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Abstract
Background: Coalescent theory is a general framework to model genetic variation in a
population. Specifically, it allows inference about population parameters from sampled DNA
sequences. However, most currently employed variants of coalescent theory only consider very
simple demographic scenarios of population size changes, such as exponential growth.

Results: Here we develop a coalescent approach that allows Bayesian non-parametric estimation
of the demographic history using genealogies reconstructed from sampled DNA sequences. In this
framework inference and model selection is done using reversible jump Markov chain Monte Carlo
(MCMC). This method is computationally efficient and overcomes the limitations of related non-
parametric approaches such as the skyline plot. We validate the approach using simulated data.
Subsequently, we reanalyze HIV-1 sequence data from Central Africa and Hepatitis C virus (HCV)
data from Egypt.

Conclusions: The new method provides a Bayesian procedure for non-parametric estimation of
the demographic history. By construction it additionally provides confidence limits and may be used
jointly with other MCMC-based coalescent approaches.

Background
The coalescent is a very versatile stochastic model of the
genetic variation in a set of sequences sampled from a
population. It allows to accommodate a wide range of
assumptions about rates and modes of evolution, and of
population history [1-5].

As the observed sequence data are positively correlated
due to common ancestry, coalescent theory also provides
a framework for understanding the relationship between
a population's history and its genealogy. For instance, it
has long been noted that genealogies of samples taken
from exponentially growing populations tend to be "star-

like" with short branch lengths near the root of the tree. In
contrast, the inter-node distances in genealogies from
constant-size populations typically are much more evenly
spaced. 

Thus, coalescent theory quantifies the imprint that demo-
graphic development of a population leaves in the data.
While the original theory was outlined for constant popu-
lation size [1,2], Slatkin and Hudson [6] soon developed
a coalescent model for the case of an exponentially grow-
ing population. Subsequently, a general approach allow-
ing arbitrary population size variation through time was
presented by Griffith and Tavaré [7].
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Therefore at least in principle the coalescent model pro-
vides a basis for statistically inferring the demographic history
as a function of time from the sampled sequences [3,8-12]
or, alternatively, from the corresponding inferred geneal-
ogies [13-15]. In practice, however, application of coales-
cent theory to this problem has been restricted to very
simple demographic scenarios such as constant size, expo-
nential or logistic growth.

Only recently methods have emerged that attempt the
completely non-parametric estimation of the demo-
graphic function from the data. Polanski et al. proposed
an approach based on pairwise distances [16], hence gen-
eralizing the method by Slatkin and Hudson [6]. Pybus et
al. [14] presented the "skyline plot" method that uses a
step-function to approximate the population history
obtained from an estimated genealogy. This method was
subsequently refined to the "generalized skyline plot"
[17] which is essentially a regularized version of the classic
skyline plot. If the population size is truly constant
through time the generalized skyline plot estimate of pop-
ulation size collapses to the phylogenetic coalescent esti-
mator proposed by Felsenstein [13].

The advantage of the skyline plot over the method sug-
gested by Polanski et al. [16] is that it takes into account
the genealogical relationship among the sequences. This
helps to decrease bias and improves the efficiency of the
resulting estimator compared to methods based on sum-
mary statistics and pairwise distances [13]. Unfortunately,
the skyline plot approach also has several deficiencies.
First, it is unclear how to extend the approach to allow
multiple genealogies as input. This is important in order
to accommodate phylogenetic error, and to allow non-
parametric inference of population history in coalescent
approaches that take all possible genealogies into account
[7-10]. Second, and perhaps more critical, the (general-
ized) skyline plot only provides a population size trend
rather than a realistic estimate of population size changes,
as by construction the population function is modeled by
a step function. Moreover, the change-points of this func-
tion are fixed at the inter-nodes of the underlying tree.

In this paper we propose a novel framework to non-para-
metric estimation of the demographic history. This
approach relies on Bayesian reversible-jump MCMC infer-
ence [18] to obtain a smooth population size function
from a given set of genealogies. The new method not only
renders many deficiencies of the classic and generalized
skyline plot obsolete but it is also computationally effi-
cient, with running times of the algorithm for typical data
in the order of minutes on standard PC hardware. The
framework has been implemented in the computer lan-
guage R [19] and incorporated in the R package APE [20].

The remainder of the paper is organized as follows. In the
next section we describe the mathematical and statistical
theory of the new framework. Subsequently, we apply the
method to simulated and biological sequence data and
discuss the results. In the last section we briefly outline
possible further extensions and related directions of
research.

Results
Background in coalescent theory
Basic model
In a pan-mictic population with constant effective popu-
lation size Ne, where every individual has a single parent,
the waiting time wn until any two of n sampled lineages
coalesce is exponentially distributed with rate

[1,2]. For n sequences there are therefore n - 1

intervals In, In-1,..., I2 with rates rn, rn-1,..., r2 and interval

lengths wn, wn-1,..., w2. With  we denote the

time until all samples have reached the most recent com-
mon ancestor.

The coalescent model implies that the waiting time to the
next coalescent event follows an inhomogeneous Pois-
son-process with a hazard rate rn that varies in time t
because of the change in the number of lineages. Thus, it
is straightforward to also include variable population size
in the coalescent simply by using the hazard rate

. From standard theory in survival analysis

[21] it follows that the corresponding density for the wait-
ing times is given by

where τi is the time at the beginning of the interval Ii. This
is exactly the distribution from the variable population
size coalescent

as developed in [7]. The coalescent model can be further
expanded to diploid populations [22] or to include other
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effects like selection, recombination or geographical struc-
tures [4]. In this paper, however, we focus solely on the
coalescent/survival model given by Eq. 2.

Estimation of population size
If the waiting times wi are known Eq. 2 can be used directly
to estimate Ne(t). This is typically done by maximizing the

likelihood  assuming a simple para-

metric model for the population size change. For constant
population size this has been done in [13], for more com-
plicated scenarios such as logistic growth see, e.g., [14].

In a typical setting, however, the waiting times are them-
selves estimated from sequence data. In this case the total
likelihood function will be a weighted sum of the likeli-
hoods for all possible waiting times, so that in effect the
wi are marginalized out in favor of the actually observed
data. In practice exact calculation of this sum is prohibi-
tive, hence one relies on approximating MCMC methods
[8-10].

As a shortcut to avoid these computationally very expen-
sive procedures one may also substitute the "true" waiting
times by those obtained from inter-node distances of a
single estimated gene tree (see, e.g., [23] for an overview
of relevant likelihood-based tree inference methods) and
proceed as above. Note that the resulting plug-in approx-
imation ignores the uncertainty from estimating the wi in
the inference of demographic parameters. However, this is
justifiable if the phylogenetic error is much smaller than
the error introduced by the coalescent. This will be the
case if sequences are sufficiently long and the substitution
rate is comparatively high (a typical example would be
virus data).

For non-parametric estimation of population size, Pybus
et al. suggested the "skyline plot" [14]. This method
assumes a piece-wise constant function for the population
size Ne(t) and allows population size changes only at the
beginning and end of an interval Ii. The estimated effective

population size  in interval Ii according to the skyline
plot is given by the simple relation

This is the maximum likelihood estimate under the
assumed model of fixed change-points. The "generalized
skyline plot" subsequently introduced by Strimmer and
Pybus [17] reduces the over-fitting present in the classic
skyline plot by applying a simple form of regularization:
adjacent intervals that alone are likely to have high sto-
chastic noise are pooled together (cf. Fig. 2b and 2d).

Choice of an optimal grouping of intervals (i.e. model
selection) is performed by employing a second-order var-
iant of the Akaike criterion [24].

A Bayesian non-parametric approach to estimating 
demographic history
Outline
In this paper we present a non-parametric approach to
infer population size changes in time that overcomes the
limitations of previous approaches. More specifically, we
develop a non-parametric Bayesian estimator for the func-
tion Ne(t) conditioned on observed or sampled inter-
node distances wn, wn-1,..., w2 by determining the posterior
distribution P(Ne(t)|wn, wn-1,..., w2). In order to sample
the non-parametric demographic function from this pos-
terior we use the reversible jump Markov chain Monte
Carlo (rjMCMC) algorithm [18]. As a result, we obtain for

any given time t both a point estimate  – here we

choose the posterior median – as well as the associated
credible interval (e.g., the lower and upper 2.5% quan-
tiles). If the considered inter-node distances wn, wn-1,..., w2

are fixed and obtained from a single estimated tree, the
resulting method is already directly applicable to phyloge-
netically informative data such as viral sequences (this is
the focus of this paper). However, sampling of non-para-
metric demographic functions can also be combined in a
conceptually straightforward fashion with sampling of
trees, as outlined below.

Bayesian inference using reversible jump MCMC
In a nutshell, Bayesian inference of a parameter x consists
of updating its prior distribution P(x) to a posterior distri-
bution P(x|D) that takes account of the information in the
observed data D. The relative evidence of the data for dif-
ferent values of x is summarized in the likelihood L =
P(D|x) that accordingly plays a central role in the compu-
tation of the posterior via Bayes' theorem

For most realistic problems the posterior distribution can-
not be computed analytically, in particular if x is a high-
dimensional vector. Instead, one utilizes computational
procedures to efficiently draw random samples from the
posterior. This in turn allows computation of summary
statistics such as the median or the upper and lower 2.5%
quantiles. Markov chain Monte Carlo (MCMC) is one par-
ticularly useful sampling algorithm as it doesn't require
calculation of the sum (or integral) in the nominator of
Eq. 4. Briefly, sampling via MCMC is done by constructing
a Markov chain with the possible combinations of
parameter values as "states", and the desired posterior as
its stationary distribution. These properties can be guaran-
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teed by following certain rules for accepting or rejecting
proposed new parameter values. Here we use the Metrop-
olis-Hastings-Green method, i.e. the reversible jump
MCMC algorithm [18], that has the advantage of not only
allowing changes in the parameters values but also in the
dimension of the parameter vector itself. Specifically, if x

is the initial state, and  a proposed new state with pro-

posal density , then the acceptance probability

according to Green [18] is

where  is the likelihood ratio P(D| )/P(D|x),  is the

prior ratio P( )/P(x),  is the proposal ratio q( )/q(x),

and  is the determinant of the Jacobian resulting from
the potential change of dimension of the parameter
vector.

Comparison of prior and posterior demographic functionsFigure 2
Comparison of prior and posterior demographic functions Top row: Bayesian inference using a prior demographic func-
tion with constant mean and constant variance (a 95% confidence band is indicated by showing the 2.5% and 97.5% quantiles). 
Bottom row: Bayesian inference using the "skyline plot" prior function.
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Accordingly, for the application of MCMC to infer the
functional form of demographic history a variety of com-
ponents need to be specified:

• a suitable parameterization of the estimated function
Ne(t)

• the likelihood function,

• a prior distribution for each considered variable, and,

• rules to construct the Markov chain (i.e. acceptance
probabilities).

In the following sections we now describe each of these
elements in detail. For further general information on the
statistical and mathematical background of the MCMC
algorithm we refer to the many excellent monographs on
this topic (e.g., [25]).

Parameterization of Ne(t)
In our suggested procedure we approximate the sampled
demographic history Ne(t) by a piecewise linear function.
This spline of first order degree consists of a first node at
position a0 = 0 and height h0, followed by k internal sup-
porting nodes at (a1; h1), (a2;h2),..., (ak; hk), and a terminal

node at  with height hk+1 Hence, the

spline is defined for all t ∈ [0, T], and for any given k the
it contains k free position parameters and k + 2 free height
parameters. Note that, unlike in the skyline plot, we do
not constrain the change-points a1,..., ak to lie on the grid
points defined by the inter-node distances wi. Moreover,
we also allow that the number of internal nodes k changes
during sampling of the population function from the pos-
terior. Hence, k is technically a hyper-parameter that con-
trols the roughness of the resulting spline. As will be clear
from the outline of the MCMC algorithm below, note that

the final point estimate  obtained from posterior

sampling will be a mixture of linear splines (i.e. a smooth
and possibly nonlinear function) rather than a single
spline.

Likelihood function
The likelihood L employed in our procedure is the prod-
uct of the densities of the waiting times between subse-

quent coalescence events, i.e. . This

function depends via Eq. 2 on the effective population
size Ne(t), and hence indirectly on the spline parameters
ai, hi and k. Because Ne(t) is represented by a linear spline,
calculation of the likelihood can be done in a computa-
tionally efficient fashion.

Prior distributions
Number of change-points
Following [18] we employ a truncated Poisson-distribu-
tion as the prior distribution for k, i.e.

where c is a normalizing constant to ensure that P(k) is a
proper distribution. For the hard upper limit of the
number of change-points we use kmax = 30. The parameter
λ acts as a smoothing parameter, set in a typical analysis
to about λ = 0.1 - 1.0.

As an alternative to using a fixed λ we also suggest a hier-
archical Bayes approach where λ is drawn from a Gamma
distribution

with some shape parameter a and scale parameter b (for
instance, a ≈ 0.5 and b ≈ 2 so that E(λ) = ab ≈ 1 and Var(λ)
= ab2 ≈ 2).

Positions
We assume that the internal nodes of the spline are a priori
uniformly distributed in the interval [0, T]. As a simple
trick to avoid very small inter-node distance we generate
2k + 1 random variables, and set the change-points aj = z[2j]
for j = 1,..., k. The corresponding joint density is

with a0 = 0 and ak+1 = T.

Heights
As prior distributions for the heights hi we assume a
Gamma distribution

Gamma(hi|αi, βi)  (9)

which ensures that sampled heights are always positive.
The parameters αi and βi determine the a priori mean and
variance of height hi. More generally, one can also allow
fully time-dependent prior parameters α(t) and β(t). This
is particularly advisable if the population size is known in
advance to be subject to large changes in time.
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In a strict Bayesian approach, the choice of the prior dis-
tribution for the heights is completely external to the
observed data. One simple possibility would, e.g., be to
assume an arbitrary constant for the mean and variance.
However, we recommend to follow a more pragmatic
"empirical Bayes" route and to use the data at hand (or
some other related data set) to obtain an informed guess
about the prior heights. For example, an assumed con-
stant population size as prior mean could be estimated
using the method by Felsenstein [13]. Another possibility
is to employ the skyline plot as a prior mean estimate (this
is the default in our program).

However, note that in practice the actual choice of prior
height distribution seems to matter only little for estimat-
ing the posterior demographic function (see Figure 2 and
the section on simulated data below). Only when there
are few coalescent events per unit of time will the poste-
rior estimate of the demographic function be dominated
by the prior.

Construction of the Markov chain
There are four different possibilities to change the state
defined by the parameters ci, hi, and k of the spline
describing the effective population size Ne(t):

1. varying the position of a change-point (i.e. internal
node),

2. changing the height at a certain change-point,

3. generating a new change-point ("birth" step), and

4. deleting an existent change-point ("death" step).

Let ηk, πk, bk, and dk the probabilities of the four moves
given k, with ηk + πk + bk + dk = 1. In order to satisfy the
requirement of detailed balance in the corresponding
Markov chain the probabilities of birth and death steps (bk
and dk) need to be synchronized [18]. This can be
achieved, e.g., by setting

and

where c is chosen so that bk + dk < 0.9 for all k.

Next, we describe the individual procedures to propose
and accept one of the above four moves as implemented
in our program.

Height change
First, a height hj is selected out of the k + 2 existing heights

with probability . Second, a new height  is gener-

ated by  = hj exp(z), where z is a uniformly distributed

random variable on . Third, the new height is

accepted with probability

where α and β are from the prior distribution and 

denotes the ratio of the likelihood of the new state 
(with modified height) and the likelihood of the current
state x.

Position move
First, a change-point aj is chosen randomly with probabil-

ity . Second, its new position  within [aj-1, aj+1] is

determined by drawing from the corresponding uniform

distribution. Third,  is accepted with probability

Birth step
First, the position a* of the new change-point is found by
uniformly drawing from (0, L), and let the neighboring
nodes left and right of a* have positions aj and aj+1. Sec-
ond, the corresponding new height h* is generated by ran-
domly disturbing the current height Ne(a*) on the
position a* according to Ne(a*) + zNe(a*) where z is a uni-
formly distributed random variable on the interval

. Note that the birth step increases the dimen-

sion of the parameter vector from 2k + 2 to 2k + 4 as a new
change-point and a new height are generated.

The corresponding acceptance probability of the birth
step is computed according to Eq. 5 with likelihood and
prior ratios as above, and with proposal ratio
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and Jacobi determinant

Death step
This is the inversion of the birth step and consists of
removing a change-point. First, a* chosen from a1,..., ak

with probability . Second, the corresponding height h*

is also removed from the vector of spline parameters. The
acceptance probability for the death step is

where the proposal ratio and the Jacobi determinant is the
same as for the birth step.

Computation of estimated Ne(t) and associated confidence intervals
In order to obtain an estimate of the effective population
size in time we now proceed as follows. First, the Markov
chain is started with an initial state that corresponds to a
completely flat demographic function, i.e. Ne(t) = c, where
c is some rough estimate of population size, and k = 0.
Second, 100,000 repeats of the MCMC algorithm are per-
formed, of which the first 5,000 are ignored to allow for a
"burn-in" period.

Third, the remaining samples are thinned out by a factor
of 1:50 to remove auto-correlation. As a result, 1900 inde-
pendent samples from the joint posterior of the spline
parameters ai, hi and k are obtained.

Subsequently, in order to obtain a point estimate 

and associated confidence bands we compute the distri-
bution of the effective population size at a number of
fixed equidistant time points t1, t2,..., t1000 ∈ [0, T]. Finally,
we report as summary statistics the corresponding median
and the lower and upper 2.5% quantiles.

Extension to multiple genealogies
In this paper we have introduced non-parametric sam-
pling of demographic histories assuming a fixed underly-
ing genealogical tree (or equivalently, a fixed set of inter-
node distances wn, wn-1,..., w2.)

However, in our approach – unlike previous non-para-
metric methods such as the skyline plot – it is also concep-
tually straightforward to incorporate phylogenetic error.

This can be done by joint sampling of trees and demogra-
phies according to the following simple algorithm:

1. Given sequence data D, sample a tree G* with clock-like
branch lengths (see, e.g, refs. [8,9,11,12,26] for suitable
methods).

2. Use the method described in this paper to sample the
demographic function conditioned on the inter-node dis-

tances  from G*.

3. Repeat steps 1 and 2 to obtain the posterior distribution
for the population size function, now conditioned on D
rather than on some given wn, wn-1,..., w2.

Note that each sampled tree may have a different depth

. This means that the interval [0, T] for the

prior (and posterior) height distribution has to be set in
advance (and independent of the T*). For the case of 0 <t
<T* sampling of heights then proceeds as described
above, while for T* <t <T – the region with no data from
a given sampled tree – the heights are simply drawn from
the respective prior distribution.

Discussion
In order to test the potential of the proposed reversible
jump MCMC algorithm we first applied it to synthetic
data simulated according to various demographic scenar-
ios. Subsequently, we reanalyzed two viral data sets from
Central Africa and Egypt.

Computer program
The proposed framework has been implemented by us for
the case of a single underlying genealogy. The program is
written in the statistical computer language R [19] and is
incorporated in recent versions of the R package APE [20].

To install the APE package, simply run the R program, and
enter at the R prompt

install.packages("ape")

This downloads the APE package from the Internet. The
proposed reversible jump MCMC approach is imple-
mented in the function "mcmc.popsize" of which an
extensive description along with examples can be
obtained online by typing

library("ape")

help(mcmc.popsize)

into the R command window. The APE package also
includes routines for plotting the inferred population
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function (e.g., all figures in this paper were prepared with
APE).

Note that the use of this R program is only valid if the phy-
logenetic error is low – this is typically the case when the
evolutionary rate is high and the available sequences are
long (e.g. viral data). If the phylogenetic error is not neg-
ligible compared to the coalescent error, please use soft-
ware such as BEAST [27].

Simulated data
In the simulation setup we followed Pybus et al. [14] and
Strimmer and Pybus [17]. Specifically, we performed sim-
ulations assuming constant population size (Ne(t) = 100)
as well as exponential population growth (Ne(t) = l000e-

t), using 25 and 100 sampled lineages, respectively. To
estimate the population size function we employed the
proposed MCMC algorithm and the classic and general-
ized skyline plot. In the former the smoothing parameter
λ was drawn from the hierarchical model with default
parameters (a = 0.5 and b = 2).

Figure 1 shows the results from a typical run of the simu-
lations. The top row illustrates the case of constant popu-
lation size, whereas the bottom row demonstrates
exponential growth. On the left in Figure 1, top row, the
true underlying constant population size is shown (the
thick dashed line), together with the estimate provided by
the classic skyline plot. On the right, this is contrasted
with the estimate obtained by using our reversible jump
MCMC algorithm. Clearly, the median of the posterior
distribution of Ne(t) is a very good point estimator of the
true demographic history. In addition, the 95% confi-
dence band is also automatically obtained by the MCMC
method. Interestingly, it can be immediately seen that the
uncertainty in Ne(t) increases with a growing distance
from the present. This simply reflects the fact that near the
root of the tree for constant population size there are only
few coalescent events.

In Figure 1, bottom row, an example for a simulation with
an exponentially growing population is shown. As for the
constant population, the rjMCMC algorithm is capable of
recovering the original population size function (shown
as thick dashed line) complete with confidence bands,
whereas the skyline plot contains a large amount of sto-
chastic noise, and only provides a rough exploratory pic-
ture of the population size changes.

In Figure 2 the influence of the choice of prior demo-
graphic function on the final posterior estimate is investi-
gated using further simulations of an exponentially
growing population. The left column depicts the prior dis-
tributions (specifically the 2.5%, 50% and 97.5% quan-
tiles for each time point) for two typical cases: a constant

prior function (= constant population size with constant
variance), and the "skyline plot" prior function (= time
dependent piecewise- constant population size and vari-
ance). The right column of figure 2 presents the corre-
sponding posterior distributions as obtained with the
present rjMCMC approach. The results for both cases are
very similar. This indicates that there is sufficient signal in
the data to make the posterior demographic function
(almost) independent from the choice of prior distribu-
tion. Note that only near the left and right end of the
investigated time intervals there are some slight differ-
ences. These can be explained by the lack of data points
near the borders.

HIV-1 in Central Africa
Next, we applied our method to infer the demographic
history from a set of HIV-1 sequences from Central Africa.
These data was originally used by Vidal et al. [28] who
examined the genetic diversity of HIV-1 type M in this
region. Further detailed analysis can be found in Rambaut
et al. [29] and Yusim et al. [30]. Here we use the recon-
structed phylogeny of Yusim et al. with which Strimmer
and Pybus also estimated the demographic history by
means of the generalized skyline plot [17].

Figure 3 shows the result of the analysis with the reversible
jump MCMC algorithm compared with the predictions
from the classic and generalized skyline plots. As in Yusim
et al. [30] an evolutionary rate of 0.0023 substitutions per
year was assumed to convert the time axis into units of
years. The first row of Figure 3 displays the tree of Yusim
et al. [30] and the corresponding classic skyline plot. The
latter exhibits a large amount of noise, nevertheless the
main demographic signal is clearly visible in the graph. In
contrast, in Figure 3c (second row) the effective popula-
tion size as estimated by the rjMCMC algorithm is dis-
played. The thick line shows the median and the thin lines
the 95% confidence interval. Especially in the middle part
of the figure, where most of the data is located, the confi-
dence interval is very narrow, indicating a stable estima-
tion of the demographic history. Also note that for this
data the average number of change-points in the MCMC
run was k = 9.25, i.e. the estimated effective degree of free-
dom is much less than that implicitly assumed in the clas-
sic skyline plot.

A comparison with the generalized skyline plot [17] is
shown in Figure 3d. This demonstrates that the general-
ized skyline plot, in contrast to its classic cousin, provides
a very good noise-reduced approximation to the demo-
graphic history as estimated by the reversible jump
MCMC approach. However, especially near the present
the step function employed in the generalized skyline plot
leads to unrealistic jumps in the population size that are
Page 8 of 13
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Simulated dataFigure 1
Simulated data Top row: Example of a simulation with constant population size: (left) true demographic history (dashed line) 
and estimate obtained with the classic skyline plot; (right) point estimate obtained with rjMCMC and 95% confidence band. Bot-
tom row: Example with exponential population growth: (left) true population growth and classic skyline plot; (right) results from 
rjMCMC approach.
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HIV-1 in Central AfricaFigure 3
HIV-1 in Central Africa Top row: a) underlying genealogy; b) classic skyline plot. Bottom row: c) population size function esti-
mated with rjMCMC and corresponding 95% confidence band; d) comparison rjMCMC versus generalized skyline plot.
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HCV in EgyptFigure 4
HCV in Egypt Top row: a) underlying reconstructed genealogy; b) classic skyline plot. Bottom row: c) population size function 
estimated with rjMCMC and corresponding 95% confidence band; d) comparison rjMCMC versus generalized skyline plot.
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not present in the smooth estimate provided by the pro-
posed MCMC method.

HCV in Egypt
In Egypt 10%-20% of the general population are infected
with the Hepatitis C virus (HCV) [31]. This endemicity
seems mainly to be caused by percutaneous medical pro-
cedures such as needle injections that took place during a
countrywide health campaign between 1964 and 1982
against schistosomiasis. In order to investigate this phe-
nomenon blood samples were obtained from various
regions of Egypt and used to study the epidemic history of
Hepatitis C. For instance, Tanaka et al. [32] analyzed the
molecular evolution of HCV genotype 4a. Specifically,
they utilized 47 sequences (AF217800-AF217812 [31]
and AB103424-AB103457 [32]) from the NS5B region of
the HCV subtype 4a to reconstruct the respective phylog-
eny, and subsequently applied the skyline plot method to
infer the demographic history.

We repeated their analysis with the reversible jump
MCMC approach developed in this paper. We down-
loaded the sequence data from the HCV sequence
database [33] and inferred the corresponding maximum-
likelihood genealogy using the TREEFINDER program
[34]. This tree is depicted in Figure 4a, next to the demo-
graphic history estimated from it by the classic skyline
plot (Figure 4b). In the bottom of the figure we show the
estimated population size function and its 95% confi-
dence bands as obtained by our rjMCMC method (Figure
4c) and we also compare our results with those of the gen-
eralized skyline plot (Figure 4d). For the generating the
time axis in these plots we assumed an evolutionary rate
of 0.00045 substitutions per year.

Generally, the star-like shape of the inferred tree already is
indicative of exponential growth. This is confirmed by
both the skyline plot as well as by our analysis (Figure 4d).
Moreover, it can be seen that around 1940 the growth rate
increased (i.e. the slope of Ne(t) in the log-plot changes).
Near the present, the rate decreased again. Also note the
broadening of the confidence interval since 1940 which
reflects the sparsity of available observations. This implies
that the claim of Tanaka et al. [32] that the demographic
history recently changed back to constant population size
after an exponential growth is not firmly backed by the
data. For further biological analysis of the HCV data we
refer to Pybus et al. [35].

Conclusions
We have presented a new approach to non-parametric
inference of demographic history from an inferred geneal-
ogy. This method is based on reversible jump MCMC
sampling of the population size function Ne(t). Unlike its
predecessors, the classic and generalized skyline plots, it

returns a smooth and realistic estimate of the demo-
graphic history and thus overcomes the constraints due to
assuming a step function. Moreover, it automatically
provides confidence limits. Nevertheless, the procedure is
still computationally fast and can be run on any standard
PC hardware.

In our examples we demonstrated the advantage of non-
parametric estimation of demographic history. Parametric
estimation always assumes a certain functional form of
population growth which may lead to problematic state-
ments (cf. the HCV data set), in particular if the confi-
dence bands of the estimated function Ne(t) are not taken
into account.

From the methodological point of view, model selection
via rjMCMC has the advantage that the effective dimen-
sion, i.e. the degree of smoothing, is automatically chosen
in a data-driven manner. There is only one parameter (λ)
that controls the a priori degree of smoothing, and this is
adjusted accordingly by the investigated data. In addition,
a further advantage of our MCMC approach is that – in
contrast to the skyline plot – at least in principle it is
straightforward to incorporate it in more general MCMC
sampling schemes that also take account of the uncer-
tainty in the genealogy.

During the referee process we have learned that the
authors of the software package BEAST [27] have devel-
oped a similar non-parametric method to Bayesian coales-
cent inference of population history (A.J. Drummond et
al., in preparation). We plan to work with Dr. Drummond
to make available in BEAST joint sampling of sampling of
demographic histories and of trees. This would combine
the present rjMCMC approach and the method developed
by Drummond and colleagues.
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