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Abstract: In traditional hand function assessment, patients and physicians always need to accomplish
complex activities and rating tasks. This paper proposes a novel wearable glove system for hand
function assessment. A sensing system consisting of 12 nine-axis inertial and magnetic unit (IMMU)
sensors is used to obtain the acceleration, angular velocity, and geomagnetic orientation of human
hand movements. A complementary filter algorithm is applied to calculate the angles of joints after
sensor calibration. A virtual hand model is also developed to map with the glove system in the Unity
platform. The experimental results show that this glove system can capture and reproduce human
hand motions with high accuracy. This smart glove system is expected to reduce the complexity and
time consumption of hand kinematics assessment.

Keywords: hand rehabilitation; data glove; inertial sensors; kinematics evaluation

1. Introduction

Hand function assessment plays an essential role in the recovery of stroke patients.
Rehabilitation of hand function always requires long-term training after medical treatment.
Traditional hand function assessment methods that have been used by physicians include
Fugl-Meyer assessment (FMA), the action research arm test (ARAT), Jebsen–Taylor test
(JTT), or Wolf motor function test (WMFT) [1–5]. With these methods, the patients must
carry out some prescribed actions to showcase their hand function, and rating scores are
given according to the patients’ performance. However, assessment with these methods
often takes several hours to complete and does not reveal enough details during the rehabil-
itation process. Therefore, it is important to develop hand function assessment equipment
that can help physicians make a quantitative analysis of patients’ rehabilitation status.

One obvious solution to get hand gesture information is using a visual camera sys-
tem [6–8]. The advantage of using such a system is that it does not require the patients to
wear any equipment and it can capture the gesture information of multiple patients at the
same time. The disadvantage is that it can only work effectively in good light conditions
and its shooting angle is highly restricted by the local environment. IR or radar sensors can
be another non-contact alternative for hand gesture capture or recognition [9,10].

In recent years, data gloves have been widely used in human–computer interaction
studies [11]. With the advancement of sensor technology, the cost of data gloves has been
greatly reduced to suit daily medical rehabilitation needs [12]. Depending on their working
mechanism, data gloves can generally be divided into these main types: mechanical,
flexible sensing, optical fiber sensing, and inertial sensing. A mechanical data glove
can be considered as a type of glove-like haptic device with force feedback. Blake et al.
proposed a haptic glove for virtual reality applications based on magnetorheological (MR)
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brakes in 2009 [13]. Ma et al. developed a five-finger haptic glove using a worm-geared
motor in 2015 [14]. Chiri et al. developed a multi-phalange finger module for post-stroke
rehabilitation in 2012 [15]. Gu et al. presented a low-cost exoskeleton glove with passive
force feedback in 2016 [16]. Unlike that of mechanical data gloves, the performance of
flexible sensing data gloves largely depends on the repeatability and linearity of the sensor
itself. Kostas et al. presented a data glove with flexible sensors early in 2003 [17]. Togetti
et al. presented a sensing glove made of conductive elastomer materials in 2006 [18]. Shen
et al. also developed a soft stretchable bending data glove that incorporates a sensor based
on ethylene propylene rubber (EPR) in 2016 [19]. However, the most successful commercial
data glove systems today are mainly based on optical fiber sensors, such as CyberGlove and
5DT data gloves. Innovations have also occurred in the research community for the design
of optical fiber data gloves. Fujiwara et al. discussed a low-cost and flexible optical fiber
glove to measure joint angles in 2014 [20]. Da Silva et al. developed a sensing glove based
on optical fiber Bragg grating (FBG) sensors in 2011 [21]. Although optical fiber-based
data gloves such as CyberGlove and 5DT data gloves can provide sufficiently precise joint
angle data for rehabilitation applications, they are still too expensive for daily rehabilitation
at home. Low-cost MEMS-based inertial sensors have been investigated in a number of
studies on data gloves or human interactions due to their ability to provide stable attitudes
in a three-dimensional (3D) space and ease of integration with PCBs. Lin et al. presented
a data glove system with six-axis inertial sensors for stroke evaluation [22,23]. Choi et al.
developed a low-cost inertial measurement unit (IMU) wearable sensing glove [24]. Liu
et al. designed a novel inertial and magnetic unit (IMMU)-based data glove with an
optimized sensor layout [25].

The data glove system discussed in this paper aims to help physicians evaluate
patients’ hand function during rehabilitation. To get the joint angles of hand attitudes,
12 nine-axis inertial sensors are integrated with the Micro Controller Unit (MCU) and
Universal Asynchronous Receiver/Transmitter (UART) modules on the glove. Several cali-
bration algorithms are implemented to avoid errors caused by the accelerometer, gyroscope,
and magnetometer. In addition, a human–computer interaction module is developed in
the Unity platform. A grasping ball experiment is conducted to demonstrate how the glove
system can be used to evaluate dynamic hand functions.

2. System Architecture

The workflow of our data glove system is demonstrated in Figure 1. First, the sensor
units installed on the data glove obtain the raw information of hand movements. Then, the
MCU controller initializes the data acquisition process, in which the sensor data are received
with a Serial Peripheral Interface (SPI) bus and transmitted to the computer through a USB
connection line or a Bluetooth transmitter. Finally, the data processing module verifies the
data frames and calculates the angles of joints for hand function evaluation. Moreover, the
human–computer interaction module uses the joint angle data to drive hand modeling in
the Unity platform.

2.1. Hardware Design

The hardware of our data glove system includes several parts: (1) some IMMUs
for capturing the angles of hand joints; (2) a microcontrol unit for data collection and
transmission; (3) a USB connection wire or wireless Bluetooth transmitter; and (4) a PC
or laptop for receiving sensor data and reconstructing hand motions. The MEMS-based
sensors are uniquely suited for wearable applications due to their advantages of low power
consumption, compactness, and high precision. MPU-9250 units from InvenSense, Inc. are
used to capture the angles of joints when hand exercises are done. The nine-axis sensor
MPU-9250 can be considered as a combination of a six-axis IMU and a three-axis compass,
one is the six-axis IMU MPU6515, the other is the AK8963 3-axis magnetometer from Asahi
Kasei Microdevices (AKM). The angular velocity range of the gyroscope is set to ±1000◦/s
and the acceleration range of the accelerometer is set to ±8 g. The sample rate is set to



Micromachines 2021, 12, 362 3 of 19

100 Hz for all the sensors, which is high enough to capture most human hand motions.
To achieve better fusion performance, a multi-sensor fusion algorithm is developed to
work with the onboard motion fusion processor that comes with MPU-9250. A Leonardo
microprocessor chip is used to collect data from the IMMUs. The microprocessor controller
has 21 in–out digital ports, 7 Pulse Width Modulation (PWM) ports and 6 analog input
ports to connect with 12 sensors via an SPI bus, as shown in Figure 2. Both the wired UART
connection and Bluetooth wireless connection are tested in our glove system. The results
show that the wired UART connection is more efficient and reliable than Bluetooth wireless
connection, especially at a high transmission rate.
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2.2. Analysis of Hand Joints and Layout of Sensors

Human hand motions can be represented by the rotation of hand joints, so the number
and position of IMMU sensors can be determined according to the anatomical structures
of the hand. A human hand includes several types of bones and tissues such as muscles
and ligaments. As shown in Figure 3, the joints of the index finger, middle finger, ring
finger, and little finger of a human hand can be divided into three main categories: distal
interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal
joint (MP). As for the thumb, it only has two joints: interphalangeal joint (IP) and MP.
The MP is connected to the carpometacarpal joint (CM) for hand rotation. IMMU sensors
should be placed near the abovementioned joints to measure the bending status of fingers.
An understanding of the parent–child relationship between joints is a prerequisite for
analyzing finger motions. The movement of the parent joints has a knock-on effect on all
the child joints. The local x–y–z coordinates should be established to describe the rotation
of each joint, as shown in Figure 4. The bending of a finger can be defined as a rotation
around the x-axis. Empirically, the bending angle of the DIP joint can be approximately
considered as 1/3 of the bending angle of the PIP joint, which has no obvious influence on
the reconstruction of hand gestures.
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Therefore, 12 IMMU sensors are placed on hand phalanges and one IMMU sensor is
placed on the back of the hand, as shown in Figure 4. Joint angles and hand gestures can
be estimated by the orientation of 11 IMMU sensors. Two generations of data gloves have
been developed in our lab. For the 1st generation glove, all the sensors are connected by
soft wires; it is easy to fabricate but may suffer from sealing off and bad contact problems.
For the 2nd generation data glove, a flexible PCB design is adopted to enhance the system’s
stability and reliability, as shown in Figure 5. The IMMU sensors are directly soldered
on the flexible PCB without using any wire. Moreover, the flexible PCB is coated with a
silicone layer to protect the electronic components from being corroded by moisture and
sweat. The thickness of the silicone layer is set to 2 mm so as not to impair the flexibility
of hand movements. The plug-in connector of the flexible PCB can be easily linked to a
controller board. In this paper, the 1st generation data glove is used to demonstrate the
feasibility of our algorithm and software.



Micromachines 2021, 12, 362 5 of 19

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 19 
 

 

  
(a) (b) 

Figure 4. The 1st generation data glove; (a) layout of inertial and magnetic unit (IMMU) sensors; 
(b) prototype connected with soft wires. 

  
(a) (b) 

Figure 5. The 2nd generation data glove. (a) Flexible PCB and mounted IMMU sensors; (b) proto-
type coated with a silicone protective layer. 

3. Sensor Data Processing 
The data processing is as follows: The microcontroller of the data glove sends the 

data from IMMU sensors to the computer frame by frame, and then the received data are 
preprocessed by parity frame check and frame decoding. The raw sensor data must be 
calibrated before they can be fused. Since the environmental influence on accelerometers 
and gyroscopes is mostly negligible, the calibration parameters of the accelerometer and 
gyroscope can be used for a long time after initial calibration. Unlike the accelerometer 
and gyroscope, the magnetometer needs to be recalibrated because it is subjected to the 
disturbance from environmental ferromagnetic materials. The attitude of each IMMU sen-
sor can be estimated with a multi-sensor fusion algorithm using calibrated acceleration, 
angular velocity, and geomagnetism data. The orientation of the IMMU sensors on the 
glove of left hand is as defined in Figure 6 with the International Society of Biomechanics 
(ISB) recommendations on definitions of joint coordinates [26]. 

Figure 5. The 2nd generation data glove. (a) Flexible PCB and mounted IMMU sensors; (b) prototype
coated with a silicone protective layer.

3. Sensor Data Processing

The data processing is as follows: The microcontroller of the data glove sends the
data from IMMU sensors to the computer frame by frame, and then the received data are
preprocessed by parity frame check and frame decoding. The raw sensor data must be
calibrated before they can be fused. Since the environmental influence on accelerometers
and gyroscopes is mostly negligible, the calibration parameters of the accelerometer and
gyroscope can be used for a long time after initial calibration. Unlike the accelerometer
and gyroscope, the magnetometer needs to be recalibrated because it is subjected to the
disturbance from environmental ferromagnetic materials. The attitude of each IMMU
sensor can be estimated with a multi-sensor fusion algorithm using calibrated acceleration,
angular velocity, and geomagnetism data. The orientation of the IMMU sensors on the
glove of left hand is as defined in Figure 6 with the International Society of Biomechanics
(ISB) recommendations on definitions of joint coordinates [26].
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3.1. Sensor Calibration

Gyroscopes can be used to measure the rotation of hand joints with angular velocity.
The angle of joint rotation can be calculated by integrating the angular velocity data over
time. However, the error of angular velocity will accumulate after a long measurement
process, resulting in a drift in the angle. Theoretically, the output value of a gyroscope
should be zero after calibration without any motions. The zero deviation caused by the
random error of the gyroscope can be estimated using the average filtering method. The
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corrected value of each axis can be obtained by subtracting the zero deviation error from
the measured value. The error model of the gyroscope can be represented as follows: gx_c

gy_c
gz_c

 =

 gx
gy
gz

−
 gx_e

gy_e
gz_e

 (1)

where gx, gy, and gz denote the raw data of the gyroscope; gx_c, gy_c, and gz_c the corrected
angular velocity data; gx_e, gy_e, and gz_e the zero bias of three axes.

Possible errors of the accelerometer include zero deviation error, scale factor error, and
non-orthogonal error. The accelerometer error model can be represented as follows [27]: ax_c

ay_c
az_c

 =

 mxx mxy mxz
mxy myy myz
mxz myz mzz

·
 ax − ax_e

ay − ay_e
az − az_e

 (2)

where ai(i = x, y, z) denotes the raw data of the accelerometer; ai_c(i = x, y, z) the cor-
rected acceleration data; bi(i = x, y, z) the zero bias; mij(i = x, y, z; i = j) the scale error
factor; mij(i = x, y, z; j = x, y, z; i 6= j) the non-orthogonal error factor. The calibration er-
ror e(mxx, . . . , mzz, axe , . . . , az_e) is defined as the residual between the squared sum of
corrected acceleration and squared gravitational acceleration:

e(mxx, . . . , mzz, ax_e, . . . , az_e) = a2
x_c + a2

y_c + a2
z_c − g2 (3)

Gauss–Newton’s method is applied to estimate the unknown calibration parameters
(mxx, . . . , mzz, ax_e, . . . , az_e) in this part. The iteration of calibration error can be represented
by the following equation:

ek+1 = ek + βkdk (4)

where βk is the damping control factor, which is used to control the convergence speed
of the iteration algorithm. A larger βk value means a faster convergence speed but lower
accuracy. dk is defined as the iterative direction:

dk =
(

JT J
)−1(JT(−e

))
(5)

where matrix J is defined as the Jacobian matrix of calibration error:

J(e) =
∂e
∂x

=


∂e

∂mxx
· · · ∂e

∂bz
...

. . .
...

∂e
∂mxx

· · · ∂e
∂bz

 (6)

When the iteration time reaches its maximum or the convergence condition is satisfied,
the unknown calibration parameters can be estimated. With ε defined as the convergence
threshold, the convergence condition can be represented as follows:∣∣e(mxx, . . . , mzz, ax_e, . . . , az_e

)∣∣ < ε (7)

The external interference of a magnetic field can be divided into hard magnetic
interference and soft magnetic interference. The hard magnetic interference would cause the
measured data to deviate from the sphere origin as a whole. The soft magnetic interference
would cause the shape of data distribution to change from a standard sphere to an ellipsoid.
The error model of the magnetometer can be represented as follows: mx_c

my_c
mz_c

 =
[

kx ky kz
]
·

 mx
my
mz

+

 cx
cy
cz

 (8)
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where mi(i = x, y, z) denotes the raw data of the magnetometer; mi_c(i = x, y, z) the cor-
rected magnetic field data; ci(i = x, y, z) the hard magnetic calibration parameters; ki(i = x, y, z)
the soft magnetic calibration parameters. The magnetometer should be rotated in all di-
rections to find out the maximum and minimum values of each axis. The geomagnetic
calibration parameters can be calculated as follows:

cx = Xmax+Xmin
2

cy = Ymax+Ymin
2

cz =
Zmax+Zmin

2

(9)


kx = Xmax−Xmin

Xmax−Xmin

ky = Xmax−Xmin
Ymax−Ymin

kz =
Xmax−Xmin
Zmax−Zmin

(10)

where Xmax, Xmin, Ymax, Ymin, Zmax, and Zmin are the maximum and minimum values of
three axes.

3.2. Sensor Fusion

Several methods are available for representing attitudes in space, such as Euler angle,
direction cosine, and quaternion. The direction cosine method can be used to solve matrix
transformations, but it requires extensive calculations. The Euler angle method is easy to
understand, but it may cause the gimbal lock problem. The quaternion method is more
efficient and requires fewer calculations compared to the other two methods. Since the
update of the quaternion depends on the previous state, the acceleration and geomagnetism
data in the static state is used to calculate the initial quaternion attitude. The initial pitch
angle θ0 and roll angle γ0 can be calculated using the following equation: θ0 = arcsin

(
an

y

)
γ0 = −arctan

(
an

x
an

z

) (11)

Specifically,
[

an
x an

y an
z

]T
is the projection of gravitational acceleration from refer-

ence frame to carrier frame. Then, the initial yaw angle can be calculated with θ0, γ0, and

the projection of magnetic field data
[

mn
x mn

y mn
z

]T
as follows:


mn

y = mb
xcosγ0 + mb

ysinγsinθ0 + mb
zsinγcosθ0

mn
x = mb

ycosθ0 −mb
zsinθ0

ϕ0 = arctan
(mn

y
mn

x

) (12)

When
[

θ0 γ0 ϕ0
]T is confirmed, the initial quaternion can be calculated using

the following equations:

i_q0 = cos
( γ0

2
)
cos
(

θ0
2

)
cos
( ϕ0

2
)
− sin

( γ0
2
)
sin
(

θ0
2

)
sin
( ϕ0

2
)

i_q1 = cos
( γ0

2
)
sin
(

θ0
2

)
cos
( ϕ0

2
)
− sin

( γ0
2
)
cos
(

θ0
2

)
sin
( ϕ0

2
)

i_q2 = sin
( γ0

2
)
cos
(

θ0
2

)
cos
( ϕ0

2
)
+ cos

( γ0
2
)
sin
(

θ0
2

)
sin
( ϕ0

2
)

i_q3 = cos
( γ0

2
)
cos
(

θ0
2

)
sin
( ϕ0

2
)
+ sin

( γ0
2
)
sin
(

θ0
2

)
cos
( ϕ0

2
)

(13)

As proven by the calculation process of the initial Euler angle, the yaw, pitch, and roll
angles can be calculated directly from the acceleration, angular velocity, and magnetic field
data in the static state. However, when the sensor is in motion, extra linear acceleration
is introduced, resulting in inaccurate calculation of the sensor’s attitude. In addition,
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the integral drift still exists when angular velocity is used to calculate the attitude after
sensor calibration. In this paper, a complementary filter algorithm is applied to solve
the multi-sensor fusion problem [28,29]. The essence of multi-sensor fusion is to use
the proportional–integral (PI) method to calculate the error between the estimated and
measured values of acceleration and geomagnetism, and apply this error to correct the
updated quaternion. The sensor fusion process is as shown in Figure 7.
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eax eay eaz

]T is defined as the error caused by the acceleration data in carrier
coordinates; it can be expressed as follows: eax

eay
eaz

 = a× v =

∣∣∣∣∣∣
i j k

ax ay az
vx vy vz

∣∣∣∣∣∣ =
 ay·vz − az·vy

az·vx − ax·vz
ax·vy − az·vx

 (14)

where
[

vx vy vz
]T is the estimated acceleration in carrier coordinates.[

emx emy emz
]T is defined as the error caused by the geomagnetic field data in

carrier coordinates; it can be expressed as follows: emx
emy
emz

 = m×w =

∣∣∣∣∣∣
i j k

mx my mz
wx wy wz

∣∣∣∣∣∣ =
 my·nz −mz·ny

mz·nx −mx·nz
mx·ny −mz·nx

 (15)

where
[

nx ny nz
]T is the estimated geomagnetic field data in carrier coordinates.

Then, the total error can be defined as: ex
ey
ez

 =

 eax
eay
eaz

+

 emx
emy
emz

 =

 (
ay·vz − az·vy

)
+
(
my·nz −mz·ny

)
(az·vx − ax·vz) + (mz·nx −mx·nz)(
ax·vy − az·vx

)
+
(
mx·ny −mz·nx

)
 (16)

The angular velocity can be fixed using the following equations:

 exi
eyi
ezi

 =

 exi
eyi
ezi

+ Ki·

 ex
ey
ez


 ω′x

ω′y
ω′z

 =

 ωx
ωy
ωz

+ Kp·

 ex
ey
ez

+

 exi
eyi
ezi

 (17)

where
[
ωx ωy ωz

]T is the measured angular velocity from a gyroscope, and
[
ω′x ω′y ω′z

]T

is the fixed angular velocity to update the quaternion matrix. The updated quaternion
attitude

[
q′0 q′1 q′2 q′3

]T can be represented as follows:
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q′0
q′1
q′2
q′3

 =


q0
q1
q2
q3

+


0 −q1·ω′x −q2·ω′y −q3·ω′z

q0·ω′x 0 q2·ω′z −q3·ω′y
q0·ω′y −q1·ω′z 0 q31·ω′x
q0·ω′z q1·ω′y −q2·ω′x 0

·T2 (18)

Finally, the Euler angle can be obtained using the following equations:
θ = arcsin

(
2
(
q′2q′3 + q′0q′1

))
γ = −arctan

(
2(q′1q′3−q′0q′2)

q′20 −q′21 −q′22 +q′23

)
ϕ = arctan

(
2(q′1q′2−q′0q′3)

q′20 −q′21 +q′22 +q′23

) (19)

where θ, γ, and ϕ are the pitch, roll, and yaw angles of a single IMMU sensor.

4. Experimental Results of Sensor Calibration and Fusion

Since all the IMMU sensors on the data glove are of the same model (MPU-9250),
one of these sensors is used to demonstrate the experimental results of sensor calibration
and fusion.

The comparisons of angular velocity data before and after calibration are shown in
Figure 8. It can be seen that the zero bias of the gyroscope is reduced. However, the integral
drift of the gyroscope still fails to be eliminated after a long period of time, which needs to
be corrected by fusing the acceleration and geomagnetism data.

The comparisons of normalized acceleration data before and after calibration are
shown in Figure 9. The theoretical value of normalized gravitational acceleration in the
static state should be equal to 1. The accuracy of local gravitational acceleration is improved
after calibration.

The geomagnetic field data should lie on the sphere equidistant from the center. The
3D scatter plots of the geomagnetic field data are shown in Figure 10. The comparisons of
the geomagnetic field data on X–Y, X–Z, and Y–Z planes are shown in Figure 11. It can be
seen that the data are distributed in a nearly elliptical shape before calibration, and in a
nearly standard spherical shape after calibration.

As discussed earlier, the attitude angles of the inertial sensor can be calculated using a
complementary filter algorithm. The attitude angles of the IMMU sensor in the static state
are shown in Figure 12. The static accuracy of attitude angles is smaller than 1◦, which
satisfies the application requirement of our data glove system.
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Figure 12. Pitch, roll, and yaw angles in the static state (when pitch angle is set to 30◦).

The commercial HCM365B E-compass is used to evaluate the dynamic performance of
the IMMU sensor, as shown in Figure 13a. The output attitude angle curves of HCM365B
and the IMMU sensor are very close, while the roll angle changes from 0◦ to 200◦.
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5. Human–Computer Interaction Using Data Glove

Real-time human–computer interaction is also a required function for patients while
doing rehabilitation exercises at home. A series of virtual scenes needs to be established by
the human–computer interaction module, including a virtual hand, movable virtual items,
lights, and a background. After the virtual scenes are built, all the 12 IMMU sensors will be
mapped to the joints of the virtual hand by converting sensor attitude angles into finger
rotation angles. In this paper, a virtual hand is established in the Unity platform, as shown
in Figure 14.
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design: The virtual hand should be established according to the skeletal structure of the 
human hand. Some virtual items are also provided for practicing hand grasping motions. 
(2) Sensor–joints mapping: 12 IMMU sensors need to be mapped to the corresponding 
joints. (3) Scripts: The scripts include finding joint objects in the hierarchical view, map-
ping sensors to model joints, receiving attitude angles, and displaying animations. The 
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Figure 14. Human hand modeling in the Unity platform. (a) Hierarchy of joints; (b) hand skinned
mesh; (c) virtual hand model.

The human interaction module includes the following three parts: (1) Virtual scene
design: The virtual hand should be established according to the skeletal structure of the
human hand. Some virtual items are also provided for practicing hand grasping motions.
(2) Sensor–joints mapping: 12 IMMU sensors need to be mapped to the corresponding
joints. (3) Scripts: The scripts include finding joint objects in the hierarchical view, mapping
sensors to model joints, receiving attitude angles, and displaying animations. The bending
angles of the joints of the virtual hand are limited to a range that fits in with daily human
hand motions. A schematic diagram showing the bending angles of different joints is
provided in Figure 15.
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To validate the joint angle obtained by the data glove, the digital goniometer is used to
measure the angle, as shown in Figure 16. One problem of using such a steel goniometer is
that the magnetometer inside the IMMU sensor may be disturbed by nearby ferromagnetic
materials. Therefore, the digital goniometer should be placed on the finger after the angle
data have been exported from the data glove.
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Figure 16. Comparison of the measured angle between data glove and digital goniometer.

The comparison of measurement results is represented in Table 1. The angles measured
by goniometer and data glove are recorded when the index finger is held in four different
positions. The average error rate is less than 2% and the maximum deviation is nearly 1.4◦.
The accuracy of the data glove will be enough for most wearable applications.

Table 1. Measurement results of goniometer and data glove.

Angle from goniometer 112.10◦ 91.20◦ 80.52◦ 69.65◦

Average angle from data glove 110.28◦ 89.55◦ 79.66◦ 68.30◦

Error rate 1.6% 1.8% 1.1% 1.9%

Hand rehabilitation assessment, by the total active range of motion (TAM) method,
for example, requires the bending angle data of the joints, which can be calculated with the
attitude angles of sensors on the data glove. Since the DIP joint has no sensor placed on it,
its bending angle is empirically set to 1/3 that of the PIP joint. The relationship between
the bending angles of joints and the attitude angles of sensors is represented in Table 2.

Table 2. Calculation of bending angles of joints using sensor attitudes.

Joint ID Bending Angle

Thumb IP joint θIP_Thumb S1 − S2
Thumb MP joint θMP_Thumb S3 − S8

Index finger PIP joint θPIP_Index S4 − S5
Index finger MP joint θMP_Index S5 − S8

Middle finger PIP joint θPIP_Middle S6 − S7
Middle finger MP joint θMP_Middle S7 − S8

Ring finger PIP joint θPIP_Ring S9 − S10
Ring finger MP joint θMP_Ring S10 − S8
Little finger PIP joint θPIP_Little S11 − S12
Little finger MP joint θMP_Little S12 − S8

Specifically, Si(i = 1, 2, · · · , 12) represents the attitude angles of IMMU sensors
around the x-axis. The experimental results of three hand gestures showing the numbers
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”2”, “5”, and “10” are provided in Figure 17. The hand gestures are captured and recon-
structed with the virtual hand in Unity with high accuracy. The gesture data can be saved
and exported by physicians for off-line diagnosis, as shown in Table 3.
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Figure 17. Gestures reproduced by the virtual hand in Unity. (a) Gesture “2”; (b) gesture “5”;
(c) gesture “10”.

Table 3. Bending angles of joints with three gestures.

Gesture
Index Finger Middle Finger Ring Finger Little Finger

θPIPJ θMPJ θPIPJ θMPJ θPIPJ θMPJ θPIPJ θMPJ

“2” 9.2◦ 7.9◦ 2.4◦ 24.8◦ 109.2◦ 49.4◦ 64.4◦ 90.7◦

“5” 5.5◦ 2.2◦ 16.4◦ 3.9◦ 9.5◦ 10.5◦ 24.3◦ 20.6◦

“10” 110.3◦ 70.2◦ 108.2◦ 67.5◦ 148.6◦ 62.9◦ 68.9◦ 77.3◦

The dynamic ball grasping experiment is demonstrated in Figure 18. The virtual ball
and hand should be set in such original positions that their distance is the same as that
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between the physical ball and hand. The subject needs to pick up the ball and flip the hand
several times. The changes in hand posture can be reviewed from the data of Sensor 8 on
the back of the hand, as shown in Figure 19. The recovery status can be estimated from the
recorded data, for example, the time taken for an action, the accuracy of an action, and the
degree of hand tremor.
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Four different data glove systems are compared with our proposed IMMU data glove,
as listed in Table 4. It can be found that both the optical fiber sensor-based glove system and
IMMU sensor-based data glove system can provide a good performance while measuring
the joint angle. However, the cost of IMMU sensors is much less than optical fiber sensors
for massive commercial wearable applications.
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Table 4. Comparison of proposed data glove and other data glove systems.

Publications Type of Sensor Number of Sensors Deviation of Joint Angle

Cha et al. [30] flexible piezoelecric sensor 19 (one hand) 5◦

da Silva et al. [21] fiber bragg gratings sensor 1 (each finger) 2◦

Li et al. [31] optical linear encoder 3 (each finger) 1◦

Kortier et al. [32] IMMU 3 (each finger) 1.1◦

Proposed glove system IMMU 12 (one hand) 1.4◦

6. Conclusions

This paper presents a novel data glove system to assess hand function during hand
rehabilitation. 12 nine-axis inertial sensors are integrated in a data glove to obtain the
angles of hand joints. The error models of the accelerometer, gyroscope, and magnetometer
are analyzed. The least square principle is used to solve the correction parameters of the
accelerometer. The validity of the calibration process is verified by comparing raw sensor
data and calibrated data. A quaternion-based complementary filtering algorithm is applied
to fuse the acceleration, angular velocity and geomagnetism data. A commercial E-compass
is also used to verify the stability and dynamic performance of our fusion algorithm.

Real-time and high-precision human–computer interaction is realized with the data
glove and Unity. A virtual hand model, a ball model, and some virtual scenes are es-
tablished in Unity, and then the attitude angles of 12 sensors are transformed into the
rotation angles of hand joints. The experimental results show that the glove system can
effectively measure hand postures and joint angles in motion, and it is expected to be
used to develop a variety of rehabilitation scenarios to get patients more engaged in the
long-term rehabilitation process.
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