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introduction

Diffuse ovarian fibrosis is a principal reason for diminished 
ovarian function, which seriously threatens female 
reproductive health and quality of life. Fibrosis is a common 
stage that occurs in the progression of diverse chronic 
diseases into advanced stages.

Fibrosis is commonly seen in various organs, including 
heart, liver, lung, and kidney. It is characterized by excessive 
proliferation of fibroblasts and deposition of extracellular 
matrix (ECM). Without effective treatment, it can develop 
into severe scarring that can aggravate organic disorders and 
lead to functional decline and even organ failure.

Ovarian fibrosis is primarily triggered by ovarian injury 
caused by different factors, such as surgery, inflammation, 
and immune abnormalities. During tissue repair, several 
cytokines interact, facilitate ECM deposition, and 
consequently fibrogenesis occurs. Although ovarian fibrosis 

has not received much attention from researchers worldwide, 
it plays an important role in the pathophysiological processes 
of the ovary.

Pathogenetic mechanism of ovarian fiBrosis

The primary pathological features of ovarian fibrosis 
are a thick capsule, increased mesenchymal connective 
tissue, and decreased or absent follicles. Many studies 
have documented that numerous cytokines, including 
matrix metalloproteinases (MMPs), tissue inhibitors 
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of matrix metalloproteinases (TIMPs), transforming 
growth factor‑beta 1 (TGF‑β1), connective tissue growth 
factor (CTGF), peroxisome proliferator-activated 
receptor gamma (PPAR‑γ), vascular endothelial growth 
factor (VEGF), endothelin-1 (ET-1), and others, are involved 
in fibrogenesis. A complicated network system is involved in 
the development and progression of tissue fibrosis. During 
fibrogenesis, these mutually interacting factors disrupt 
the balance between ECM synthesis and degradation and 
stimulate the overproliferation of ovarian mesenchymal 
fibroblasts and the excessive deposition of ECM.

Coordinated expression of matrix metalloproteinases 
and tissue inhibitors of matrix metalloproteinases
The ovary periodically experiences changes of growth, 
maturation, and degeneration during different stages of life 
and the menstrual cycle. During these processes, periodic 
ECM reconstruction is required, such as during follicular 
development and maturation, ovulation, atresia, luteinization, 
and luteolysis during the ovarian cycle. The maintenance 
of ECM homeostasis largely depends on the coordinated 
expression of MMPs and TIMPs to regulate the synthesis 
and degradation of ECM.[1] MMPs, also sometimes called 
metalloproteases, belong to the family of proteolytic enzymes 
that rely on metal ions, such as Ca2+, Zn2+, and Mg2+. TIMPs 
are specific inhibitors of MMPs and serve as antagonists of 
MMPs during ECM reconstitution and metabolism. They 
are both synthesized and secreted by the same cells. MMPs 
facilitate ECM degradation, improve microenvironment of the 
ECM, and regulate bioactive molecules. TIMPs dominantly 
suppress the activation of MMPs and decrease their activities.

Abnormally high level of transforming growth factor‑beta 1
TGF‑β1 is a cytokine involved in the formation and 
development of fibrosis. TGF‑β1 is a profibrotic cytokine that 
is closely associated with the synthesis of ECM components 
and it can trigger a variety of organ fibrosis. TGF‑β1 is 
a critical cytokine that is involved in multidirectional 
regulation. It can promote the growth of fibroblasts and 
osteoblasts and consequently accelerate the development 
of fibrosis. In addition, it facilitates the expression of 
ECM, i.e., collagens and laminin, as well as inhibits the 
degradation of ECM. Furthermore, its expression is important 
in embryonic development and cytothesis where it helps 
stimulate the formation of cellular structure, cell proliferation, 
and differentiation. Previous studies[2] have shown that 
TGF‑β1 can suppress the expression and activation of MMPs 
and upregulate the expression of protease inhibitors such as 
TIMPs and plasminogen activator inhibitor (PAI). These 
cytokines are secreted via autocrine and paracrine pathways 
to further enhance the synthesis of ECM components, such 
as fibronectin and collagens Type I, II, and III, and repress 
ECM degradation. Abnormal increases in TGF‑β1 levels in 
the ovary can cause follicular dysplasia and ovulation failure.

Overexpression of connective tissue growth factor
CTGF has gradually emerged as a novel indicator for 
identifying tissue fibrosis. CTGF is a cysteine‑rich cytokine 

with diverse biological functions. CTGF belongs to the 
CCN family, which comprised polypeptide factors with 
high homology in their DNA sequences. The CCN family 
was originally composed of three members, that is, CTGF, 
cysteine-rich 61 (CYR61), and nephroblastoma overexpressed 
gene.

Under physiological conditions, CTGF is secreted in the 
ovary by follicular granulosa cells and fibroblasts via 
autocrine or paracrine pathway. Harlow et al. demonstrated 
that CTGF messenger RNA (mRNA) was expressed in 
preantral follicles and early antral follicles of rats as well 
as follicular granulosa cells and follicular theca of hens.[3,4]

CTGF is a downstream response element of TGF‑β1 and 
exhibits similar biological functions to TGF‑β1. CTGF 
promotes cell proliferation, enhances the expression of cell 
adhesion molecules, and facilitates collagen synthesis and 
ECM secretion by specific cells. All these biological and 
pathological functions highlight the pivotal role of CTGF in 
the development of multiple diseases associated with tissue 
reconstitution, such as ulcer healing, wound healing, fibrosis, 
and tumorigenesis.[5-8] However, the precise role of CTGF in 
ovarian tissues remains unclear, but it could be reasonable 
to postulate that CTGF might be served as a stimulator for 
the function of luteinizing hormone (LH)-theca cells and the 
synthesis of ECM in the ovary.

Overexpression of CTGF can positively promote fibrogenesis 
while inhibition of CTGF can facilitate the recovery of 
tissue repair function and restore normal structure and 
function.[9] Interactions between TGF‑β1 and CTGF regulate 
the development and progression of tissue fibrosis.[10] TGF‑β1 
triggers the chemotaxis of monocytes, neutrophils, and 
lymphocytes and enhances the ability of these cells to secret 
CTGF. TGF‑β1‑induced CTGF further acts on mesenchymal 
fibroblasts via a paracrine mechanism, which in turn stimulates 
the secretion of TGF‑β1. CTGF is a vital cytokine downstream 
of the TGF‑β/small mother against decapentaplegic 
protein (SMAD) signaling pathway. When fibrogenesis 
occurs, overexpressed TGF‑β1 upregulates the expression 
of its downstream response element, CTGF, and stimulates 
the production of ECM. Both these factors interact with each 
other, further promoting increases in collagen production 
and accelerating the development of fibrosis.[11] Blockage of 
TGF‑β1 can inhibit the TGF‑β1 signaling pathway and halt the 
development of fibrosis. Thus, targeting TGF‑β1 is anticipated 
to be an effective treatment against fibrosis.

Role of peroxisome proliferator‑activated receptor‑
gamma in fibrosis
PPAR‑γ is a ligand‑activated transcriptional factor that 
belongs to the nuclear hormone receptor superfamily. 
PPAR‑γ plays significant roles in regulating glucose and 
lipid metabolism, the immune system, cell differentiation 
and apoptosis, and inflammatory responses. Researchers 
have demonstrated that PPAR‑γ agonists can suppress the 
transduction of the TGF‑β1 signaling pathway and inhibit 
the progression of fibrosis.[12]
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Rosiglitazone is a PPAR‑γ agonist frequently used in clinical 
practice. It has various pharmacological activities, including 
immunoregulation, glycemic control, anti‑inflammation, 
and antifibrosis.[13] PPAR‑γ expression in ovarian granular 
cells is positively correlated with the concentration of 
rosiglitazone.[12] The results of another study suggest that 
rosiglitazone can decrease the expression of tumor necrosis 
factor‑α (TNF‑α) in human ovarian granular cells.[14] 
TNF‑α can stimulate the proliferation of theca cells and 
lead to thickening of the tunica albuginea of the ovary and 
subsequent fibrosis. However, clinical use of rosiglitazone 
as an antifibrotic drug requires further study.

Relationship between vascular endothelial growth factor 
or endothelin‑1 and fibrosis
VEGF is a multifunctional cytokine that is expressed in 
both ovary and endometrium. When it binds to its receptor, 
proliferation and growth of vascular endothelial cells is 
promoted and neovascularization increases. Wang et al.[15] 
discovered that administration of VEGF and basic fibroblast 
growth factor, particularly in combination, triggers 
angiogenesis and inhibits both apoptosis and fibrosis. 
Luo et al.[16] found that VEGF significantly upregulates 
the expression of collagen and α‑smooth muscle actin 
(α‑SMA) and directly regulates several profibrotic and 
immune cytokine genes in hepatic stellate cells.

ET-1 is a potent vasoconstrictor that may lead to increased 
capillary permeability in many different tissues. It is also a 
strong inflammatory mediator that plays an important role 
in many inflammatory reactions. ET‑1[17] can potentiate 
TGF‑β1‑induced endothelial‑to‑mesenchymal transitions 
and TGF‑β1‑stimulated expression of mesenchymal cell 
specific and profibrotic genes and proteins. ET‑1 also can 
induce expression of the TGF‑β receptor 1 and 2 genes, 
suggesting an important role for ET-1 in the establishment 
and progression of tissue fibrosis. It has been reported[18] that 
the ovarian volume and antral follicle count are positively 
correlated with the concentration of VEGF and negatively 
correlated with the concentration of ET‑1 in follicular fluid. 
However, there are few studies on ovarian fibrosis and 
VEGF or ET-1, but they are important cytokines in ovarian 
fibrosis and further research is necessary into their specific 
mechanisms and possible role in treatment.

relationshiP BetWeen ovarian diseases and 
fiBrosis

Ovarian chocolate cyst and ovarian fibrosis
Ovarian chocolate cysts, also called ovarian endometriosis 
cysts or chocolate cysts for short, commonly occur in 
one ovary and more rarely in bilateral ovaries. The most 
distinctive pathological feature of a chocolate cyst is smooth 
muscle metaplasia (SMM) and fibrosis. Previously, the 
pathologist Hughesdon[19] reported that 86% of chocolate 
cysts were characterized by an incomplete cortical capsule 
and an unclear margin in the cortex caused by SMM, 
which makes it difficult to perform cystectomy. Schubert 

et al.[20] also found that fibrosis was one of the most 
common and severe consequences of chocolate cysts while 
this phenomenon was not observed for ovarian serous 
and cortical cysts. Donnez et al.[21] reported in their study 
of 814 cases of ovarian chocolate cysts that the cyst wall 
comprised flat endometrial interstitial epithelium and 
surrounded by fibrotic tissues containing hemosiderin‑rich 
macrophages. Zhang et al.[22] discovered that the number 
of follicles around an ovarian chocolate cyst significantly 
decreased because of SMM and fibrosis. In addition, the 
pathological degree of SMM and fibrosis and the degree of 
ovarian dysfunction were positively correlated with time 
since chocolate cyst onset.[23]

In a prior study, Kitajima et al.[24] compared and analyzed 
the follicular densities and histological characteristics of 
the cortex in cystic ovaries and the corresponding healthy 
contralateral ovary. Macroscopically, the paired ovaries 
showed no distinct differences in their structure. However, 
the follicular density in the cyst side was significantly lower 
than the healthy side and the fibrotic degree was higher 
microscopically. Among these cysts, 55% cases showed 
obvious fibrosis and deficiency of follicles in the cortex. 
It should be noted that the cases in this study had small 
cysts (<4 cm) in their ovaries, which suggests that ovarian 
fibrosis and follicle loss occur early after the formation of 
a chocolate cyst.

Several other researchers[22,23] also reported that the follicular 
density in the ovarian cortex near chocolate cysts was lower 
than healthy tissues, sometimes as much as two-fold lower 
in the diseased tissues. This phenomenon was usually related 
to the pathological changes in the ovarian tissues, including 
fibrogenesis and vascular loss, but not to tissue stretching 
caused by increased cyst volume. Coincidently, similar 
changes, such as vascular loss, partial fibrosis, and obvious 
ovarian dysfunction, can also be observed in the ovarian 
cortex of patients undergoing chemotherapy.

Ovarian chocolate cysts cause fibrogenesis by the following 
mechanisms:

Release of inflammatory factors
The pressure inside chocolate cysts gradually increases 
along with the growth of the cyst and when the pressure 
significantly increases cracks can form in the capsule 
wall and result in leakage of liquid containing abundant 
inflammatory factors. The concentration of proteases and 
inflammatory factors in chocolate cyst liquid is tens to 
hundreds of times higher than that in cysts of other types. 
The interleukin (IL) family cytokines are major inflammatory 
cytokines that mediate the chemotaxis of leukocytes and 
cause inflammatory responses. IL‑6 and IL‑8 levels are 
higher in patients with chocolate cysts than in patients with 
other types of cysts.[25,26] Increased IL-6 and IL-8 stimulate 
inflammatory responses and fibrogenesis around ovarian 
tissues while simultaneously causing ovulation failure.

In addition, cyst rupture generally causes abnormal increases 
in body temperature, C-reactive protein, and leukocytes, 
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which is thought to be an acute local inflammatory 
response triggered by the direct contact of the cyst fluid 
with intraperitoneal organs. Smith et al.[27] found that 
intraperitoneal injection of cyst fluid into rabbits caused 
severe desmoplasia, which suggests that certain biological 
molecules contained in the cyst fluid cause inflammation in 
normal tissues.

Abnormal expression of plasminogen activator system
The plasminogen activator system is an important controller 
of ECM degradation that consists of a set of proteolytic 
enzymes. The key mechanism for activating the plasminogen 
activator system is to transform inactivated plasminogen into 
a broad‑spectrum serine protease with fibrinolytic activity 
via extracellular conversion, when remodeling of ECM and 
basilar membrane is necessary.[28,29] The state of this system, 
activated or inactivated, is correlated with tissue invasion 
and fibrosis.

PAI is a main modulator of the activity of plasminogen. PAI 
can decrease fibrinolysis, induce ECM accumulation, and 
facilitate fibrosis related to inflammatory cells, macrophages, 
and fibroblasts. Boss et al.[30] compared and analyzed the 
activities of the plasminogen activator system in fluid from 
chocolate cysts and other types of cysts. They found that the 
concentration of PAI‑1 was significantly higher in chocolate 
cyst fluid than other benign cysts, and the concentration of 
PAI-2 in chocolate cysts was 50 times higher than in other 
types of benign cysts.

When cysts rupture, they release excessive products 
associated with hemagglutination that can cause more serious 
injury. Previous studies[31] have confirmed that chocolate cyst 
rupture elevates the level of D‑dimer, which is a specific 
cross‑linked fibrin derivative catalyzed by fibrous protein 
and a molecular marker for hypercoagulability in vivo and 
secondary fibrinolytic hyperfunction. Thus, there may be 
abundant D‑dimer in chocolate cyst fluid, which induces 
fibrinolytic hyperfunction and further accelerates the 
progression of fibrosis.

Stimulative effect of reactive oxygen species on tissue 
fibrosis
In the extracellular interstitium, reactive oxygen species 
(ROS) exert destructive effects on healthy tissues even 
when appropriate ROS are required for partial sterilization 
of the extracellular microenvironment. Ovarian chocolate 
cysts can induce internal structure disorders in ovaries, 
trigger inflammation, and produce ROS. In addition, the 
cyst fluid contains a high concentration of iron that can 
bind to transferrin or other proteins that have an affinity for 
cells and the surfaces of endocytic compounds, diffuse into 
surrounding tissues, and generate more ROS.[28]

In patients with chocolate cysts receiving in vitro fertilization, 
the ROS concentration in over one-third of follicles is above 
107 cps/400 µl, an upper critical value for high-quality 
embryos. ROS can increase cell membrane penetrability and 
damage the ovarian tissues around chocolate cysts.[32-34] Of 
greater importance is that ROS can promote tissue fibrosis 

synergistically with profibrotic factor PAI and TGF‑β family 
members. Fibroblasts, main players in the progression of 
fibrosis, synthesize collagens and fibronectin.[35] TGF‑β1 
enhances the production of ROS and increases the expression 
of its downstream target protein, SMAD. PAI-1 controls 
the activities of plasmin and plasmin-dependent MMPs 
to regulate the extrinsic and intrinsic reconstitution of 
collagens.[29]

Excessive ROS that cannot be cleared by the intracellular 
antioxidant system can trigger oxidative stress. 
8-hydroxydeoxyguanosine (8-OHdG) is a sensitive marker 
for DNA damage induced by oxidative stress. In their 
study on the antioxidant system in the peripheral tissues 
of chocolate cysts, Matsuzaki and Schubert[36] found that 
the degree of oxidative stress was significantly higher in 
chocolate cysts than any other ovarian cysts, evidenced by 
immunostaining intensity of 8-OHdG in ovarian tissues 
resected during laparoscopic cystectomy. On average, the 
content of 8-OHdG in chocolate cysts was 10 times more 
than that in other ovarian cysts, suggesting that there are 
elevated levels of oxidative stress in normal peripheral 
tissues around chocolate cysts as compared with other 
cysts. Oxidative stress in the follicle microenvironment in 
ovaries is harmful to ova growth, embryonic development, 
and gestation.[37-40] Elevated ROS lead to dysfunction of the 
normal ovarian cortex around chocolate cysts, implying 
that ROS might play a role in promoting the development 
of fibrosis.

Surgical treatment of cysts usually results in resection 
of normal ovarian tissues and affects the organ’s 
function.[41,42] However, a chocolate cyst itself also influences 
the surrounding tissues. Thus, it is still unclear whether 
acute or chronic ovarian injury is caused by chocolate cysts 
and whether surgical treatment can restrict or postpone the 
damage to the ovaries caused by chronic cysts. Clarifying 
these issues will address the questions of which type of 
surgery and timing of surgery is most appropriate for patients 
with chocolate cysts.

Polycystic ovarian syndrome and ovarian fibrosis
Polycystic ovarian syndrome (PCOS) is the most common 
dysgenesis and endocrine metabolic disorder of women 
of reproductive age. The clinical and pathologic features 
are chronic anovulation, polycystic ovary, and excessive 
androgens. As a consequence, insulin resistance and obesity 
often occur. Recently, many studies have focused on the 
potent regulative effects of fibrotic factors, such as MMPs 
and TIMPs, on the balance of ECM in patients with PCOS, 
since these factors play an important role in PCOS’s follicular 
development disorder through facilitating production of 
ovarian stromal elements and follicular atresia.[43]

Gomes et al.[44] confirmed that although no significant 
statistical differences were observed between patients with 
PCOS and healthy volunteers in levels of serum MMP-2, 
MMP-8, MMP-9, and TIMP-1, there was a decrease in the 
serum level of TIMP-2 in PCOS patients. Both the ratio of 
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MMP-9 to TIMP-1 and the ratio of MMP-2 to TIMP-2 were 
significantly increased in PCOS patients. Subsequently, 
similar results were reported by Lewandowski et al.[45] 
Furthermore, it was also found that testosterone level was 
positively correlated to the ratio of MMP-9 and TIMP-1 and 
negatively associated with the level of TIMP-2. Moreover, 
testosterone has been recognized as an independent predictor 
of the ratio of MMP-9 and TIMP-1 and the level of TIMP-2. 
It can be hypothesized that excessive secretion of androgens 
might disrupt the balance of MMPs and TIMPs in the ovary 
under physiological conditions, resulting in the progression 
of fibrosis in patients with PCOS.

TGF‑β1 might be closely related to the development 
of PCOS based on the abnormal expression of TGF‑β1 
mRNA in the ovary and an increased level of TGF‑β1 in 
the follicular fluid.[46] In ovarian tissue, theca cells, a major 
source of androgens in normal ovaries, play a pivotal role 
in maintaining the integrity of the follicle and its function. 
Abnormal expression of TGF‑β1 promotes the overgrowth of 
theca-interstitial cells, which results in increased production 
of androgens in patients with PCOS. Endogenous and 
exogenous stimuli induce the elevation of endogenous 
TGF‑β1, which causes excessive accumulation of ECM 
and promotes ovarian interstitial fibrosis by disrupting the 
balance between MMPs and TIMPs.[47]

An animal model of PCOS has been established by 
dehydroepiandrosterone administration[48] wherein the 
amount of CTGF protein in both ovarian tissue and serum 
is significantly higher than that of control animals. Zhang 
et al.[49] also found that the expression of CTGF at both 
the mRNA and protein levels was significantly increased 
in ovarian and uterine tissues in PCOS rats compared 
with controls. Taken together, these findings convincingly 
demonstrate that CTGF is involved in the occurrence and 
development of ovarian fibrosis in PCOS.

The current therapeutic strategies for ovarian fibrosis in 
patients with PCOS have been increasingly studied in 
animal models. Miao et al.[48] confirmed that rosiglitazone 
administration could alleviate ovarian fibrosis by reducing 
the levels of TGF‑β1 and CTGF in serum and ovarian tissue 
in rats with PCOS. In addition, an in vitro study conducted by 
Bulut et al.[50] revealed that Jun N-terminal kinase (JNK), a 
stress-activated protein kinase, mediated the inductive effect 
of TGF‑β1 on the expression of fibronectin and CTGF in 
fibroblasts, implying that the JNK signaling pathway was 
involved in ovarian stromal inflammation and fibrogenesis. 
JNK inhibitors not only inhibit the JNK pathway but also 
reduce the production of oxidative stress metabolites.[51] 
Further in vivo studies in rats demonstrated that SP600125, 
a JNK inhibitor, thinned the theca cell layer, reduced 
interstitial collagen deposition, and attenuated inflammation. 
As a result, ovarian fibrosis was apparently diminished on 
some level.

Currently, the studies on ovarian fibrosis of PCOS are 
confined to animal models, clinical specimens of tissue 

fluid, and cultured cells. Therefore, it is of great significance 
to further elucidate the role of these fibrotic factors in the 
development of ovarian fibrosis of PCOS and provide a 
theoretical basis for clinical treatments by discovering the 
role of these fibrotic factors in an in vivo system in terms of 
expression, biological function, and regulative mechanisms.

Premature ovarian failure and ovarian fibrosis
Premature ovarian failure (POF) has an incidence of 
approximately 1%. It refers to the loss of function of the 
ovaries due to depletion of ovarian follicles or ovarian failure 
caused by iatrogenic injury in women before the age of 
40 years.[52] There are no known ideal therapeutic strategies 
to provide proper treatment for POF so far, and ovarian 
failure is the outcome of ovarian fibrosis.

POF can be classified into two categories according to the 
histologic features of the ovary. One type is follicle depletion, 
which is characterized by fibrous tissue or ovarian stroma 
filled in the ovarian cortex, a thickened ovarian capsule, 
and extremely rare or completely absent follicles. The other 
category has a normal number of undeveloped primordial 
follicles in the follicle cortex but a low sensitivity to 
gonadotropin (Gn).

The exact etiology of POF is still unclear. Generally 
speaking, POF can be caused by genetic disorders; abnormal 
levels of Gn and its receptor; enzyme defects; autoimmune 
diseases; diabetes mellitus; idiopathic factors; ovarian 
destructive factors such as radiotherapy, chemotherapy, 
surgery, and infection; abnormal inhibin; too few eggs or an 
exhausted egg reserve; folliculogenesis disorders; and others 
with an unclear etiology. For example, in diabetes mellitus 
rat models,[53] the nuclear factor-kappa B immunoexpression 
levels are significantly elevated, which causes follicle 
degeneration and stromal fibrosis. Erbas et al.[54] used 
sunitinib to treat diabetic rats and found lower rates of POF.

Chemotherapy and radiotherapy[55] lead to ovarian damage 
and can cause POF. Cyclophosphamide[56] induces the 
hyperactivation of the phosphatidylinositol-3-kinase/protein 
kinase B/the mammalian target of rapamycin signaling 
pathway in ovaries, which leads to primordial follicle 
loss and increased follicle apoptosis. Although firm 
evidence is lacking, dioxin[54] exposure may also influence 
the ovarian reserve, and cigarette smoke[57] induces 
dysfunction of mitochondrial repair mechanisms, leading 
to autophagy-mediated follicle death. However, there are 
other ovarian failure and fibrosis etiological factors requiring 
further research. Notably, researchers have demonstrated 
that TGF‑β is increased in patients with POF, and it might 
be involved in fibrogenesis by accelerating the speed of 
follicular atresia.[58] So far, no effective agent that can treat 
or delay POF has been found yet.

conclusions

Ovarian fibrosis seriously affects ovarian function, and there 
are many cytokines, including MMPs, TIMPs, TGF‑β1, 
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CTGF, PPARγ, VEGF, and ET‑1 involved in its etiology. 
Many ovarian diseases may induce fibrosis, and these 
patients are at increased risk of infertility and low quality 
of life. Therefore, it is important to prevent the formation of 
ovarian fibrosis to protect the normal function of the ovaries.
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