©Biomedical Informatics (2022)

OPEN ACCESS GOLD

Declaration on Publication Ethics:

DOI: 10.6026/97320630018001

The author's state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article. The authors declare that a draft version of this article is made open access at https://www.biorxiv.org/content/10.1101/2021.06.23.449592v1

Declaration on official E-mail:

The corresponding author declares that official e-mail from their institution is not available for all authors

License statement:

This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Comments from readers:

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article without open access charges. Comments should be concise, coherent and critical in less than 1000 words.

Edited by P. Kangueane Citation: Ambardar *et al.* Bioinformation 18(1): 1-13 (2022)

Insights from the analysis of draft genome sequence of *Crocus sativus* L.

Sheetal Ambardar¹, Jyoti Vakhlu² & Ramanathan Sowdhamini^{1,3,*}

¹National Center for Biological Sciences, Bellary Road, Bengaluru 560065; ²School of Biotechnology, University of Jammu, J&K, India, 180006; ³Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, India; *Corresponding author: Ramanathan Sowdhamini - E-mail: mini@ncbs.res.in

Abstract:

Saffron (*Crocus sativus* L.) is the low yielding plant of medicinal and economic importance. Therefore, it is of interest to report the draft genome sequence of *C. sativus*. The draft genome of *C. sativus* has been assembled using Illumina sequencing and is 3.01 Gb long covering 84.24% of genome. *C. sativus* genome annotation identified 53,546 functional genes (including 5726 transcription factors), 862,275 repeats and 964,231 SSR markers. The genes involved in the apocarotenoids biosynthesis pathway (crocin, crocetin, picrocrocin, and safranal) were found in the draft genome analysis.

Keywords: Crocus sativus, de-novo genome assembly, apocarotene biosynthesis pathway, MYB TFs, SSR markers, Orthology analysis.

Background:

Plant genomics, with the increasing number of whole genome sequences available, has unlocked the genetic treasures that would be impossible in absense of the genome sequence. Though second and third generation sequencing technologies, coupled with ever advancing bioinformatic tools/pipelines, have made the sequencing of complex and huge genomes economical and easy, but till date there are only approximately 1886 plant genome available sequences in databanks (NCBI: https://www.ncbi.nlm.nih.gov/assembly). Some of the recently sequenced and assembled plant genomes are rice [1], maize [2], asparagus [3], wheat [4] and tea [5] etc., however the genome of the plants belonging to Crocus genus or Iridaceae family, have not been reported so far. Saffron (C. sativus) referred as 'Golden Condiment' is world's most expensive spice costing about 70,000 INR/pound, with medicinal properties and cosmetic uses [6]. More than 150 volatile and aroma-yielding compounds contribute to the flavor, color, and aroma of the saffron spice, wherein the main chemical constituents in the stigma of saffron are crocin, crocetin, picrocrocin, and safranal [7]. C. sativus is an autumn-flowering perennial sterile triploid plant (2n = 24) with, ~3.5 Gb haploid genome [8,9]. Being sterile, it fails to produce viable seeds and reproduces vegetatively by underground corms and is reported to lack genetic variation. Various molecular markers (RAPD, ISSR, AFLP, SSR microsatellites) and epigenetic approaches have suggested the existence of limited genetic variability [10 - 13]. To discover authentic genetic markers, mining genes for secondary metabolites and improvement of breeding, sequencing of its genome was the only alternative. In addition, it's ancestry is also controversial that could be also settled, if its complete genome sequence is available [14, 15]. Hybrid sequencing approaches, comprising of second and third generation sequencing technologies, have facilitated sequencing of complex genomes economically. Illumina sequencing technology is preferred in combination of other sequencing technologies for first sequencing attempt, as it generates good sequencing data for better genome coverage and has low error rate as compared to third generation sequencing technologies [16]. Therefore, it is of interest to document data to gain insights from the preliminary analysis of draft genome sequence of *Crocus sativus* L. It should be noted that a draft version of this article has been made open access at the Biorxiv repository [17].

Figure 1: Schematic of *de-novo* genome assembly and annotation pipeline. Black colour text represents the analytical processes and Red colour text represents the software/instrument used to perform the processes.

Materials and Methods:

C. sativus corms were collected from Kishtwar, J&K (33.3116° N, 75.7662° E) in 2019. Corms were grown in the pots for period of three months and leaves were harvested for genome size estimation. Genome size of the plant was estimated by flow cytometric (Hare and Johnston 2011) and k-mer based method using Jelly Fish [18]. Genomic DNA was extracted from corm tissue using CTAB method [19] and quality and quantity was accessed using Qubit (Invitrogen) and agarose gel electrophoresis. 3 microgram DNA was used to construct WGS DNA libraries with

550bp and 800bp insert sizes using NEB next Ultra DNA Library Preparation Kit according to the Illumina's protocol. Quality of the libraries was evaluated using Tapestation (Agilent 4200) and Qubit HS DNA Assay Kit (Invitrogen) and sequenced on HiSeqX platform (150-bp paired-end (PE) reads) to generate 321 Gb data (~92X coverage). Quality of raw reads was evaluated using FastQC tool [20] and low quality bases (<q30) and sequencing adapters were removed using trimmomatic software [21]. *De-novo* genome assembly was performed using Soapdenovo2 [22] and MaSuRCA

[23]. Soapdenovo2 assembly was executed using different kmers (73 kmer predicted by KmerGenei along with 69, 71 kmers) [24]. The statistics of soapdenovo2 assemblies were compared to select the better assembly that was designated as Cs_Assembly_1. MaSuRCA assembly was done using the raw reads and was designated as Cs_Assembly_2. The quality of assemblies was accessed using BUSCO against Viridiplantae lineage from OrthoDB database [25]. Subsequently, raw illumina reads were mapped back to Cs_Assembly_2 using Bowtie2 [26] and previously published transcriptome data [27, 28] was mapped to Cs_Assembly_2 using BWA [29].

Repetitive regions in Cs_Assembly_2 was identified using Repeatmasker and GenomeScope v2 [30, 31] and SSR markers were identified using MISA [32]. Cs_Assembly_2 was further analysed for gene prediction using the MAKER [33] wherein *C. sativus* transcriptome data was used as EST evidence [28], Viridiplantae database (UNIPROT) as protein evidence, maize as Augustus gene prediction model and *Oryza sativa* as snap hmm. Predicted proteins were further annotated using BLASTp against NR (NCBI) and viridiplanteae (UNIPROT) database with modified parameters (Evalue-1e⁻³, sequence identity >40% and query coverage >70%). Annotated proteins were analysed for GO annotations against biological processes, cellular component and metabolic processes using WEGO [34]. Transcription factors (TFs) proteins were identified against PlantTFDB [35] using BLASTp with the modified parameters (E-value-1e⁻³, sequence identity >30%, query coverage >70%). Orthologous genes were compared with *Asparagus officinalis*, *Phalaenopsis equestris, Apostatia shenzhenica* of the same plant order along with *Oryza sativa* (Rice) using Orthovenn2 [36]. The proteins sequences of all the plants were downloaded from Phytozome database [37]. Various metabolic pathways *in C. sativus genome* were analysed using KAAS webserver [38].

Data availability:

Whole genome sequencing raw reads and draft genome of *Crocus sativus* has been submitted to NCBI SRA under bioproject PRJNA734464 and PRJNA739096 respectively. All the processed data including draft genome, annotated proteins, and supplementary tables can be accessed at CAPS_NCBS server [39].

99.92% and 92.02% were observed against Cs_Assembly_2

(Supplementary Table 2). High mapping percentage represented

Table 1: Assembly statistics of C. sativus genome using soapdenovo2 and MaSuRCA de-novo assemblers

	Soapdenovo	2		MaSuRCA		
Assemblies	-	Cs_Assembly_1	-	Cs_Assembly_2		
kmers	69	71	73	99		
N50 Scaffold (bases)	1443	1596	1508	1863		
Number of Scaffolds	1537310	1505129	1433675	2564042		
Largest Scaffold (bases)	45973	45973	43370	46734		
Total sequence length	2684437407	2787926280	2589039086	3014612563		
GC%	43.2	43.2	43.2	43.2		
Genome Coverage (%)	75.01%	77.90%	72.34%	84.24%		
BUSCO (%)	7.32%	7.81%	7.05%	44.46%		

Results & Discussion:

Crocus sativus genome is the first draft genome sequence of the plant belonging to the Iridaceae family. Genome size of C. sativus was estimated to be 3.5 Gb (3,578,575,507 bases), using flow cytometry and kmer method. Genome size estimated was comparable to earlier reports, wherein it was estimated to be 3.44 Gb using flow cytometry being grown in Italy, Spain and Israel [8, 9]. On the basis of size of the genome, 321 Gb WGS data of C. sativus was generated, with an overall coverage of ~92X using Illumina sequencing (Supplementary Table 1). De-novo genome assembly and annotation of C. sativus was performed using the bioinformatics pipeline represented in Figure 1. De-novo genome assembly using Soapdenovo2 with kmer 71 was comparatively better than other two kmers (69 and 73) and was designated as Cs_Assembly_1 with N50 value of 1596 and 77.9% genome coverage (Table 1). De-novo genome assembly with MaSuRCA was designated as Cs_Assembly_2 with N50 value of 1860 and 84.24% genome coverage. Cs_Assembly_2 was found comparatively better than Cs_Assembly_1 as the assembly statistics, such as N50, largest scaffold, genome coverage and BUSCO completeness were higher in Cs_Assembly_2 than Cs_Assembly_1. (Table 1). Further, ~87.28% of raw reads mapped back to Cs_Assembly_2, thereby indicating that most of data has been utilized for genome assembly. In addition, two previously published transcriptome data sets [28, 29] were mapped to the Cs_Assembly_2 and mapping percentage of

the presence of most of the reported exons/CDS in the Cs_Assembly_2 even though the genome assembly was fragmented with less N50 value. Polygonum cuspidatum genome was de-novo assembled using Soapdenovo2 with Illumina reads and generated an assembly of 2.56 Gb, with N50 value of 3215 and 98.5% genome coverage [40]. Similarly, the genome of *Linum usitatissimum*, flax plant was de-novo assembled using Illumina reads having N50 scaffold of 694 Kb with 81% of genome coverage [41]. Genome coverage of *C. sativus* was comparatively more than flax genome but less than *Polygonum cuspidatum* genome using same sequencing technologies. Total repeats length in C. sativus genome (Cs_Assembly_2) was 1,460,908,750 bp (40.8%) as predicted by Genome Scope version 2. A total of 862,275 repeats were identified in Cs_Assembly_2 wherein simple repeat (48.41%) and LTR (30.34%) were the most abundant in the genome. Specifically, Copia & Gypsy were the most abundant LTR repeats (Supplementary Table 3). A total of 9,64,231 SSR markers were identified in Cs_Assembly_2 wherein monomeric SSR repeats (4,86,140 (50.4%)) were more abundant as compared to dinucleotide (2,94,819 (30.5%)) and trinucleotide repeats (1,46,991 (15.2%)) with "A", "TA", "TTG" most abundant SSRs in each groups. The abundance of Tetranucleotide (15,375 (1.59%)), pentanucleotide (8,596 (0.9%)) and hexanucleotides (12,310 (1.27%)) repeats each was less than 2% of

Bioinformation 18(1): 1-13 (2022)

total SSRs with "AAAT", "TATAT" and "TAACCC" most abundant in respective SSRs (Supplementary Table 4). SSR markers are reported to be multi-allelic, relatively abundant, widely dispersed across the genome and have been used in genetic diversity analysis, parentage assessment, species identification and mapping genetic linkage [42]. These markers can be further evaluated for their application in *C. sativus*. Earlier studies on *C. sativus* transcriptome have reported the presence of 16,721 SSRs [28] and 79,028 SSRs [43] using transcriptome analysis, but higher number of SSR (964,231) were discovered in the present study based on genome sequence.

In total 254,038 proteins were predicted from Cs_Assembly_2 using MAKER pipeline. A total of 52,435 and 52,545 proteins were annotated based on BLASTp against NR and viridiplanteae database respectively (Supplementary Table 5). BUSCO analysis revealed the presence of 75.7% of the plant conserved genes/orthologues in the C. sativus genome. Out of total proteins, 51% (26796) were annotated to 8 top-hit plant species (Figure 2). Maximum number of proteins was annotated against Asparagus officinalis (9213) indicating C. sativus to be phylogenetically closer to Asparagus officinalis, as both the plants belong to same plant order Asparagales (Figure 2). 85% of total proteins (43,649) were associated with gene ontology (GO) ids and classified into biological processes (BP: 22,092 proteins) abundant in cellular and metabolic processes, cellular components (CC: 24,399 proteins) mostly localised in cell and organelle parts and molecular functions (MF: 34,442 proteins) most abundant in catalytic and transporter activities (Supplementary Table 6). Out of the total annotated proteins, 5726 unique C. sativus proteins were identified as transcription factors (TFs) belonging to 57 TFs families. MYB & MYB related family proteins (11.86%), being more abundant TFs, followed by bHLH, C2H2, NAC, FAR1, C3H, ERF, bZIP, WRKY and B3 were the top 10 abundant transcription factors family proteins (Supplementary Figure 1, Supplementary Table 7). TFs like MYB & MYB related, bHLH, WRKY are reported to regulate secondary metabolite (apocarotenoid) biosynthesis in *C. sativus* [28]. Earlier reports on *C. sativus* transcriptome has identified less number of TFs (3819, 2601), whereas the most abundant TFs family remains same [27, 28].

C. sativus annotated proteins (52,545) was compared with 3 monocots plants of same order, whose genome and annotations were available in Phytozome database [37], namely Asparagus officinalis, Phalaenopsis equestris, Apostatia shenzhenica along with a model monocot plant Oryza sativa (Rice) using Orthovenn2 (Figure 3). A total of 23,744 proteins cluster were found in all the plants wherein 21,606 were orthologous clusters that were atleast common in two species and 2138 were single copy gene clusters wherein each cluster have only one gene from each plant species. Conservation of 7328 proteins clusters, comprising of 51,803 proteins, was observed among the five species (C. sativus: 10,001 proteins, A. officinalis: 9552, P. equestris: 9012, A. shenzhenica: 8570 and O. sativa: 14,668) (Supplementary Figure 2). The conserved proteins clusters were found to be associated with biological processes (BP-23,010 proteins), cellular component (CC-582 proteins) and molecular functions (MF-957 proteins) and were enriched in defence response, RNA modification, DNA integration, regulation of transcription, rRNA processing and protein phosphorylation (Supplementary Table 8). However, 2510 protein clusters (7914 proteins) were unique to Crocus sativus only, out of which 1636 clusters (4595 proteins) were associated with slimmed GO terms (BP: 5201, CC: 63, MF:303 proteins) associated with nucleic acid binding, transferase, hydrolase, oxidoreductase activity and protein and DNA binding activity (Supplemenatary Table 8). As per orthology analysis also, C. sativus was found phylogenetically closer to A. officinalis as more protein clusters were orthologous between Crocus sativus and Asparagus officinalis than to other plants compared in the study (Supplementary Figure 3).

Figure 2: Crocus sativus unigenes mapping to top 15 plant species wherein most of the proteins annotated against Asparagus officinalis.

Bioinformation 18(1): 1-13 (2022)

Figure 3: Orthology analysis of *Crocus sativus* with neighboring plants from same order (*Asparagus officinalis, Phalaenopsis equestris, Apostatia shenzhenica*) along with *Oryza sativa* representing 7328 proteins clusters to be conserved in all the five plant species, whereas 2510 proteins cluster were unique to *C. sativus only*.

Bioinformation 18(1): 1-13 (2022)

A total of 10,912 C. sativus proteins were mapped to 395 KEGG pathways of monocots. Various pathways like carbohydrate metabolism, energy metabolism, lipid metabolism, nucleotide metabolism, amino acid metabolism, glycan metabolism, metabolism of cofactors and vitamins along with biosynthesis of terpenoids, polyketides and other secondary metabolites were found complete wherein all the genes involved in pathway were present in draft assembly. We further investigated the presence of genes involved in the synthesis of apocarotenoids namely crocins, picrocrocin, and safranal that are produced in the stigma of C. sativus. These apocarotenoids impart red color, bitter taste, and pungent aroma to stigma of saffron and have various medicinal properties [7]. The molecular basis of apocarotenoid biosynthesis in C. sativus has been well studied using transcriptomics studies [27, 28]. In the present study, the genes encoding the enzymes involved in carotene biosynthesis pathway, regulating the apocarotenoids synthesis, were present in the C. sativus genome (Supplementary Figure 4). This is the first *de-novo* draft genome sequence of *Crocus* sativus that needs to be complemented with the long read sequencing technology (PacBio) to fill in the gaps in the present genome to generate a complete genome sequence. However, this draft genome sequence, in addition to revealing previous unknown genomic information on saffron, will be used as a reference genome for future genome sequencing attempts in saffron.

Conclusion:

It is of interest to establish a *de-novo* reference genome of *Crocus* sativus for the first time. *De-novo* assembly of *Crocus* sativus has been constructed using only Illumina short read, thus, has large number of scaffolds and assembly gaps thereby indicating that our assembly should be referred to as a draft genome sequence. Nevertheless, this study represents the first attempt to assemble the *Crocus* sativus genome, providing a valuable resource for the community to facilitate future research.

Conflict of Interest statement:

The authors declare no conflict of Interest.

Acknowledgments:

Authors are grateful to Mr. Shanu Magotra, School of Biotechnology, University of Jammu, J &K for his help in sample collection from Kishtwar, Jammu and Kashmir. Authors are thankful to NCBS CIFF facility for their help in flow cytometry analysis. SA is thankful to DST-Women Scientist-A research grant (SR/WOS-A/LS-96-2018) for funding this research. RS acknowledges NCBS (TIFR) and funding through her Mazundar-Shaw Chair in Computational Biology at Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.

References:

- [1] Choi JY et al. Genome Biol. 2020, 21: 21 [PMID: 32019604]
- [2] Liu J et al. Genome Biol. 202021: 121 https://doi.org/10.1186/s13059-020-02029-9
- [3] Harkess A et al. Nat Commun. 20178: 1279 [PMID: 29093472]
- [4] Alonge M et al. Genetics. 2020 216: 599 [PMID: 32796007]
- [5] Xia E et al. Mol Plant.2020 13: 1013 [PMID: 32353625]

- [6] Magotra S et al. Sci Rep.2021 11: 5454. [PMID: 33750799]
- [7] Maggi MA et al. Molecules 2020 25: 5618 [PMID: 33260389]
- [8] Brandizzi F and Caiola MG, Giornale Bot. Italiano.1996 130: 643
- [9] Brandizzi F and Caiola MG, Plant Syst. Evol. 1998 211: 149
- [10] Rubio-Moraga A *et al. BMC Res. Notes.* 2009 **2**: 189 [PMID: 19772674]
- [11] Siracusa L et al. Genet. Resour. Crop Evol. 2013 60: 711. DOI: 10.1007/s10722-012-9868-9
- [12] Busconi M et al. Plant Sci.2018 277: 1 [PMID: 30466573]
- [13] Mir MA et al. Saudi Journal of Biological Sciences 2021 28: 1308 [PMID: 33613060]
- [14] Alsayied NF et al. Ann Bot. 2015 116: 359 [PMID: 26138822]
- [15] Nemati Z et al. Mol Phylogenet Evol. 2019 136: 14 [PMID: 30946897]
- [16] Edwards D and Batley J,*Plant Biotech*.2010 8: 2 [PMID: 19906089]
- [17] https://www.biorxiv.org/content/10.1101/2021.06.23.449592 v1
- [18] Marçais G and Kingsford C,*Bioinformatics*. 201127: 764 [PMID: 21217122]
- [19] Rogers SO and Bendich AJ. In *Plant molecular biology manual* (ed. S. B. Gelvin and R. A. Schilperoort) 1994. 2nd edition, vol. D1:1–8. https://doi.org/10.1007/978-94-011-0511-8_12
 [20] Andrews S. 2010
- http://www.bioinformatics.babraham.ac.uk/projects/fastqc [21] Bolger AM *et al. Bioinforma Oxf Engl.*2014 **30:** 2114[PMID:
- 24695404]
- [22] Luo R et al. Gigascience.2012 1: 18 [PMID: 23587118]
- [23] Zimin AV et al. Bioinformatics. 2013 29: 2669 [PMID: 23990416]
- [24] Chikhi R and Madvedev P, Bioinformatics. 2013 30: 31 [PMID: 23732276]
- [25] Simao FA et al. Bioinformatics. 2015 31: 3210 [PMID: 26059717]
- [26] Langmead B Curr. Protoc. *Bioinforma*. 2010 Chapter11: 11.7.1 [PMID: 21154709]
- [27] Baba SA et al. BMC Genomics.2015 16: 698 [PMID: 26370545]
- [28] Jain M et al., Sci Rep.2016 6: 22456. [PMID: 26936416]
- [29] Li H and Durbin R, Bioinformatics.2010 26: 589 [PMID: 20080505]
- [30] Ranallo-Benavidez TR *et al. Nat Commun.* 2020 **11**:1432 [PMID: **32188846**]
- [31] Smit AFA et al., 2010 http://www.repeatmasker.org
- [32] Beier S et al. Bioinformatics. 2017 33: 2583 [PMID: 28398459]
- [33] Campbell MS *et al. Curr Protoc. Bioinforma*. 2014 **48**:4.11.1 [PMID: **25501943**]
- [34] Jia Y et al. Nucleic Acids Research. 2018 46: W71 [PMID: 29788377]
- [35] Jinpu J et al. Nucleic Acids Research. 2017 45: D1040 [PMID: 27924042]
- [36] Xu L et al. NucleicAcidsRes. 201947: W52 [PMID: 31053848]
- [37] Goodstein DM et al. Nucleic Acids Res.2012 40: D1178 [PMID: 22110026]
- [38] Moriya Y et al. NucleicAcidsRes. 2007 35:W182 [PMID: 17526522]
- [39] http://caps.ncbs.res.in/download/csat.
- [40] Zhang Y et al. FrontPlantSci. 2019 10:1274 [PMID: 31681373]
- [41] Wang Z et al. Plant J.2012 72: 461 [PMID: 22757964]
- [42] Feng S et al. Front. Genet. 2016 7:113 [PMID: 27379163]
- [43] Qian X et al. BMC genomics. 2019 20: 857 [PMID: 31726972]

Supplementary materials

Supplementary Figure 1: Trancription factors identified in Crocus sativus genome wherein MYB & MYB related TFs were most abundant.

	nalis	tis	thenica					
CSativo	Aofficia	e equest	Shent	O Sativia	Clus	ster count	Protein count	t
					7328	5	51803	
					3480	1	4755	
					2510		7914	
					950		3653	
					928		4853	
					914		5843	
					836		2736	
					700		2341	
					595		2770	
					587		3279	
					577		2819	
					573		2003	
					364		1602	
					353		2012	
					348		2128	
					326		1499	
					319		1749	
					225		1112	
					222		829	
					181		903	
C_sativus	A_officinalis	P_equestris	A_sl	henzhenica	a 🔵 O_	sativa		

Supplementary Figure 2: Overlapping cluster numbers between each pair of plant species representing common clusters (7328) among five plant species and unique cluster (2510) to Crocus sativus.

Bioinformation 18(1): 1-13 (2022)

Supplementary Figure 3: Heatmap of overlapping cluster numbers between each pair of plant species representing more number of overlapping clusters between Crocus sativus and Asparagus officinalis.

Supplementary Figure 4: Carotene biosynthesis pathway in Crocus sativus that was found complete with all the genes in the pathway.

©Biomedical Informatics (2022)

Supplementary Table 1: Total raw data of 321.36 Gigabases obtained from two insert size (500 bp and 800 bp) libraries using Illumina sequencing with an overall coverage of ~92X. The genome size was estimated as 3.5 Gigabases (3,578,575,507 bases).

(3,376,373,3	07 Dases).			
Libraries	Sample	% GC	Sequences	Data
insert	Name		(Million	(in
Size			Read)	Gigabases)
800	Lib1_800_R1	46%	93.2	13.98
800	Lib1_800_R2	46%	93.2	13.98
	Lib2_800_R1	46%	357.8	53.68
	Lib2_800_R2	46%	357.8	53.68
500	Lib3_500_R1	46%	300.1	45.02
	Lib3_500_R2	46%	300.1	45.02
	Lib4_500_R1	46%	320.0	48.01
	Lib4_500_R2	46%	320.0	48.01
Total			2142.2	321 36

Supplementary Table 3: Classification of repetitive sequences in C. sativus genome representing abundance of Simple repeats and LTRs.

Repetitive region	Numbers
Simple repeats	415561
LTR	260472
Low_complexity	64624
DNA	64205
LINE	45739
Satellite	3946
RC_Helitron	3072
rRNA	2749
SINE	848
tRNA	650
Other	340
snRNA	54
Retroposon	15
Total	862275

Supplementary Table 7: Transcription factors identified in *C.sativus* genome representing more relative abundance of MYB edited TFs as compared to others.

Transcription factors	Numbers	Percentage(%)
MYB & MYB related	648	11.32
bHLH	524	9.15
C2H2	378	6.6
NAC	340	5.94
FAR1	290	5.06
СЗН	283	4.94
ERF	264	4.61
bZIP	234	4.09
WRKY	217	3.79
B3	194	3.39
G2-like	171	2.99
HD-ZIP	142	2.48
GRAS	133	2.32
Trihelix	128	2.24

M-type MADS	122	2.13
ARF	117	2.04
LBD	98	1.71
HSF	90	1.57
GATA	85	1.48
MIKC MADS	79	1.38
HB-other	77	1.34
TALE	65	1.14
Nin-like	65	1.14
Dof	61	1.07
TCP	58	1.01
AP2	58	1.01
NF-YC	55	0.96
CAMTA	51	0.89
SBP	49	0.86
BES1	49	0.86
NF-YB	47	0.82
ARR-B	41	0.72
ZF-HD	40	0.7
E2F/DP	38	0.66
GeBP	37	0.65
NF-YA	35	0.61
CPP	34	0.59
CO-like	33	0.58
WOX	30	0.52
GRF	29	0.51
DBB	28	0.49
YABBY	23	0.4
S1Fa-like	20	0.35
EIL	20	0.35
BBR-BPC	20	0.35
SRS	19	0.33
LSD	18	0.31
RAV	15	0.26
NF-X1	15	0.26
STAT	14	0.24
Whirly	13	0.23
VOZ	9	0.16
HRT-like	8	0.14
HB-PHD	8	0.14
LFY	5	0.09
SAP	2	0.03

Supplementary Table 2: Mapping	WGS raw reads and previous published to	ranscriptome data to Cs	s_Assembly_2.
Data Type	WGS raw reads in present study	Csatinus	C sativus

	······	transcripts (Jain et al., 2016)	transcriptome raw reads (Baba et al 2015)
Source of Data	Present study	Jain et al., 2016	Baba et al 2015
Total number of reads/transcripts	2135957246	327920	59043670
Mapped reads/transcripts	1864292472	327643	54330850
Mapping Percentage	87.28 %	99.92 %	92.02 %

_ Supplementary Table 4: SSR markers from Crocus sativus draft genome (Cs_Assembly_2) depicting the more relative abundance of monomeric repeat microsatellite.

SSR types	count	relative %age	Most abundant	%age
monomeric repeat microsatellite	486140	50.4%	"A"	44.6 %
dinucleotide repeat microsatellite	294819	30.5%	"TA"	16.5 %
trinucleotide repeat microsatellite	146991	15.2%	"TTG"	5.72 %
Tetranucleotide repeat microsatellite	15375	1.59%	"AAAT"	7.7 %
Pentanucleotide repeat microsatellite	8596	0.9%	"TATAT"	3.2 %
Hexanucleotide repeat microsatellite	12310	1.27%	"TAACCC"	5.3 %
Total	964231			

 Supplementary Table 5: Number of genes annotated against NR and Viridiplantae database depicting more number of proteins annotated against Viridiplantae database.

 Databases
 Total maker annotated
 Total annotated proteins
 >40% percentage identity &> 70% query coverage
 Unique accession numbers

 Viridiplantae
 254038
 146118
 107553
 52546

 NR
 254038
 143745
 107385
 52436

Supplementary Table 6: Total number of annotated genes associated with total GO terms, Biological Process, Cellular Components and Molecular Functions
Annotated Genes associated with Gene
Total number
CO terms Biological Process

Ontology (GO)			i otar namoer			cino piologicai	1000035		oo temb centual component				
GO Terms		43649	GO Ids	Gene number	Percentage	Term description	GO Ids	Gene number	Percentage	Term description			
Biological Proce	esses		22092	GO:0009987	17240	39.5	cellular process	GO:0005623	15718	36.0	cell		
Cellular compo	onent		24399	GO:0008152	16215	37.1	metabolic process	GO:0044464	15540	35.6	cell part		
Molecular Func	tion		34442	GO:0065007	4111	9.4	biological regulation	GO:0044422	4914	11.3	organelle part		
				GO:0050789	3474	8	regulation of biological process	GO:0043226	12294	28.2	organelle		
GO terms Molecular Functio			on	GO:0051179	3028	6.9	localization	GO:0044425	12152	27.8	membrane part		
GO Ids	Gene number	Percentage	Term description	GO:0071840	2814	6.4	cellular component organization or biogenesis	GO:0016020	13123	30.1	membrane		
GO:0003824	21143	48.4	catalytic activity	GO:0050896	2592	5.9	response to stimulus	GO:0032991	5405	12.4	protein-containing complex		
GO:0005215	2226	5.1	transporter activity	GO:0023052	936	2.1	signaling	GO:0099080	313	0.7	supramolecular complex		
GO:0005488	21987	50.4	binding	GO:0032502	605	1.4	developmental process	GO:0031974	920	2.1	membrane-enclosed lumen		
GO:0140104	62	0.1	molecular carrier activity	GO:0048519	507	1.2	negative regulation of biological process	GO:0005576	559	1.3	extracellular region		
GO:0060089	186	0.4	molecular transducer activity	GO:0032501	496	1.1	multicellular organismal process	GO:0044421	66	0.2	extracellular region part		
GO:0098772	700	1.6	molecular function	GO:0048518	489	1.1	positive regulation of	GO:0009295	16	0.0	nucleoid		

Bioinformation 18(1): 1-13 (2022)

GO:0045735	41		0.1 nut	ulator rient reservoir	GO:	0000003	317	0.7	biological process reproduction	i	GO:0055044	107	0.2	symplast	
GO:0016209	224		0.5 anti 2.0 trar	ivity ioxidant activity	GO:	0022414	316 186	0.7	reproductive proc	cess	GO:0030054	110	0.3	cell junction	m part
GO:0038024	7		0.0 car	ulator activity go receptor	GO:	0019740	117	0.4	nitrogen utilizatio	on	GO:0044217 GO:0044215	141	0.3	other organis	m
GO:0045182	5		acti 0.0 trar	vity nslation regulator	GO:	0040007	69	0.2	growth		GO:0019012	17	0.0	virion	-
GO:0005198	1315		acti 3.0 stru	vity actural molecule	GO:	0002376	57	0.1 i	immune system p	process	GO:0044423	17	0.0	virion part	-
GO:0031386	6		0.0 pro	vity itein tag	GO:	0098754	33 22	0.1	detoxification		- 100				-
	_	- 12			GO: GO:	0040011 0008283	13 10	0 1	locomotion cell proliferation					-	-
					GO: GO:	0015976 0022610	9 9	0 0	carbon utilization biological adhesic	m					
					GO:	0043473	3	0]	pigmentation						
Supplementa Orthovenn2.	ry Table 8: Orthol Common core pro	logy analy tein cluste	sis of <i>C. satit</i> rs and unique	proteins clusters	ots plants of associated with	same order na h Biological pr	amely Aspara ocesses, cellu	igus officinalis, lar component, a	Phalaenopsis equ and Molecular fu	nctions have be	<i>ia shenzhenica</i> alon en identified.	g with a model	monocot pla	nt Oryza sativus	(Rice) using
Species	Proteins	Clust ers	Singleto ns		GO_IDs	Processes	Protein count	GO_Terms	P- value						
C_sativus	52988	14925	24611		GO:0006 952	defense response	26	biological_pr cess	o 1.79E -11						
A_officinal is	27395	12625	8637		GO:0009 451	RNA modificati	73	biological_pr cess	o 1.44E -09						
P_equestri s	29415	13495	9391		GO:0015 074	DNA integratio	2	biological_pr cess	o 1.41E -08						
A_shenzhe nica	21743	12425	4275		GO:0006 355	regulation of	124	biological_pr cess	4.57E -06						
						transcript ion, DNA-									
O_sativa	52424	15682	13175		GO:0006	templated rRNA	56	biological_pr	o 1.19E						
	Cor	nmon cluc	tor his proce	ee	364	processin g	Common	cess	-05			Unique cluster	bio process		
GO_IDs	Processes	Protei n count	GO_IDs	Processes	Protein count		GO_IDs	Processes	Prote in count	GO_IDs	Processes	Protein count	GO_IDs	Processes	Protein count
GO:00000 03	reproduction	199	GO:0015 833	peptide transport	2		GO:0005 575	cellular_comp onent	p 97	GO:0000 003	reproduction	52	GO:0015 893	drug transport	1
GO:00002 80	nuclear division	53	GO:0015 849	organic acid transport	10		GO:0005 576	extracellular region	7	GO:0000 280	nuclear division	3	GO:0015 931	nucleobase- containing compound transport	7
GO:00007 46	conjugation	1	GO:0015 893	drug transport	5		GO:0005 622	intracellular	43	GO:0000 746	conjugation	1	GO:0015 976	carbon utilization	2
GO:00017 75	cell activation	2	GO:0015 931	nucleobase- containing compound	22		GO:0005 634	nucleus	18	GO:0001 816	cytokine production	1	GO:0015 979	photosynthes is	11
GO:00023 76	immune system process	43	GO:0015 976	carbon utilization	2		GO:0005 730	nucleolus	4	GO:0002 376	immune system process	7	GO:0016 032	viral process	7
GO:00059 75	carbohydrate metabolic	214	GO:0015 979	photosynthes is	59		GO:0005 739	mitochondric	on 67	GO:0005 975	carbohydrate metabolic	66	GO:0016 043	cellular component	71
GO:00059 76	polysaccharid e metabolic process	67	GO:0016 032	viral process	29		GO:0005 773	vacuole	9	GO:0005 976	polysaccharid e metabolic process	34	GO:0016 049	cell growth	20
GO:00060 66	alcohol metabolic	7	GO:0016 043	cellular component	315		GO:0005 783	endoplasmic reticulum	5	GO:0006 066	alcohol metabolic	5	GO:0016 050	vesicle organization	10
GO:00060 81	process cellular aldehyde metabolic	14	GO:0016 049	cell growth	43		GO:0005 794	Golgi apparatus	4	GO:0006 081	process cellular aldehyde metabolic	2	GO:0016 070	RNA metabolic process	125
GO:00060 82	organic acid metabolic	262	GO:0016 050	vesicle organization	21		GO:0005 840	ribosome	3	GO:0006 082	organic acid metabolic	75	GO:0016 192	vesicle- mediated	42
GO:00060 91	process generation of precursor metabolites	52	GO:0016 070	RNA metabolic process	746		GO:0005 856	cytoskeleton	3	GO:0006 091	process generation of precursor metabolites	21	GO:0016 458	transport gene silencing	1
GO:00061 12	energy reserve metabolic	2	GO:0016 192	vesicle- mediated transport	136		GO:0009 536	plastid	23	GO:0006 119	oxidative phosphorylati on	9	GO:0017 144	drug metabolic process	2
GO:00061 19	process oxidative phosphorylat ion	8	GO:0016 458	gene silencing	33		GO:0009 579	thylakoid	11	GO:0006 139	nucleobase- containing compound metabolic process	94	GO:0019 538	protein metabolic process	59
GO:00061 39	nucleobase- containing compound metabolic process	503	GO:0017 144	drug metabolic process	2		GO:0016 020	membrane	122	GO:0006 259	DNA metabolic process	14	GO:0019 748	secondary metabolic process	11
GO:00062 59	DNA metabolic	90	GO:0019 538	protein metabolic process	273		GO:0030 313	cell envelope	1	GO:0006 260	DNA replication	3	GO:0022 406	membrane docking	3
GO:00062 60	DNA replication	37	GO:0019 748	secondary metabolic process	26		GO:0030 684	preribosome	1	GO:0006 281	DNA repair	5	GO:0022 411	cellular component disassembly	6

Bioinformation 18(1): 1-13 (2022)

GO:00062 81	DNA repair	46	GO:0022 406	membrane docking	10	GO:0031 982	vesicle	1	GO:0006 304	DNA modification	1	GO:0022 607	cellular component	9
GO:00063 04	DNA modification	12	GO:0022 411	cellular component disassembly	20	GO:0032 991	macromolecul ar complex	1	GO:0006 323	DNA packaging	1	GO:0031 023	microtubule organizing center organization	1
GO:00063 23	DNA packaging	8	GO:0022 607	cellular component assembly	53	GO:0042 579	microbody	1	GO:0006 396	RNA processing	47	GO:0031 640	killing of cells of other	2
GO:00063 54	DNA- templated transcription, elongation	7	GO:0031 023	microtubule organizing center organization	2	GO:0042 597	periplasmic space	1	GO:0006 412	translation	46	GO:0032 196	transposition	3
GO:00063 96	RNA processing	341	GO:0031 647	regulation of protein stability	1	GO:0043 226	organelle	26	GO:0006 457	protein folding	6	GO:0032 501	multicellular organismal process	102
GO:00064 12	translation	208	GO:0032 501	multicellular organismal process	372	GO:0043 229	intracellular organelle	26	GO:0006 464	cellular protein modification process	91	GO:0032 502	development al process	118
GO:00064 57	protein folding	31	GO:0032 502	development al process	449	GO:0043 231	intracellular membrane bounded organelle	1	GO:0006 508	proteolysis	50	GO:0032 989	cellular component morphogene sis	24
GO:00064 64	cellular protein modification process	335	GO:0032 989	cellular component morphogene sis	70	GO:0043 234	protein complex	4	GO:0006 518	peptide metabolic process	12	GO:0034 622	cellular macromolecu lar complex assembly	15
GO:00065 08	proteolysis	188	GO:0034 622	cellular macromolecu lar complex assembly	78	GO:0044 464	cell part	79	GO:0006 629	lipid metabolic process	48	GO:0040 007	growth	25
GO:00065 18	peptide metabolic process	103	GO:0040 007	growth	80	GO:0055 044	symplast	6	GO:0006 725	cellular aromatic compound metabolic process	116	GO:0042 044	fluid transport	2
GO:00066 29	lipid metabolic process	188	GO:0040 011	locomotion	7				GO:0006 766	vitamin metabolic process	10	GO:0042 180	cellular ketone metabolic process	2
GO:00066 62	glycerol ether metabolic process	9	GO:0042 044	fluid transport	2	Common_o	cluster_Molecular_f	function	GO:0006 793	phosphorus metabolic process	83	GO:0042 254	ribosome biogenesis	8
GO:00067 25	cellular aromatic compound metabolic process	595	GO:0042 180	cellular ketone metabolic process	27	GO_IDs	Processes	Prote in count	GO:0006 807	nitrogen compound metabolic process	161	GO:0042 440	pigment metabolic process	4
GO:00067 30	one-carbon metabolic process	3	GO:0042 254	ribosome biogenesis	115	GO:0000 166	nucleotide binding	27	GO:0006 810	transport	95	GO:0042 445	hormone metabolic process	2
GO:00067 66	vitamin metabolic process	36	GO:0042 440	pigment metabolic process	33	GO:0001 871	pattern binding	2	GO:0006 811	ion transport	36	GO:0043 062	extracellular structure organization	3
GO:00067 93	phosphorus metabolic process	235	GO:0042 445	hormone metabolic process	11	GO:0001 882	nucleoside binding	14	GO:0006 818	hydrogen transport	9	GO:0043 094	cellular metabolic compound salvage	5
GO:00068 05	xenobiotic metabolic process	2	GO:0042 886	amide transport	1	GO:0003 674	molecular_fun ction	89	GO:0006 865	amino acid transport	4	GO:0043 101	purine- containing compound salvage	3
GO:00068 07	nitrogen compound metabolic process	808	GO:0043 062	extracellular structure organization	9	GO:0003 676	nucleic acid binding	134	GO:0006 869	lipid transport	4	GO:0043 170	macromolecu le metabolic process	227
GO:00068 10	transport	328	GO:0043 094	cellular metabolic compound salvage	20	GO:0003 824	catalytic activity	4	GO:0006 914	autophagy	3	GO:0043 412	macromolecu le modification	35
GO:00068 11	ion transport	95	GO:0043 101	purine- containing compound salvage	2	GO:0004 386	helicase activity	2	GO:0006 928	movement of cell or subcellular component	4	GO:0043 603	cellular amide metabolic process	11
GO:00068 18	hydrogen transport	16	GO:0043 170	macromolecu le metabolic process	1177	GO:0004 497	monooxygenas e activity	3	GO:0006 996	organelle organization	37	GO:0044 237	cellular metabolic process	296
GO:00068 36	neurotransmi tter transport	3	GO:0043 412	macromolecu le modification	222	GO:0004 871	signal transducer activity	1	GO:0007 005	mitochondrion organization	5	GO:0044 238	primary metabolic process	181
GO:00068 65	amino acid transport	12	GO:0043 449	cellular alkene metabolic process	1	GO:0005 215	transporter activity	76	GO:0007 029	endoplasmic reticulum organization	3	GO:0044 255	cellular lipid metabolic process	37
GO:00068 69	lipid transport	17	GO:0043 603	cellular amide metabolic process	94	GO:0005 488	binding	55	GO:0007 031	peroxisome organization	1	GO:0044 419	interspecies interaction between organisms	4
GO:00069 14	autophagy	9	GO:0044 237	cellular metabolic process	1374	GO:0005 496	steroid binding	3	GO:0007 033	vacuole organization	3	GO:0045 229	external encapsulatin g structure organization	8
GO:00069 28	movement of cell or subcellular component	19	GO:0044 238	primary metabolic process	879	GO:0005 515	protein binding	36	GO:0007 049	cell cycle	14	GO:0045 333	cellular respiration	20
GO:00069 49	syncytium formation	1	GO:0044 255	cellular lipid metabolic process	156	GO:0008 233	peptidase activity	40	GO:0007 059	chromosome segregation	4	GO:0046 483	heterocycle metabolic process	115

Bioinformation 18(1): 1-13 (2022)

GO:00069 96	organelle organization	155	GO:0044 419	interspecies interaction between organisms	28	GO:0008 289	lipid binding	3	GO:0007 154	cell communicatio n	43	GO:0046 903	secretion	4
GO:00069 97	nucleus organization	9	GO:0045 229	external encapsulatin g structure organization	19	GO:0008 641	small protein activating enzyme activity	1	GO:0008 037	cell recognition	3	GO:0048 284	organelle fusion	8
GO:00070 05	mitochondrio n organization	40	GO:0045 333	cellular respiration	32	GO:0009 055	electron carrier activity	4	GO:0008 150	biological_pro cess	685	GO:0048 285	organelle fission	2
GO:00070 29	endoplasmic reticulum organization	6	GO:0046 483	heterocycle metabolic process	604	GO:0016 209	antioxidant activity	4	GO:0008 152	metabolic process	407	GO:0048 469	cell maturation	4
GO:00070 30	Golgi organization	2	GO:0046 490	isopentenyl diphosphate metabolic process	3	GO:0016 491	oxidoreductas e activity	56	GO:0008 283	cell proliferation	2	GO:0048 511	rhythmic process	2
GO:00070 31	peroxisome organization	7	GO:0046 794	transport of virus	3	GO:0016 597	amino acid binding	1	GO:0008 643	carbohydrate transport	1	GO:0050 896	response to stimulus	202
GO:00070 33	vacuole organization	11	GO:0046 903	secretion	20	GO:0016 740	transferase activity	127	GO:0008 655	pyrimidine- containing compound	1	GO:0051 179	localization	52
GO:00070 49	cell cycle	115	GO:0048 284	organelle fusion	20	GO:0016 787	hydrolase activity	98	GO:0009 116	nucleoside metabolic	18	GO:0051 186	cofactor metabolic	20
GO:00070 59	chromosome segregation	41	GO:0048 285	organelle fission	10	GO:0016 829	lyase activity	4	GO:0009 117	nucleotide metabolic process	23	GO:0051 234	establishmen t of localization	98
GO:00071 54	cell communicati on	145	GO:0048 469	cell maturation	19	GO:0016 853	isomerase activity	13	GO:0009 225	nucleotide- sugar metabolic process	2	GO:0051 258	protein polymerizati on	1
GO:00071 55	cell adhesion	3	GO:0048 511	rhythmic process	14	GO:0016 874	ligase activity	1	GO:0009 308	amine metabolic process	3	GO:0051 261	protein depolymeriz ation	5
GO:00080 37	cell recognition	6	GO:0050 877	neurological system process	2	GO:0019 213	deacetylase activity	3	GO:0009 404	toxin metabolic process	1	GO:0051 276	chromosome organization	7
GO:00081 50	biological_pr ocess	2875	GO:0050 896	response to stimulus	786	GO:0019 239	deaminase activity	1	GO:0009 657	plastid organization	9	GO:0051 301	cell division	4
GO:00081 52	metabolic process	1906	GO:0051 179	localization	197	GO:0019 842	vitamin binding	2	GO:0009 914	hormone transport	1	GO:0051 604	protein maturation	3
GO:00082 83	cell proliferation	10	GO:0051 181	cofactor transport	5	GO:0030 234	enzyme regulator activity	6	GO:0009 987	cellular process	337	GO:0051 606	detection of stimulus	1
GO:00086 43	carbohydrate transport	14	GO:0051 186	cofactor metabolic process	115	GO:0030 246	carbohydrate binding	6	GO:0010 118	stomatal movement	6	GO:0051 640	organelle localization	7
GO:00086 55	pyrimidine- containing compound salvage	7	GO:0051 189	prosthetic group metabolic process	5	GO:0033 218	amide binding	1	GO:0015 031	protein transport	40	GO:0051 641	cellular localization	39
GO:00091 16	nucleoside metabolic process	49	GO:0051 234	establishmen t of localization	337	GO:0043 021	ribonucleoprot ein complex binding	2	GO:0015 074	DNA integration	2	GO:0051 704	multi- organism process	38
GO:00091 17	nucleotide metabolic process	76	GO:0051 258	protein polymerizati on	4	GO:0043 167	ion binding	119	GO:0015 833	peptide transport	1	GO:0065 003	macromolecu lar complex assembly	9
GO:00092 25	nucleotide- sugar metabolic process	16	GO:0051 261	protein depolymeriz ation	2	GO:0045 735	nutrient reservoir activity	4	GO:0015 849	organic acid transport	3	GO:0065 007	biological regulation	169
GO:00092 92	genetic transfer	2	GO:0051 276	chromosome	64	GO:0046 906	tetrapyrrole binding	1				GO:0071 555	cell wall organization	12
GO:00093 08	amine metabolic process	25	GO:0051 301	cell division	33	GO:0048 037	cofactor binding	11						
GO:00094 04	toxin metabolic process	7	GO:0051 604	protein maturation	33	GO:0051 213	dioxygenase activity	2		Ur	nique_cluster_M	olecular_fund	tion	
GO:00096 57	plastid	34	GO:0051 606	detection of stimulus	8	GO:0051 540	metal cluster binding	2	GO_IDs	Processes	Protein_co	GO_IDs	Processes	Protein_co
GO:00099 14	hormone transport	1	GO:0051 640	organelle localization	27	GO:0060 089	molecular transducer activity	1	GO:0000 166	nucleotide binding	11	GO:0016 740	transferase activity	41
GO:00099 87	cellular process	1407	GO:0051 641	cellular localization	162				GO:0001 882	nucleoside binding	10	GO:0016 787	hydrolase activity	29
GO:00101 18	stomatal movement	17	GO:0051 704	multi- organism process	113	Unique_cl	uster_Cellular_con	nponent	GO:0003 674	molecular_fun ction	32	GO:0016 829	lyase activity	1
GO:00101 91	mucilage metabolic process	1	GO:0052 314	phytoalexin metabolic process	1	GO_IDs	Processes	Prote in count	GO:0003 676	nucleic acid binding	37	GO:0016 853	isomerase activity	3
GO:00150 31	protein transport	161	GO:0065 003	macromolecu lar complex assembly	52	GO:0005 575	Cellular component	13	GO:0003 824	catalytic activity	1	GO:0019 842	vitamin binding	1
GO:00150 74	DNA integration	2	GO:0065 007	biological regulation	768	GO:0005 576	extracellular region	5	GO:0004 497	monooxygena se activity	3	GO:0030 234	enzyme regulator activity	3
GO:00157 91	polyol transport	1	GO:0071 555	cell wall organization	20	GO:0005 622	intracellular	1	GO:0005 215	transporter activity	27	GO:0030 246	carbohydrate binding	2

Bioinformation 18(1): 1-13 (2022)

