiotic stress treatments, while six CsMIPs (CsPIP1;2,
CsPIP2;2, CsNIP2;2, CsNIP5;2, CsNIP6;1 and CsSIP1;1) were differentially expressed exclu-
sively under the biotic stress treatment. These results seem to be consistent with the respective
organization of the stress-responsive cis-acting regulatory elements observed in the CsMIPs
promoters (S5 Fig). CsTIP1;1 was observed to contain the highest number of ABRE copies in
the promotor region among the sweet orangeMIP genes, while no or a low number of ABRE
(less than 2 copies) and other stress-responsive cis-acting regulatory elements was detected in
the promoter regions of the CsMIPs that were not induced by the abiotic stress treatments (S5
Fig). A single copy of DRE/CRT has been observed to be sufficient for ABA-independent
stress-responsive gene expression, while more than two ABRE sequences are usually required
for the ABA-responsive transcription [63].

All the CsTIPs and CsXIPs were upregulated in leaves but downregulated in roots by drought
treatment, while only two CsPIPs (CsPIP1;1 and CsPIP2;4) and one CsNIP (CsNIP1;1) and
CsSIP (CsSIP1;2) were differentially upregulated by drought treatment in leaves (Fig 1). Most
CsMIPs were upregulated by salt treatment in roots, and either upregulated or downregulated
by this treatment in leaves, depending on the isoform (Fig 2). A coordinated up- and downregu-
lation, depending on theMIP gene and organ examined, has been described as a general pattern
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ofMIP regulation during drought and salt stresses in Arabidopsis [64–67], soybean [12] and rice
[68]. It has been proposed that a general downregulation ofMIPsmight be a way for the plant
to minimize water loss and the hence loss of turgor in specific organs, and that the upregulation
of individualMIPs could be a way for the plant to direct water flow to certain organs or cells
that are crucial for plant survival during stress, or necessary for its fast recovery upon rehydra-
tion [65]. Thus, the concomitant upregulation in leaves and downregulation in roots of the
CsTIPs and CsXIPs by drought treatment likely reveal a coordinated regulation of theseMIP

Fig 1. Expression analysis of the complete set of sweet orangeMIPs in response to drought
treatment. Ratios (log2) of relative mRNA levels between stressed and control plants for all 34CsMIPs in
leaves and roots, as measured by qPCR.GAPC2was used as an endogenous control. The bars show
means ± SE from three biological replicates.

doi:10.1371/journal.pone.0138786.g001

Fig 2. Expression analysis of the complete set of sweet orangeMIPs in response to salt treatment.
Ratios (log2) of relative mRNA levels between stressed and control plants for all 34CsMIPs in leaves and
roots, as measured by qPCR.GAPC2was used as an endogenous control. The bars showmeans ± SE from
three biological replicates.

doi:10.1371/journal.pone.0138786.g002
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isoforms to direct the water flow through the leaf plasma membrane and tonoplast, while avoid-
ing the water loss in roots. On the other hand, the upregulation of most CsMIPs in roots by salt
treatment suggests their coordinated regulation to increase the overall water flow into this
organ, since it is well known that salt stress reduces the hydraulic conductivity in roots, resulting
in decreases of water flow from root to shoot. Those CsMIPs that were upregulated in leaves by
salt treatment (i.e., CsPIP1;4, CsTIP1;1, CsTIP2;1, CsTIP2;2, CsTIP3;1, CsNIP2;3, CsNIP4;1,
CsXIP1;1 and CsXIP1;2) may also contribute to increase the water flow into this organ.

The time-course transcriptional analysis in response to ‘Ca. L. asiaticus’ infection showed
that 32 out of 34 CsMIPs were strongly downregulated at the early stage (7 weeks) in the highly
susceptible sweet orange, but not in the tolerant rough lemon, whose expression levels of all
CsMIPs were either upregulated or unchanged at this stage (Fig 3). At the later time points (17
and 34 weeks), significantly differential expression levels between the susceptible and tolerant
citrus species were essentially limited to CsPIP2;2, CsTIP1;2, CsTIP2;1, CsTIP2;2 and CsNIP5;1.
‘Ca. L. asiaticus’ is the most widely distributed of the three species of the phloem-limited α-pro-
teobacterium, designated as Candidatus Liberibacter (i.e., ‘Ca. L. asiaticus’, ‘Ca. L. africanus’
and ‘Ca. L. americanus’), which has been associated with the most destructive disease affecting
citrus worldwide, Huanglongbing (HLB) [69]. Leaf symptoms of HLB disease have been well
documented [69]. These include vein yellowing and blotchy mottle, reduced leaf size and pre-
mature leaf abscission. Anatomical alterations caused by the disease in leaves include the exces-
sive accumulation of starch, callose depositions, phloem plugging, necrosis and collapse,
swelling of sieve elements and companion cell walls, and the disruption of chloroplast inner
grana structures [27,69–74]. Significant differences on phloem ultrastructure and phloem load-
ing activity were also observed between HLB-infected sweet orange and rough lemon plants,
highlighting some underlying differences between tolerance and susceptibility mechanisms to
HLB disease [27]. While the phloem transport activity in the midribs of leaves was considerably
impaired in diseased sweet orange, it was much less affected in infected rough lemon [27]. The
downregulation of most CsMIPs as observed 7 WAI in the susceptible sweet orange, but not in
the tolerant rough lemon, correlates with the onset of disease symptoms, such as blotchy leaf
mottle and yellowing [27]. The continued contrasting expression patterns of CsPIP2;2,
CsTIP1;2, CsTIP2;1, CsTIP2;2 and CsNIP5;1 between the tolerant and susceptible citrus species
throughout the 17 and/or 34 WAI suggests an involvement of these CsMIP genes in further
symptom development, such as growth inhibition and impaired phloem loading [27]. Taken

Fig 3. Expression analysis of the complete set of sweet orangeMIPs in response to ‘Ca. L. asiaticus’
infection in rough lemon (LEM) and sweet orange (SWO).Ratios (log2) of relative mRNA levels between
infected and control plants at 0, 7, 17, and 34WAI for all 34CsMIPs, as measured by qPCR.GAPC2was
used as an endogenous control.

doi:10.1371/journal.pone.0138786.g003
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together, these results indicate thatMIP genes may play an active role in the pathogenesis of
HLB disease by regulating the flow of water and nutrients required for the normal growth and
development of citrus plants. The recent finding in a microarray experiment that CsPIPs were
observed to be downregulated in stems of HLB-symptomatic sweet orange trees, 16 months
after inoculation of ‘Ca. L. asiaticus’, is consistent with this interpretation [74].

Conclusions
This study presented a genome-wide survey of theMIP gene family in sweet orange. A total of
34 open reading frames (ORFs) encoding MIP proteins were identified and characterized as to
their sequences, phylogenetic relationships, genomic organization, tissue-specific gene expres-
sion, and expression profiles upon abiotic and biotic stresses. Our results allow us to assess the
relative contribution of each CsMIPmember to water and solute transport in different tissues
and in response to drought, salinity and ‘Ca. L. asiaticus’ infection. These results suggest a spe-
cial role for CsTIPs and CsXIPs in delivering water to the leaves while preventing root tissue
dehydration under drought stress, and for most CsMIPs in increasing the overall water flow
into the roots during salt stress and also regulating the flow of water and nutrients during the
development of HLB disease. Taken together, our results support the idea that these CsMIP
genes represent an important genetic resource for improving citrus tolerance or resistance to
both abiotic and biotic stresses.

Supporting Information
S1 Fig. Phylogenetic relationships of the complete set of 34 sweet orange MIPs with mem-
bers of Arabidopsis and other plants. The deduced amino acid sequences were aligned using
ClustalW2 and the phylogenetic tree was generated using Bootstrap N-J tree (1,000 resam-
plings) method and MEGA program (v6.0.5). Numbers at internal nodes denotes the results of
bootstrapping analysis (n = 1000). Black diamonds indicate MIP gene from sweet orange. Cs,
Citrus sinensis; At, Arabidopsis thaliana; Rc, Ricinus communis; Nb, Nicotiana benthamiana.
(TIF)

S2 Fig. Analysis of exon-intron structures of the 34 sweet orangeMIP genes.NOI denotes
the number of introns, E the exon and I the intron.
(TIF)

S3 Fig. Chromosomal locations of CsMIPs. The chromosomal position of each CsMIP was
mapped according to the Citrus sinensis Annotation Project (CAP). The scale is in Mb. CsSIP
(circle), CsPIP (star), CsNIP (square), CsTIP (triangle), CsXIP (diamond).
(TIF)

S4 Fig. Heatmap of the expression of CsMIPs in different tissues of sweet orange.Mix.1,
Mix.2 and Mix.3 indicate mixed fruit tissues from different developmental stages. The heatmap
was generated using R 3.1.0 software. The color scale shown represents RPKM-normalized
log2-transformed counts.
(TIF)

S5 Fig. Analysis of the stress-responsive cis-elements ABRE (ACGTG), DRE/CRT (G/
ACCGAC), MYBS (TAACTG) and LTRE (CCGAC) in promoters of sweet orangeMIP
genes. The cis-elements were analyzed in the 1 kb upstream promoter region of translation
start site of all CsMIPs using the PLACE database.
(TIF)
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