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Abstract
Background: New research has attributed increased significance to the causal link 
between ultraviolet A (UVA) radiation and immunosuppression and carcinogenesis. 
In the United States, sunscreens are labeled with only their sun protection factor 
(SPF) and an imprecise term “broad- spectrum protection.” Sunscreen marketing and 
efficacy evaluations continue to be based primarily on skin redness (sunburn) or ery-
thema. We sought to evaluate the ultraviolet (UV) protection offered by common 
sunscreen products on the US market using laboratory- measured UV- absorption 
testing and comparing with computer- modeled protection and the labeled SPF val-
ues. This approach enables an investigation of the relationship between the labeled 
SPF and measured UVA protection, a factor that is ignored in current regulations.
Methods: Fifty- one sunscreen products for sale in the United States with SPF values 
from 15 to 110 and labeled as providing broad- spectrum protection were tested using 
a commercial laboratory. All products were evaluated using the ISO 24443:2012 
method for sunscreen effectiveness. The final absorbance spectra were used for 
analysis of in vitro UV protection.
Results: In vitro SPF values from laboratory- measured UV absorption and computer 
modeling were on average just 59 and 42 percent of the labeled SPF. The majority of 
products provided significantly lower UVA protection with the average unweighted 
UVA protection factor just 24 percent of the labeled SPF.
Conclusion: Regulations and marketplace forces promote sunscreens that reduce 
sunburn instead of products that provide better, more broad- spectrum UV protec-
tion. The production and use of products with broad spectrum UV protection should 
be incentivized, removing the emphasis on sunburn protection and ending testing on 
people.
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1  | INTRODUC TION

Skin cancer is the most commonly diagnosed cancer in the United 
States, and the majority of cases are considered preventable.1 
Reducing the incidence of skin cancers caused by excess solar ex-
posure has become a major health initiative around the world. 
Sunscreen products have become an important tool promoted by 
health agencies and consumer product manufacturers, based on the 
premise that the reduction of any ultraviolet radiation (UVR) expo-
sure benefits health.2

Exposure to UVR is associated with three types of skin cancers: 
basal cell, squamous cell, and melanoma.3 UVA radiation contributes 
just 10%- 13% of erythema risk when the sun is directly overhead4 
but has been linked to melanoma,5- 7 generation of reactive oxygen 
species and carcinogenesis,8- 10 immunosuppression,11 DNA damage 
under the surface of the skin,12 and photoaging.13 Significant biolog-
ical damage, including delayed cyclobutane pyrimidine dimers, has 
been documented from exposure to radiation occurring at the UVA/
visible boundary.14

Sunscreen products available to US consumers significantly dif-
fer with regards to the spectral uniformity or UVA protection pro-
vided, even when comparing products with identical labeled SPF.15 
Use of products with suboptimal UVA attenuation can increase life-
time UVA burden. Sunscreen products can be improved to provide 
more balanced protection through changes to standards and stron-
ger correlation between labeled SPF and measured UVR reduction.15

Some recent publications on sunscreens focus on sunburn reduc-
tion as the marker of efficacy and clinical benefit,16- 18 yet sunburn 
protection alone leads to increased UVA exposure comparable to 
that from tanning beds.19 Figure 1 plots the wavelength- dependent 
erythema,20 reactive oxygen species,21 and immunosuppression of 
recall immunity as measured using a nickel contact hypersensitiv-
ity elicitation model in humans,22 weighted to solar effectiveness 
during noon summer sunlight at 40 degrees north of the Equator.23 
In addition to suppressing the elicitation arm of immune reactions, 
UVA has been shown to impact aspects of induction of the immune 
response as well, which may have more biological relevance for skin 
carcinogenesis.24 Investigation of sunscreens on their ability to in-
hibit both induction and elicitation of the immune response indicates 
that sunscreens, which only protect against UVB and erythema, do 
not provide equal immune protection, indicating UVA radiation can 
be immunosuppressive in humans.25 The biological significance of 
the suppression of the sensitization phase in the UVA region has 
not been fully established and subsequent research found the er-
ythema action spectrum to be predictive of UVR- induced immuno-
suppression across the UV spectrum.26 Observed photodamage to 
cell viability, DNA, and differential gene expression from exposure 
to radiation at the UVA/visible threshold further supports the need 
for broad- spectrum protection.14

Within the United States, melanoma incidence rates have in-
creased nearly 1.5% a year unabated for the past decades.3 The 
National Cancer Institute reports that melanoma incidence has in-
creased by more than 300% since 1975, with an estimated 100 350 

cases diagnosed in 2020.3 The focus of scientific attention on in-
creasing melanoma incidence has been on the role of UVR exposure 
although a recent publication highlights that while sunburn is known 
to increase the risk, a significant increase in melanoma incidence 
may be due to increased diagnostic scrutiny.27

Sunscreen development, regulation, and marketing are based 
largely on SPF value in the United States, which is determined by 
a reduction in skin redness (sunburn) or erythema a day after UVR 
exposure. This testing is required for nearly every sunscreen product 
sold around the world.15,28,29

Consumer preference is for higher SPF products,30 incentiv-
izing a trend of products with increasingly higher SPF numbers.31 
Increased SPF can be accomplished by changes to product formula-
tions, such as adding active and/or inactive ingredients that reduce 
erythema or through changes to how the measured UV absorption 
testing is conducted, such as optimizing the solar spectra of the 
lamp4,32 or optimizing lamp intensity.33 SPF values derived from a 
single laboratory, as required for regulatory compliance and labeling, 
have been described as unreliable due to significant variation in re-
sults from different laboratories.32,34 SPF testing is based on a solar 
spectrum equivalent to midday sun near the equator, overempha-
sizing the important of UVB protection.35 Experimental testing also 
finds that SPF values measured in a laboratory do not reflect the ac-
tual protection provided by the sunscreen in an outdoor setting.15,36

The perception that SPF values are a reliable marker of product 
effectiveness is rooted in history, because sunburn reduction was 
the original intent of sun protection products.37 However, since 
1989, numerous papers on melanoma have questioned the role of 
sunscreen38- 40 and the impact of UVB,41 UVA,42- 44 and increased 
UVA exposure relative to UVB.45 Use of tanning beds has been 
associated with an increased melanoma risk.7,46 Tanning beds were 
designed to minimize the potential for sunburns and maximize tan-
ning through the use of solar lights that emit up to 10- 15 times 
greater UVA radiation compared to a typical sun spectrum.47,48 
Tanning beds were classified by the World Health Organization as 

SUMMARY STATEMENT

Our manuscript is an original research study of fifty- one 
sunscreens purchased in the US and tested in a commercial 
laboratory. The measured efficacy indicates that US sun-
screens significantly underperform relative to the labeled 
SPF. Underperformance is most notable for UVA radiation, 
which is linked to immunosuppression and carcinogenesis; 
thus, the current practice of prioritizing sunburn protec-
tion in products is potentially detrimental to the goal of 
reduced health harm through balanced UV protection. 
From practice, regulatory, and product development per-
spectives, sunscreens with broad spectrum UV protection 
should be incentivized, removing the emphasis on sunburn 
protection and ending testing on people.
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a known human carcinogen because of a dose- response increase 
in melanoma for young women,49 and the association has been 
reaffirmed in newer tanning beds that rely more strongly on long 
wavelength UVA.6

With a continued reliance on the SPF to communicate sunscreen 
efficacy, various methods have been developed to characterize and 
set a minimum standard for protection from UVA radiation not cap-
tured in the SPF erythema test. The current methodologies used 
and proposed by the US Food and Drug Administration and within 
the ISO 24443:2012 involve laboratory measurement of the UVR 
absorption of a sunscreen applied to a slide. Both of these in vitro 
tests are used not to calculate an accurate SPF but to supplement 
in vivo SPF testing. A new in vitro method is currently being devel-
oped to replace in vivo SPF testing entirely.50 The UVA protection 
factor (UVAPF) calculated using the ISO 24443:2012 methodology 
is intended to approximate persistent pigment darkening with a peak 
response at approximately 365 nm. The UVAPF is less sensitive to 
UVR between 364 and 385 nm and the observed immunosuppres-
sion peak as measured by suppression of the elicitation phase of 
contact hypersensitivity.22 The US FDA broad- spectrum standard 
and the EU 1/3 UVA/SPF standard allow products that provide sig-
nificantly lower UVA than UVB protection, whereas ideal protection 
has been described as equal parts UVA and UVB,51 similarly to what 
covering up with a shirt would provide. The Boots star system pro-
vides greater incentive for balanced protection with a UVA/UVB 
ratio of 0.9 required to label a product with 5 stars for UVA protec-
tion. Additionally, the Boots system is based on uniform protection 
across the UVA spectra unlike the ISO 24443:2012 method used 
in the EU, which is based on persistent pigment darkening, which is 
most sensitive to radiation centered on approximately 355- 360 nm. 
For aesthetic reasons, sunscreen formulations typically achieve full 
transmission at 400 nm, the threshold between visible and UV light, 
limiting the UV protection near the threshold, although recent re-
search has documented DNA damage occurs from exposure at these 
wavelengths.14

The US FDA and ISO 24443:2012 methodologies share the as-
sumption that the SPF value is the true measure of protection, but 
recent work has hypothesized that correlating the magnitude of the 
measured UVR absorption to SPF can improve products.15 In the 
United States, there is no requirement for the magnitude of SPF pro-
tection measured on people to correlate with the measured UVR re-
duction on a slide. Within ISO 24443:2012, in addition to the use of 
control SPF 15 formulation, the measured UV absorption is scaled to 
the labeled SPF using an adjustment coefficient factor, C. The limits 
for this adjustment factor defined by ISO 24443:2012, while main-
taining some correlation between labeled and measured SPF, also al-
lows for the reported UVA protection to be significantly higher than 
the measured in vitro UVA protection. The US FDA is concerned that 
the use of high SPF value products with inadequate UVA protection 
could lead to excessively large UVA doses.2

In this paper, we evaluate the correlation between labeled 
SPF, measured UV absorption, and computer- modeled protection. 
Computer- modeled or simulated SPF is a calculation of expected UV 
absorption using active ingredient concentrations.52 We discuss and 
evaluate the implications of the assessment of the magnitude of UV 
reduction and UVA protection in comparison to ideal UV protection 
and the current and proposed methods used by the FDA and within 
ISO 24443:2012.

2  | METHODS

A total of 51 sunscreen products were analyzed. Thirty- one prod-
ucts were purchased online or in Connecticut stores from Amazon, 
CVS, Target, and Walmart stores in late Fall 2018, and 20 were pur-
chased from the same stores in Fall 2019. The products were chosen 
based on the active ingredients used, the SPF values, and the dedi-
cated shelf space of products. All of the products were lotions and 
included a range of formulation types, including mineral and non-
mineral active ingredients. All products were labeled as providing 

F I G U R E  1   Biological responses 
to summer noonday sunlight with the 
maxima normalized to one. Erythema is 
primarily caused by radiation in the UVB 
portion of the spectra, whereas UVA 
radiation is more likely to induce free 
radical generation or immunosuppression 
of recall immunity using a contact 
hypersensitivity elicitation model
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broad- spectrum protection. To ensure blind testing, all samples were 
transferred to standardized sample containers and labeled by sam-
ple number before being shipment to the laboratory.

To determine the expected SPF from the measured UV absorp-
tion, products were tested in accordance with protocols described 
in the ISO 24443:2012 method.53 The 20 products purchased in 
2019 were also tested according to the FDA 1978N- 0038 method, 
Final Rule 21 CFR§ 201.327. Within the ISO 24443:2012 methodol-
ogy, the initial absorbance spectra are scaled to match the labeled 
SPF using a correction factor coefficient, which is then applied to 
the final spectra. An SPF 15 standard was evaluated alongside test 
products as required in the ISO 24443:2012 method, which itself 
was not specifically developed to provide SPF values. In our analysis, 
the final unweighted absorbance spectra were used to calculate the 
measured SPF and measured UVA protection factor (UVAPF).

The modeled sunscreen protection was calculated using the 
active ingredients concentrations input into the free online BASF 
Sunscreen Simulator available at www.sunsc reens imula tor.basf.
com/Sunsc reen_Simul ator/.5- 19 This approach relies on the ingre-
dient molar absorption spectra52,54- 57 with thickness modeled on a 
gamma distribution function.58 The results of the BASF Sunscreen 
Simulator have been shown to correlate with in vivo testing although 
use of the results is currently limited to product development and 
research and not for regulatory purposes.52,59

3  | RESULTS

The sunscreen products fell into five separate groups of product 
categories based on active ingredients: 12 products with only zinc 
oxide (ZnO) as the active ingredient, 8 with ZnO and titanium diox-
ide (TiO2), four with only TiO2, six with ZnO or TiO2 in combination 
with organic filters, and 21 with only organic active ingredients. Two 
products were not tested to completion: an SPF 50 product with 
ZnO+TiO2 actives had phase separation and could not be tested, 
and an SPF 50 ZnO product failed the initial step of testing. Table 1 
shows a summary of the product types and average SPF values from 
product labels, measured UV absorption, and computer- modeled re-
sults. Supporting Information provides a comprehensive data set, in-
cluding details about the percentage of each active ingredient used 
in each product, comprehensive measured UV absorption laboratory 
results, computer- modeled results, and final absorbance spectra.

For products with ZnO, mineral +organic, and organic active in-
gredients, the average measured UV absorption- derived SPF, calcu-
lated using the final absorbance spectra, was approximately half of 
the labeled SPF. The average computer- modeled SPF for those prod-
ucts was similar to the measured UV absorption- determined values.

On average, the labeled SPF for TiO2 based sunscreens was 
similar to the measured UV absorption- determined value but sig-
nificantly lower than the SPF determined from simulations. These 
TiO2- based sunscreens, which had the greatest discrepancy be-
tween simulation and measured UV absorption- derived SPF, are rel-
atively uncommon in the US market.31 TA
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Using the results from ISO 24443:2012 tests, we determined 
if the products would meet any of the three standards for broad- 
spectrum: the current US FDA standard, which requires a critical 
wavelength of 370 nm or higher; the proposed US FDA standard, 
which required a ratio of UVA I/UV greater than 0.7; and the 
European Union requirement of UVAPF/SPF ratio greater than 1/3. 
Overall, 94% (48/51) of the products would be expected to pass the 
current US FDA test; 67% (34/51) expected to pass the UVA1/UV 
test; and 35% pass the EU requirement with which they were of-
ficially evaluated. The low percentage of US products passing the 
EU requirements is consistent with previous reports.60 ZnO- based 
products were most likely to pass, as shown in Figure 2. Table S1 
provides a summary by product type of the Boots star ratings as cal-
culated from the final absorbance spectra using the ISO 24443:2012 
method.

Of the twenty products tested using the method currently re-
quired by the US FDA to determine broad spectrum, 1978N- 0038, 
all passed. On average, the US FDA measured critical wavelength for 
these products was 1.5 nm higher than that measured using the ISO 
24443:2012 test.

One ZnO and one ZnO+TiO2 based product had a critical wave-
length under 370 nm using the ISO 24443:2012 test, but neither 
was assessed using the US FDA test. One ZnO product tested out-
side the allowable range of allowable correction factor coefficients, 
with a measured UV absorption calculated SPF of 7 vs the labeled 
SPF 50. The US FDA has no requirement for correlation between 
the measured UV absorption and the labeled SPF, and this product 
would have likely passed the US FDA test. All products with a la-
beled SPF value over 60 failed the EU 1/3 ratio test, yet passed both 
the current and previously proposed US FDA tests.

While the ISO 24443:2012 test uses labeled SPF to calculate the 
ratio of UVA protection to SPF, the method normalizes the measured 
SPF to the labeled SPF using a term, “C.” This adjustment factor is 
used even though a standard SPF 15 is tested at the same time to en-
sure the magnitude of protection is within an acceptable range. The 
original intent of the correction factor coefficient was to account 

for small variability between laboratories, but as implemented, it al-
lows for the measured UV absorption to deviate significantly from 
the SPF value on a product label.61 Tables S2 and Table S3 provide 
an analysis of the range of acceptable “C” factor values as imple-
mented within the ISO test. This calculation, using the “C” factor in 
reverse to determine the acceptable in vivo SPF values from an in 
vitro absorption spectra, finds that a product with an in vitro SPF of 
23 could have a labeled SPF of 122. As originally published by Colipa, 
the hypothetical product would have been limited to a labeled SPF 
of 40.61 It is noted that while the in vitro 24443:2012 method is not 
validated to provide an SPF value, the method does require an in 
vitro SPF to verifying that the “C” factor correlating the in vitro SPF 
and in vivo SPF is within a specific range. A future validated method 
for determining SPF in vitro would eliminate any discussion of “C” 
factor.

Here, we analyze the results without the correction coefficient 
to assess the ratio of the unadjusted UV absorption spectra to the la-
beled SPF. Figure 3 shows the ratio of the unadjusted UVAPF to the 
labeled SPF for all tested products. According to the final laboratory 
reports, 18 of 51 products passed the EU UVA test, but without the 
correction factor coefficient, only 9 of 51 would have passed. Only 
two of forty- seven products with a labeled SPF over 30 had a mea-
sured UVAPF that was more than a third of the labeled SPF.

Figure 4 shows the average UV protection factor for 49 products 
as a function of wavelength, with the shaded area representing a 
standard deviation. The UV protection factor is defined as 1 divided 
by the transmission. At a given wavelength, a transmission factor 
of 0.1 would equate to a tenfold reduction in incident UVR and a 
protection factor of 10. The average labeled SPF for the 49 prod-
ucts tested was 48, whereas the average measured UV absorption 
protection factor had a peak under 30 in the UVB portion of the 
spectra. The protection decreased to between 10 and 4 in the 365- 
385 nm range, which represents the peak of UV- radiation- induced 
immune suppression.11 Even less protection is provided in between 
385- 405 nm, which has been shown to cause DNA damage in both 
in vitro and in vivo studies.14

F I G U R E  2   Using the ISO 24443:2012 
testing methodology the number of 
products expected to fail different 
UVA standards is compared. *The term 
expected is used here because the ISO 
24443:2012 standard uses slightly 
different testing specifications than the 
US FDA standard which can results in 
some differences
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4  | DISCUSSION

Measured UV absorption spectra are a direct metric of radiation re-
duction performance across the entire range of UVR. In contrast, 
current SPF testing is a measure of sunscreen performance that re-
lies on a biological response, erythema, which is caused by expo-
sure to just a small portion of the UV spectra. The ISO 24443:2012 
method used here allows direct measurement of in vitro UV protec-
tion but is limited with respect to not being developed with valida-
tion data to correlate directly with in vivo SPF values. The limitation 
is partially ameliorated through the use of an SPF standard and the 
required calculation of a correlation coefficient between the in vitro 
SPF and the in vivo SPF values.

Our data demonstrated that computer- modeled UV protec-
tion correlates well with the measured UV absorption for products 

without TiO2. The modeled TiO2 data significantly underestimated 
the in vitro measured and labeled SPF values. Outside than prod-
ucts with TiO2, the labeled SPF was significantly higher than what 
would be expected from the measured UV absorption data. Modeling 
efficacy based on the active ingredients has the drawback of being 
unable to account for ingredient dispersion differences and inactive 
SPF boosters that can increase the pathlength of radiation or inactive 
ingredients that attenuate UVR or reduce skin redness. Studies have 
raised concerns about the ability of sunscreen ingredients to act as 
anti- inflammatory agents in vivo and reduce skin redness without re-
ducing UVR and enabling increased time in the sun.62 Other studies 
have found that these ingredients do not impact the measured SPF.63 
Ending our reliance on in vivo testing, and instead using laboratory 
tests that directly measure UV protection,50 would dissuade manu-
facturers from adding ingredients solely to boost SPF values.

F I G U R E  3   Ratio of measured UVA 
protection factor (UVAPF) to the labeled 
SPF of tested US sunscreens. The UVAPF 
is calculated from in vitro testing and 
designed to correlate with persistent 
pigment darkening. The shaded region 
represents the area where the ratio of the 
UVAPF/labeled SPF is 1/3 or greater, as 
required for sunscreen products sold in 
the European Union

F I G U R E  4   Average wavelength- 
dependent UV protection factor of forty- 
nine tested US sunscreens. The shaded 
area represents a standard deviation 
on the average UV protection factor. A 
straight line or uniform protection across 
the UV spectrum, including the entire 
UVA portion, has been proposed as 
the ideal metric51
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The use of measured UV absorption should be prioritized, be-
cause it offers a direct measure of UVR attenuation across the entire 
spectrum without exposing persons to high levels of UVR as done in 
SPF tests or persistent pigment darkening tests. The emission pro-
file used in testing should also be more representative of typically 
outdoor solar exposures that present a larger ratio of UVA to UVB 
radiation.35

Current sunscreen products in the United States advertise SPF 
values not supported by direct measurement of UVR attenuation in 
a laboratory. The lack of concordance between the erythema obser-
vations on human skin and measured UV absorption exacerbates the 
poor quality of UVA protection in US products, which already lags 
behind that of the rest of the world. Ending the in vivo SPF testing 
of sunscreens along with increased market access of new UVA filters 
would aid public health efforts to reduce harmful UV exposure.

In 2007 and again in 2011, the US FDA refused to replace the 
human test with a measured UV absorption one over concerns that 
the substrates did not adequately mimic human skin and would not 
until data demonstrated equivalency.28 This argument is centered on 
the false assumption of erythema being the only endpoint of health 
concern. Sun protection products in the United States focus on ery-
thema reduction, and numerical SPF value attributes most of inter-
est for those with light color skin. However, that focus may limit the 
value of UV reduction products currently sold in the United States 
for people of color whose naturally occurring melanin reduces their 
comparative risk from sunburn, even though they may still benefit 
from the use of sunscreen.64 New sunscreen products that provide 
UVA protection equivalent to SPF protection are urgently needed in 
the United States market, to ensure health protection for all, espe-
cially for children and adolescents.65 Numerous methods in various 
stages of development and validation are available to replace the 
SPF test, including diffuse reflectance spectroscopy method in vitro 
SPF testing and in silico modeling.50,66 Eliminating the emphasis on 
SPF values and human testing in favor of newly validated UV absorp-
tion testing50 should offer an improvement in public health benefits 
of sunscreen products.
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SUPPORTING INFORMATION
Additional supporting information may be found in the online ver-
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