
ARTICLE

Machine learning aided construction of the quorum
sensing communication network for human gut
microbiota
Shengbo Wu 1,2, Jie Feng 3, Chunjiang Liu 1,2, Hao Wu 4, Zekai Qiu 1, Jianjun Ge 1, Shuyang Sun 1,

Xia Hong 1, Yukun Li 1, Xiaona Wang 1, Aidong Yang 5✉, Fei Guo 6✉ & Jianjun Qiao 1,4,7✉

Quorum sensing (QS) is a cell-cell communication mechanism that connects members in

various microbial systems. Conventionally, a small number of QS entries are collected for

specific microbes, which is far from being able to fully depict communication-based complex

microbial interactions in human gut microbiota. In this study, we propose a systematic

workflow including three modules and the use of machine learning-based classifiers to col-

lect, expand, and mine the QS-related entries. Furthermore, we develop the Quorum Sensing

of Human Gut Microbes (QSHGM) database (http://www.qshgm.lbci.net/) including 28,567

redundancy removal entries, to bridge the gap between QS repositories and human gut

microbiota. With the help of QSHGM, various communication-based microbial interactions

can be searched and a QS communication network (QSCN) is further constructed and

analysed for 818 human gut microbes. This work contributes to the establishment of the

QSCN which may form one of the key knowledge maps of the human gut microbiota,

supporting future applications such as new manipulations to synthetic microbiota and

potential therapies to gut diseases.
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Human gut microbiota is a dynamic and complex microbial
system1 that links to the pathogen colonization
resistance2, immune system regulation3, and human

health maintenance4. Recent breakthroughs in high-throughput
screening and multi-omics technologies have enabled the detec-
tion and quantification of the microbiota composition5 in the
human gut system. More and more research suggests that engi-
neering the gut microbiota and regulating the microbial
interactions6,7 can be viewed as potential novel therapeutics for
treating diverse gut diseases8.

Quorum sensing (QS), a population-level communication
mechanism, has huge potential to be engineered for regulating
microbial interactions and developing future therapies9,10. Gen-
erally, there are diverse QS signals termed as microbial languages
for intraspecies (N-Acyl-homoserine lactones, AHLs; diffusible
signal factors, DSFs; 4-hydroxy-2-alkylquinolines, HAQs; cholera
autoinducer 1, CAI-1; auto-inducing peptides, AIPs; dialkylre-
sorcinols; photopyrones)11,12 and interspecies (autoinducer 2, AI-
2; indole) communications13,14. The above QS languages in
natural microbial systems such as gut microbiota play a sig-
nificant role in the QS-based interactions, which are closely
relevant to various diseases15. For example, N-(3-oxodecanoyl)-L-
homoserine lactone, a common AHL-type signal, plays an
important role in the modulation of the gut immune system by
inducing neutrophils apoptosis16 and attenuating innate immune
responses via disruption of NF-kB signaling17, thus providing
better colonization for Pseudomonas aeruginosa in the host. DSF
analogs were verified to strengthen the mucosal barrier and
reduce antibiotic tolerance of P. aeruginosa18. Different hosts can
utilize the aryl hydrocarbon receptor (AhR) to “listen in” the
concentration of the HAQs from P. aeruginosa to regulate
immune responses dynamically19. CAI-1 from V. cholerae can be
designed to be recognized by an engineered L. lactis specifically in
the gut, and the lactic acid from the engineered strain can repress
the infection of V. cholerae in turn20. AI-2 produced by Rumi-
nococcus obeum could repress several colonization factors of
Vibrio cholerae, thus restricting the colonization of V. cholerae,
which leads to diarrheal diseases21. Furthermore, indole has been
confirmed to increase the expression of anti-inflammatory genes,
elicit proinflammatory effects, affect the immune system of hosts,
and decrease pathogen colonization14,22. The evidence stated
above suggests that manipulations of the level of diverse QS
languages such as AI-223 in microbial communication play an
important role in diverse host-centric applications for gut
microbial systems. Therefore, in our previous study24, we have
proposed the “QS communication network” (QSCN), a unifying
concept for vertical and horizontal QS-based interactions
implemented through producing, transducing, and responding to
QS signaling molecules, to indicate its important role in host-
centric probiotic manipulations and various practical applications
of synthetic microbial consortia. QSCN calls for a comprehensive
QS database, which includes the collections of human gut
microbes and QS repository, to bridge the gap between existing
QS-related repositories and human gut microbiota.

Some existing databases relevant to gut microbiota or diverse
QS systems have been constructed separately to provide data
integration and interpretation for relevant research. With respect
to the gut microbiota, the gutMEGA database25 contains thou-
sands of gut microbiota compositions (metagenomic sequences),
phenotypes, and experimental information. GMrepo26 focuses on
the annotated human gut metagenomes to facilitate the devel-
opment of human metagenomic data. BIO-ML27 includes 7,758
gut bacterial isolates, 3632 genome sequences, and diverse long-
itudinal multi-omics data. Particularly, VMH28 is a database that
has integrated thousands of metabolites, reactions, human genes,
microbes (818 strains), microbial genes, and food items that link

to hundreds of gut diseases and nutritional data. With regard to
QS, repositories of limited QS systems in Gram-negative and
Gram-positive bacteria have previously been curated to form
SigMol29 and Quorumpeps30, respectively. P2CS31,32 was con-
structed and updated for a two-component system (TCS), which
is a typical communicating system that is composed of a histidine
kinase receptor and a response regulator partner. Furthermore,
we have previously developed the QSIdb database33 to expand the
potential QS interference molecules for different QS systems. We
applied a pipeline including SMILES-based algorithms and
docking-based validations to obtain a potential QS interference
molecules dataset (73,073 compounds) from the existing com-
pounds in the PubChem database. Note that some recent data-
bases such as gutMDisorder34 have linked the human microbiota
and many macro-environmental factors together to describe the
intervention and regulation of various diseases. In addition,
exogenous active substances and endogenous host factors were
also collected for human microbiota into MASI35 and GIMICA36,
respectively, to provide information on the interactions of various
substances and gut microbiota.

While gut microbiota and QS systems have been curated in
various databases, they have largely been collected separately so
far, which may limit the understanding of communication-based
complex microbial interactions in human gut microbiota. Fur-
thermore, existing studies have often focused on using limited
reported QS entries; novel QS entries mining and integration to
form a relatively complete network is yet to be further explored.
Although some biological networks such as metabolite-based
interaction networks have been relatively mature, they cannot
decipher complex regulatory relationships among microorgan-
isms, thus leading to the incompleteness of microbial interaction
networks.

In this study, we aim to address the above deficiencies through
a combination of various methods (a framework diagram can be
found in Supplementary Fig. 1). We firstly developed a systematic
workflow including entry collecting, expanding, and mining
modules to construct a QS repository for human gut microbiota.
In the collecting module, due to the intricate overlaps on QS and
two-component system (TCS) entries, we curated the annotated
QS and TCS (QS&TCS) entries carefully for each component in
the human gut microbiota to form a repository of reported QS
entries as inclusively as possible. Information gathering in this
module was also combined with machine learning (ML) algo-
rithms including random forest (RF), k-nearest neighbor (KNN),
support vector machine (SVM), and deep neural network (DNN)
to develop four classifiers, which were then used in the expanding
module to nominate further candidates of human gut QS entries
from existing (general-purpose) QS databases. These candidates
were finally analysed in the mining module, where protein
annotation, functional analysis, and homologous modeling were
combined to re-annotate and mine QS entries. These have led to a
QS database of human gut microbiota (QSHGM, http://www.
qshgm.lbci.net/) including the reported (21,383) and extended
(7184) QS entries, which offers user-friendly browsing and
searching functions to support various applications. With the
help of QSHGM, we can search complex regulation-based
interactions for different microbial consortia and further con-
structed a QSCN to visualize and decipher intricate QS-based
interactions for human gut microbiota. Finally, we identified key
challenges and suggest directions for the QSCN and how we can
engineer them to provide more future applications.

Results
The systematic workflow for QSHGM. We developed a sys-
tematic workflow which includes three modules (collecting,
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expanding, and mining modules) and four classifiers based on
ML algorithms to construct a QS repository for human gut
microbiota (Fig. 1). In the collecting module, we firstly obtained
213 recognized QS entries (Dataset I) from SigMol and Quor-
umpeps databases and curated their corresponding amino acid
sequences from the UniProt database. TCS entries play an
important role in microbial communications, which overlap with
QS, but it is difficult to separate them clearly. In this work, we
started by manually searching the 818 gut microbes from the
VMH database28 (Dataset II) to collect reported both QS and
TCS (QS&TCS) entries which are termed “positive samples”
(Dataset III, 21,383 entries) to cover the reported QS entries as
inclusively as possible for constructing a comprehensive microbial
communication database. The manual search was based on
commonly used QS (“quorum sensing”, “LuxR”, “tryptopha-
nase”) or TCS (“two-component”) annotations. The negative
samples (Dataset IV, 22,780 entries) were then obtained by
removing QS&TCS entries from typical proteomes in Dataset II,
such as Escherichia coli and Pseudomonas aeruginosa (more
details in Method section) that conform to QS cluster rules. These
rules were developed based on Dataset I through sequence

analysis, including evolution analysis, QS-relevant protein anno-
tations, and amino acid sequence descriptors comparison (more
details in Method section). In the expanding module, we obtained
an extended dataset (Dataset V, 14,573 entries) from the results of
the local BLASTP37 on Dataset I and II with the criteria of the E
value38 being smaller than 10-5, which is commonly used in the
sequence alignment to obtain homologs. Four different ML
algorithms (DNN, SVM, RF, and KNN) were used to construct
classifiers, which were trained and validated based on the above
positive (III) and negative samples (IV) to obtain more potential
QS entries. After excluding from Dataset V those which were
already collected as the reported QS&TCS entries in dataset III
(Dataset VI, 5320 entries), the remaining entries (Dataset VII,
9,253 entries) were then classified by the four ML-based classifiers
stated above. The output of these classifiers was further processed
in the mining module, where the union of the four positives
predicted by the four classifiers were divided into uncharacterized
positives (Dataset VIII, 534 entries) and annotated positives. The
uncharacterized positives were re-annotated, mined, and sorted
out manually with the help of UniProt39, NCBI (https://www.
ncbi.nlm.nih.gov/) and Phyre2 databases40. Furthermore, we
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Fig. 1 Schematic diagram of the systematic workflow including three modules. There are ten engaged datasets in our systematic workflow, i.e., 213
validated QS entries from Gram-positive (G+) and Gram-negative (G−) microbes (Dataset I) (Supplementary Data 1), 818 proteomes for the gut
microbiota from VMH and UniProt (Dataset II, https://pan.baidu.com/s/1o46nn1b7L5nvCqgpwW7Zlw. Password: tfnx), positive samples collected
manually from dataset I (Dataset III) (Supplementary Data 2), negative samples obtained from dataset I (Dataset IV) (Supplementary Data 3), results of
local BLASTP with E≤ 10-5 (Dataset V) (Supplementary Data 4), overlaps of the reported QS entries in dataset III and V (Dataset VI) (Supplementary
Data 5), proteins dataset excluded dataset VI for dataset V (Dataset VII) (Supplementary Data 6), uncharacterized positives classified by different ML-
based classifiers (Dataset VIII) (Supplementary Data 7), extended QS entries (Dataset IX) (Supplementary Data 8), and total data for QSHGM (Dataset X)
(Supplementary Data 10). There are another three abandoned datasets in the workflow of the systematic workflow, i.e., protein datasets with E > 10−5

(Output S1), negative ones classified by ML-based classifiers (Output S2), and proteins without QS functions (false positives) (Output S3, Supplementary
Data 9). Details of the above datasets are provided in Supplementary Table 1. Note that positive/negative/mixed datasets are colored in red/green/gray,
respectively.
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conducted the function analysis by checking their specific
annotations, sequence similarity, and domains (see more details
in Supplementary Data 11) for the annotated/re-annotated union
of positives to decide whether the entry has a QS function (true
positives, Dataset IX, 7,184 entries) or not (false positives, Output
S3, 438 entries), if so, whether it is a QS synthase or a QS
receptor. A combination of manual curation, BLASTP-based
expanding, and multiple ML-based classifications helped us
obtain as many potential QS entries as possible. Finally, the
extended QS entries and the reported QS&TCS entries were
combined together to form the QSHGM (Dataset X, 28,567
entries) database (http://www.qshgm.lbci.net/).

Reported and annotated QS entries. There are 84 autoinducer
synthases and 129 QS receptors in dataset I. With respect to
autoinducer synthases, we divided them into seven types, i.e.,
AHLs, DSFs, AI-2, indole, HAQs, CAI-1, and others. As a result,
AHLs synthases account for the vast majority, which among other
possibilities can be divided into two protein families, LuxI (from
Vibrio fischeri) and YenI (from Yersinia enterocolitica) (Fig. 2a).
With regard to QS receptors, we also divided them into seven
types, i.e., LuxR-type, TCS type, CAI-1 receptor, AI-2 receptor,
DSFs receptor, HAQs receptor, and other receptors (Fig. 2b).
LuxR and TCS type receptors account for the vast majority of QS
receptors. Similarly, LuxR-type receptors can be roughly divided
into two protein families, LuxR (from V. fischeri) and YenR (from
Y. enterocolitica). Note that the evolutionary trees of AHLs syn-
thases and their receptors counterpart are in a high similarity
(Fig. 2a, b), part of which was also identified by Gray et al.41. This
indicates that there is coevolution for AHLs synthases and their
corresponding receptors.

There are 1640, 5921, 66, and 15,703 entries for “quorum
sensing”, “LuxR”, “tryptophanase”, and “two-component”,
respectively (Fig. 2c). LuxR-type and TCS entries account for
the vast majority, which are 25.38 and 67.31%, respectively. We
have also shown the distribution of QS&TCS entries for each
strain based on the seven-strain simplified human microbiomes
(SIHUMIs) used by Colosimo et al.42 (Fig. 2d). This verified that
LuxR-type QS and TCS entries account for the vast majority of
QS&TCS entries in these strains. Furthermore, we noted that
there are certain overlaps in the distribution of the four entries.
For example, there are seven entries (P69409, P0ACZ6, P0AGA8,
P66798, P0AF30, P0AEL9, and Q8XE66) in the E. coli
O157:H7 strain (Fig. 2e), which are both LuxR-type and TCS
receptors. In addition, we have counted and distributed the total
QS&TCS entries of the 818 gut microbes from the VMH
database28 to form a better picture of the QS repository in human
gut microbiota (Fig. 2f). According to the cumulative distribution
curve for the statistics (Fig. 2f subgraph), we found that about
90% of strains contain less than 60 QS&TCS entries, and only
seven strains have more than 150 entries. This distribution will be
revisited after extended QS entries are included (see below).

Expanded QS entries. The amino acid composition (AAC) cal-
culates the frequency of each amino acid type in a protein
sequence. The frequencies of all 20 natural amino acids are the
percent of the number of amino acid types divided by the length
of a protein sequence43 (more details in the Method section). We
calculated the frequency of each amino acid type in each entry
sequence as the protein features, and we conducted a fivefold
cross-validation to train classifiers using the positive (Dataset III)
and negative samples (Dataset IV), where the average accuracy,
prediction, recall, and F1 score (more details were listed in
method section) were applied to evaluate their performances. The
results show that the performances of the DNN, SVM, KNN, and

RF classifiers were not very different, with the RF-based classifier
being slightly more prominent (Fig. 3a). We then manually
checked the annotations of the predicted results from the classi-
fication of the four ML-based classifiers on Dataset VII and
divided the four positives into annotated positives and unchar-
acterized positives (Dataset VIII, 534 entries) (Fig. 3b), which
were analysed further for their specific overlaps (Supplementary
Fig 2) (see more details in Supplementary Data 12). In order to
obtain as many potential QS entries as possible, it was helpful to
combine the four positives from the four classifiers together to
form a union.

With the help of the functional analysis (Supplementary
Data 11), we then re-annotated the 534 uncharacterized entries
and grouped them into nine protein clusters manually (Fig. 3c),
in which the histidine kinase (a major component in a TCS)
occupied the majority. Note that there were another 28 entries
that were vaguely described without specific protein annotations
(Fig. 3c). As listed in Table 1 and Table 2, these entries were
further explored and re-annotated based on the web BLASTP of
the NCBI database and Phyre2, respectively. There were 20
proteins (Table 1) that can be re-annotated based on the
BLASTP results from NCBI. Except for U2J6M1 and C0C5Y6,
there is much potential for the other 18 proteins to be QS
proteins. ArsR, a component of ArsRS TCS, regulates the acid
adaptation and biofilm formation of the pathogen Helicobacter
pylori in the human gut44. Beta-ketoacyl-ACP synthase III
catalyzes the condensation reaction of fatty acid synthesis, which
indicates that there is potential for Prevotella bivia to produce
Dialkylresorcinols just like the function of DarB from Photo-
rhabdus asymbiotica45. The histidine kinase, LuxR family
regulator, and Rgg/GadR/MutR family regulator are important
parts of TCS, LuxR-type, and Rgg-based QS systems46,
respectively.

There were eight entries (Table 2) that have no specific
annotations or classifications in NCBI or UniProt database. We
submitted these protein sequences to Phyre2 to investigate the 2D
and 3D structures of their models, their domain compositions, and
model quality. A0A4Y4IIW5 and A0A5C4P2T9 are signaling
proteins and AgrC (belonging to Agr QS system47) family proteins,
respectively. This indicates that Lysinibacillus fusiformis and
Streptococcus salivarius may have some protein components of
the agr QS system, thus producing and/or responding to the same
QS signaling peptide as common pathogen Staphylococcus
aureus. The other six of them are templated on the AimR
transcriptional regulator, which is the intracellular signal peptide
receptor for the QS-based communication between viruses that
guides lysis–lysogeny decisions48. This suggests that different
Bacillus phages may “listen in” diverse bacterial hosts, such as
Bacillus amyloliquefaciens, Bacillus mycoides, Bacillus thuringiensis,
and Bacillus atrophaeus, to coordinate lysis–lysogeny decisions.

Furthermore, we have further conducted the function analysis
and checked their specific annotations, sequence similarity, and
domains for the annotated/re-annotated union of positives
(Supplementary Data 11) to decide whether the entry has a QS
function (true positives, Dataset IX, 7184 entries, more details in
Supplementary Data 8) or not (false positives, Output S3, 438
entries, more details in Supplementary Data 9). Finally, the
reported QS&TCS and extended QS entries were combined
together to be Dataset X (28,567 entries). To sum up, with the
help of the proposed systematic workflow (Fig. 1), we obtained a
comprehensive QS repository including the manually collected
21,383 positive samples (Database III) and the extended 7184
ones (Database IX) for 818 gut microbes, and the total 28,567
entries (Database X) are composed of 1882 QS synthases and
26,685 receptors. There was a 33.60% increase in extended entries
(Database IX) for Dataset X (Fig. 3d) from the previous
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annotation-based collections (Database III) (Fig. 2f). Note that we
have mined eight potential QS proteins (Table 2) with the help of
functional analysis and homologous modeling, which is of great
significance for the further exploration of the related QS
mechanism and their applications. To enable user-friendly
browsing and searching for entries identified in this work, we
constructed a comprehensive QS-related database of human gut
microbiota (QSHGM), which is freely available at: http://www.
qshgm.lbci.net/. There is a simple user guide for QSHGM
browsing and searching (Supplementary Fig 3) in the supple-
mentary information.

QS-based interactions prediction. QS-based interactions play an
essential role in deciphering complex interactions of natural
microbial systems and dynamically manipulating diverse syn-
thetic microbial consortia. The collected data in the QSHGM can
enable the prediction of the existence of QS-based microbial
interaction by querying whether any pairwise microbes can speak
the same QS language. For example, due to speaking the AI-2
language, we predicted AI-2-based communication between E.
coli O157:H7 and Bacteroides pectinophilus ATCC 43243
(Fig. 4a), which is in line with the previously reported observation
that AI-2 produced by E. coli can influence the Bacteriodetes49.
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Fig. 2 Results of collections of the reported and annotated QS entries. Evolutionary trees of QS synthases (a) and receptors (b). a The optimal tree with
the sum of branch length= 40.33 is shown. This analysis involves 84 amino acid sequences, and there are a total of 1374 positions in the final dataset.
b The optimal tree with the sum of branch length= 91.14 is shown. This analysis involves 129 amino acid sequences, and there are a total of 1010 positions
in the final dataset. c Total QS&TCS entries with four protein annotations, i.e., “quorum sensing”, “LuxR”, “two-component”, and “tryptophanase”.
d QS&TCS entries distribution of the seven-strain simplified human gut microbes used by Colosimo et al.42. e The overlap of the four types of QS&TCS
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Furthermore, TnaA (encoding indole) was previously reported in
E. coli50 and Enterobacteriaceae51, which is also indicated by the
QSHGM, suggesting that there will be indole-based interaction
between these two microbes. Therefore, a microbial consortium
including E. coli O157:H7, B. pectinophilus ATCC 43243 and E.
bacterium 9_2_54FAA can be regulated by manipulating the
concentration level of AI-2 and indole (Fig. 4b). Furthermore,
QSHGM can enable the prediction of more sophisticated inter-
action networks. When introducing the P. aeruginosa PAO1 into
the above three-strain consortium, there will be complex

microbial cell-cell communications based on AI-2, AHLs, and
indole (Fig. 4c), in which the interactions between P. aeruginosa
PAO1 and E. coli were reported and validated previously52,53.
When adding Burkholderia cepacia GG4 to the above four-strain
consortium, we can also predict the complex QS-based interac-
tion network for a five-strain consortium that communicates with
AI-2, indole, AHLs, HAQs, and DSFs (Fig. 4d), which included a
previously validated HAQs-based interaction between P. aerugi-
nosa and B. cepacia GG454. To sum up, QS-based interaction
predictions stated above have been partially verified in the

0.
82

3

0.
82

9

0.
86

4

0.
89

6

0 .
79

9

0.
79

8

0 .
79

9 0.
90

3

0.
82 0.
84

2 0 .
94

3

0.
86

9

0.
80

9

0.
81

9

0.
86

5

0.
88

6

DNN SVM KNN RF
0.0

0.2

0.4

0.6

0.8

1.0

Accuracyyyy Precisionnnn Recalllll F1 Score

4138

5280
4805 4620

223 309 294 307

DNN SVM KNN RF
0

1000

2000

3000

4000

5000

6000

C
o
u

n
ts

Annotated positives

Uncharacterized positives

42

29

163

106

48

48

9

61

28

Acyl-CoA dehydrogenase

Enoyl-CoA hydratase

Histidine kinase

HTH domain-containing

OmpR family

Sigma 54-dependent

Others

Not QS

No annotation

0 20 40 60 80 100 120 140 160 180

Counts

0

50

100

150

200

250

300

350

Gut microbes

Original QS proteins

Total QS proteins

C
o
u
n
ts

a b

c d

Fig. 3 Results of the expansion and mining for QS entries based on the proposed systematic workflow. a Accuracy, precision, recall, and F1 score of the
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DNN, SVM, KNN, and RF classifiers; c Results of the protein clusters of 534 re-annotated protein entries. d Distribution total of 28,567 redundancy removal
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Table 1 Results of 20 expanded entries without existing annotations based on the web BLASTP.

Strains TaxID Entry Template Query cover Percent
identity

New annotations

Halococcus morrhuae 931277 M0MA34 WP_004054989.1 100% 100% ArsR subfamily of regulator
Clostridium hylemonae 553973 C0C300 WP_006443816.1 100% 100% Autoinducer 2 ABC transporter
Prevotella bivia 868129 I4Z9V6 WP_036847997.1 80% 80.39% Beta-ketoacyl-ACP synthase III
Enterococcus caccae 1158612 R3TYZ5 WP_069646785.1 100% 80.80% Histidine kinase
Lactobacillus ruminis 525362 E7FSN7 WP_003695050.1 98% 98.96% Histidine kinase
Streptococcus peroris 888746 E8KCS5 WP_070888551.1 100% 99.58% Histidine kinase
Streptococcus parauberis 1348 A0A3E1JFV3 WP_116486843.1 100% 100% Histidine kinase
Hungatella hathewayi 566550 D3ADP6 PXX46370.1 98% 92.45% LuxR family regulator
Enterococcus cecorum 1121864 S1R0J3 WP_047242627.1 100% 97.31% Rgg/GadR/MutR family regulator
Enterococcus cecorum 1121864 S1R7E8 WP_171336239.1 98% 93.70% Rgg/GadR/MutR family regulator
Streptococcus constellatus 1035184 U2ZME3 WP_022525523.1 100% 100% Rgg/GadR/MutR family regulator
Streptococcus equinus 525379 E8JR85 WP_029875994.1 97% 97.20% Rgg/GadR/MutR family regulator
Streptococcus intermedius 1095731 U2XPZ3 WP_003032153.1 100% 100% Rgg/GadR/MutR family regulator
Candidatus Melainabacteria 2052166 A0A3S0FWU1 MBI4533416.1 80% 47.68% Sensor histidine kinase
Candidatus Melainabacteria 2052166 A0A431KQ57 MBI5174129.1 79% 47.28% Sensor histidine kinase
Coriobacteriales bacterium 2491116 A0A437UTJ5 WP_130811315.1 99% 43.81% Sensor histidine kinase
Lactobacillus amylolyticus 585524 D4YTV9 EST03116.1 97% 36.63% Sensor histidine kinase
Alistipes putredinis 445970 B0MUZ2 OKY96599.1 100% 96% Tryptophanase
Sphingobacterium
paucimobilis

1346330 U2J6M1 WP_021069213.1 100% 100% DoxX family, membrane
protein YphA

Clostridium hylemonae 553973 C0C5Y6 WP_006444869.1 100% 100% Sugar ABC transporter protein
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corresponding experiments from other reported researches.
Therefore, it has huge potential to predict more complex QS-
based interaction networks including multi-component strains
based on diverse QS languages.

QS communication network construction. Microbes commu-
nicate via various QS signals (also termed as microbial languages),
and it is possible to construct a cell-cell communication network
among different gut microbes based on diverse QS languages,
which we termed as “QS communication network” (QSCN). Based
on a review of previous studies (Supplementary Table 2), we
decided to focus on the common nine QS languages, i.e., AHLs,
DSFs, HAQs, CAI-1, AIPs, Dialkylresorcinols, Photopyrones,
indole, and AI-2 to construct the proposed QSCN.With the help of
the QSHGM and several hypotheses (details given in Supplemen-
tary Table 3), we firstly constructed an undirected QSCN for the
818 gut microbes based on the “speaking” of the above nine QS
languages (Fig. 5a) (Supplementary Data 13). This intricate net-
work visualizes complex QS-based communications among human

gut microbiota. Different microbes are linked together through
various languages to form a microbial communication network,
and connections could be used to regulate microbial interactions
between themselves and the surrounding ones. Most of strains
produce AI-2 (567, 69.3% of 818 gut microbes) as the commu-
nication language, followed by HAQs (332, 40.6%), DSFs (325,
39.7%), CAI-1 (259, 31.7%), Dialkylresorcinols (129, 15.8%),
Photopyrones (107, 13.1%), indole (77, 9.4%), AHLs (64, 7.7%),
and AIPs (22, 2.7%).

Note that multiple microbes can speak one common language
which is in line with the interspecies crosstalk55. Taking six
typical languages (AHLs, CAI-1, HAQs, DSFs, Indole, and AI-2)
as examples, we found that there are 64, 40, 22, and 5 species
sharing two, three, four, and five QS languages, respectively
(Fig. 5b). AI-2 also ranks first with the highest genus-level counts
(138 genus) than the other languages, which is in line with what
has been broadly observed13. Many overlaps of AI-2 or indole
being spoken among different microbes, which also indicates that
both of them are widely recognizable languages playing a major

Table 2 Results of another eight expanded entries without existing annotations based on Phyre2.

Strains TaxID Entry Template Confidence Coverage Annotations

Bacillus amyloliquefaciens 1390 A0A5C8IUS9 c5xybB 100% 97% AimR transcriptional regulator
Bacillus mycoides 1405 A0A1W6AJT8 c5zvvA 100% 90% AimR transcriptional regulator
Bacillus thuringiensis 56955 A0A243M9P9 c5zw5A 100% 95% AimR transcriptional regulator
Bacillus amyloliquefaciens 1390 A0A5C8IY56 c5zvvA 100% 99% AimR transcriptional regulator
Bacillus atrophaeus 720555 A0A0H3E1W6 c5zvvA 99.90% 98% AimR transcriptional regulator
Bacillus atrophaeus 720555 A0A0H3E2G4 c5zw5A 100% 100% AimR transcriptional regulator
Lysinibacillus fusiformis 28031 A0A4Y4IIW5 c6mfvC 100% 90% Signaling protein (tetratricopeptide repeat)
Streptococcus salivarius 1304 A0A5C4P2T9 c4bxiA 99.90% 33% ATP binding domain of AgrC
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Fig. 4 QS-based communication predictions for various microbial consortium. a Two-strain communication based on AI-2; b three-strain communication
based on AI-2 and indole; c four-strain communication based on AI-2, indole, and AHLs; d five-strain communication based on diverse QS languages.
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role in interspecies communications56,57. We found that those
traditionally often considered intraspecies languages (AHLs, CAI-
1, HAQs, and DSFs) may also be involved in some interspecies
communications. Like Scott et al.58, we also realized that the
crosstalk of different QS languages implies the redundancy of
microbial languages that is potentially helpful for the stability of
natural microbial systems.

The QSCN was constructed based on the 818 human gut
microbes, which include mainly Firmicutes (79), Actinobacteria
(36), Proteobacteria (69), Bacteroidetes (16), and others (10). We
have collected and sorted the nine QS languages for 210 microbes
at the genus level, shown by the heatmap representation in Fig. 5c
to gain a better understanding of the QSCN (Fig. 5a). As in
previous studies, we also found that AHLs exist only in
Proteobacteria59, AIPs exist mostly in Firmicutes12, and other
QS languages are distributed in-homogeneously in the whole
genus-level microbes60. Surprisingly, there is no highly similar
distribution of QS languages within the same genus-level
microbes. For example, the distribution of QS languages in
Actinobacteria is quite different (Fig. 6c, cyan). This suggests that
the existence and evolution of QS synthases in microbes might
have not been strictly conserved at the genus level, but are more
likely to be related to some other factors, such as environmental
factors and spatial distributions61–63. To sum up, the distribution
of QS languages suggests the diversity of the microbial languages,
the complexity of cell-cell communication, and the redundancy of
QS-based interactions among human gut microbiota.

The QSCN we presented above (Fig. 5a) is an undirected and
bipartite network involving two types of nodes, namely QS
languages and microbes. This network can be projected to a one-
mode network that visualizes microbial communication-based
interactions directly. The giant network would consist of 801
nodes connected via 190,580 edges (Supplementary Fig 4). The
largest degree in the giant network is 771, while its average degree
is 237.93. The dense QS network is similar to other microbial
interaction networks that carry high degrees for individual
strains65,66. Key nodes in this network were selected from 5%
of the total nodes (40 nodes, Supplementary Table 4) of the
network with a large degree and high betweenness centrality67.
Note that all the 40 key nodes are Firmicutes, Bacteroidetes, or
Proteobacteria, (Supplementary Table 4) which are known to be
dominating species of the human gut microbiota68,69. Therefore,

QSCN can be projected to a one-mode network and shrunk
further to be the complete graph with 40 core gut microbes
(Supplementary Fig. 5). While such a dense network more likely
approximates a theoretical maximum set of QS-based interactions
it nevertheless indicates excellent microbial communications
among the core microbes. As such, what is visualized here is
essentially a sub-network with a particularly high “density”, not
representative of the entire network of the whole gut environ-
ment. We would also like to point out that, although each
microbe can produce so many QS languages in the 40 core gut
microbes, the specific intensity for each language cannot be
provided in this work; the intention is that we determine the
existence of the QS-based communications (as done in this work),
and then to investigate its corresponding intensity (future work),
eventually bringing a comprehensive understanding of the
communication-based microbial interactions.

Discussion
This work has been based on several hypotheses on microbial
composition, language types, TCS function, non-cheating ecol-
ogy, and QS crosstalk, which may be addressed in the future to
improve the accuracy and completeness of the QSCN (Supple-
mentary Table 3). Besides, the large number of links in our
QSHGM Database and the QSCN means that it is inevitable that
there will be some false positive relations. Even if there is no
problem at the level of individual nodes, the relations we have
predicted were not necessarily always true in reality. Note that
many TCS entries possess QS functionality (Supplementary
Data 1, Supplementary Fig. 8), but not all of them would do so,
which would apply to a portion of the TCS entries collected into
our Dataset III that was built with the intention of collecting as
many potentially QS-relevant entries as we can, let alone these
entries would still be relevant to inter-cellular communication. To
mine more potential QS entries, we combined manual curations,
BLASTP-based expansion, and ML-based classifications together
in this work along with minimizing false positives as possible. On
the other hand, QS links we predicted based on the database
would be “possibilities”, not reality, and still require experimental
verification. We offered a tool to allow users with various appli-
cations in mind to see the “possibilities” in the first place, which
allows them to subsequently focus their experimental verification.
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Fig. 6 Typical small QSCN that includes QS signals producing and receiving for seven human microbes. Note that the seven-strain simplified human
microbiomes are taken from Colosimo et al.42.
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Note that short peptides (such as AIPs) and proteins are not
generally placed together for sequence BLASTP and functional
analysis, because proteins generally have a fixed structure while
short peptides do not. AIPs sequences can also easily lead to the
increasing of false positives from the BLASTP process. The four
ML-based classifiers were trained on AA frequencies, which were
not accurate for the prediction of the short sequences such as the
AIPs (about 5–30 amino acids), of which the physicochemical
properties70, the information on amino acids combinations with
fixed length43, and even the composition of common amino acids
were not complete. Therefore, to increase the reliability of the
expansion, we have removed the signal peptides in the BLASTP-
related datasets (I and VII), thus leading to sparse edges for the
“AIPs” node in our QSCN (Fig. 5a). This calls for a more accurate
method to cover more aforementioned amino acid features for
short sequences to mine the potential signal peptides in the future
to make the QSCN more complete. Furthermore, the nine QS
languages studied in this work (Supplementary Table 2) did not
include all existing QS signals, such as Autoinducer-3 (AI-3, with
unclear synthase sequence)71, let alone new QS languages that
would be discovered in the future. Considering the QS crosstalk
widely exists in nature55, we also hypothesized that microbes that
speak the same type of languages (such as AHLs) can commu-
nicate with each other. Future works should be conducted to
quantify the specific intensity of diverse QS crosstalk for the same
type of languages, such as the AHLs with different side chains.
Therefore, more AIPs, some novel QS entries, and their corre-
sponding weighted networks of different QS languages for more
gut microbes will gradually be updated in our QSHGM
and QSCN.

Bipartite (Fig. 5a) or one-mode QSCN (Supplementary Fig. 4)
illustrates diverse language connections, which however lacks the
further interactions between QS languages senders and receivers.
By differentiating QS signals producing and receiving with the
help of both QS synthases and receptors, there is potential to
construct a directed and more precise QSCN. Taking the seven-
strain simplified human microbiomes from Colosimo et al42 as an
example, we constructed a typical small precise QSCN that
includes QS languages producing and receiving (Fig. 6). QS lan-
guage receiving (Fig. 6, right) is more complicated than language
producing (Fig. 6, left), which indicates that some microbes can
receive a particular QS signal without producing it. This phe-
nomenon is consistent with the previously observed QS cheating
behavior in certain microbes, such as P. aeruginosa72 and E.
coli73. However, the reliable construction of the directed and
precise QS networks still faces many challenges, such as the huge
network scale, multi-layer control structures, complex QS cross-
talk, intricate social cheating, diverse environmental factors, and
different spatial distributions, and insufficient QS entries for
many uncultured microbes. Nevertheless, we expect that the
further directed and precise QSCN including QS languages pro-
ducing and receiving will receive increasing attention from future
research which will be engaged in developing more knowledge
and technologies for various gut microbes, aiming to construct
the valuable precise QSCN which can be regarded as one of the
key knowledge maps of the human gut system.

Microbial communities and their functions are shaped by both
metabolic interactions and communication-based regulations.
Microbe–microbe interactions based on the exchange of meta-
bolites have received much attention in microbial ecology65,74. At
the same time, various two-strain or three-strain synthetic con-
sortia have been constructed by implementing QS for stabilizing
the microbial ecosystem (more details in Supplementary Table 5).
As we proposed earlier, QS-based communication networks
(QSCNs) can be vertically and horizontally applied to the reg-
ulations in natural microbial systems and synthetic microbial

consortia, respectively24, and they play different roles than
metabolic integration networks (MINs) (more details in Supple-
mentary Table 6). On the other hand, a QSCN and a MIN can be
co-present and function collectively in a microbial ecosystem
(Supplementary Fig. 6). One such example is from our earlier
work75, where we developed combinational QS devices for
automatic dynamic control in a cross-feeding cocultivation of a
synthetic community, to achieve the optimization of the system
which simultaneously involved QS communication, cell growth
competition, and cooperative production. More recently, a
methodology was proposed for designing robust synthetic com-
munities that include competition for nutrients, and use QS to
control amensal bacteriocin interactions76, which can be con-
sidered as a more generalized example of how the combination of
QSCNs and MINs could lead to desirable designs of engineered
microbial consortia.

To illustrate the potential of complementary use of the QSCN
constructed in this work for the gut community and a MIN, here
we consider the work of Venturelli et al65. on a simplified human
microbiota consortium (SIHUMI). By comparing the inferred
total interaction network (Supplementary Fig. 7a) with the MIN
(Supplementary Fig. 7b), it was recognized that the former was
significantly denser than the latter with several prominent inter-
microbial links not associated with the exchange of metabolites,
which were considered to be possibly mediated by signaling
molecules instead65. Applying our QSHGM database to the
SIHUMI community, we have obtained a bipartite QSCN (Sup-
plementary Fig. 7c), which shows specific QS-based commu-
nications that offer plausible mechanisms for links that the MIN
could not explain (Supplementary information, Section 5). Thus,
we consider our QSHGM database as a tool that can facilitate the
identification of possible QS-based inter-microbial interactions
which may complement metabolic exchanges in a complex
community in explaining an observed community structure; such
possible interactions can be tested based on the microbe-QS
signal pairs suggested by the database through e.g. detecting and
manipulating the excretion/reception of the specific QS signaling
molecules involved.

Various QS-based interactions play an essential role in the
regulation of homeostatic states, metabolism, and immune
responses in the human gut system. Therefore, constructing a
comprehensive QS database for the human gut microbiota is
highly desirable for making gut microbiology more predictable
and for developing potential therapies for diverse gut diseases. In
this work, we developed a systematic workflow including col-
lecting, expanding, and mining modules to construct a compre-
hensive QS repository for the human gut microbiota. Machine
learning algorithms including SVM, RF, KNN, and DNN were
combined with protein annotations, functional analysis, and
homologous modeling to facilitate the efficiency of data collection
and mining. As a result, we established the QSHGM (http://www.
qshgm.lbci.net/, with browsing and searching functions) which
contains 28,567 redundancy removal entries for 818 human gut
microbes.

With the help of the QSHGM, users can search many QS-based
interactions for various microbial consortia based on diverse QS
languages. We constructed a QSCN to visualize and decipher
intricate QS-based interactions for human gut microbiota. We
found that the distribution of QS languages in microbes is not
strictly conserved at the genus level, but is more likely to be
related to other factors. There are significant genus-level overlaps
between microbes on what are commonly regarded as intras-
pecies languages, which suggest that these languages may also be
involved in some interspecies communications. The predicted
sharing of various subsets of the QS languages between microbes
supports the notions of the diversity of microbial language and
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the redundancy of cell-cell communications, which are helpful for
maintaining the stability of natural microbial systems. The QSCN
can be projected to a one-mode network; a fraction of which is a
sub-network representing potentially very “dense” communica-
tions of 40 core gut microbes. This work contributes to the
construction of the QSCN for human gut microbiota that may
form one of the key knowledge maps of the human gut system in
the future. Such a network holds huge potential for improving
our understanding of the dynamics and resilience of gut micro-
biology and for developing applications such as potential thera-
pies. For the QSCN to be more effective and more widely
applicable, further work is needed to identify the strengths of
diverse QS-based interactions and combine it with other types of
connections, particularly those captured by microbial interaction
networks, to achieve reliable, quantitative predictions for micro-
bial ecosystems.

QSHGM and QSCN can not only give us a better under-
standing of QS-based microbial communication principles but
also will do much help in providing new manipulations to syn-
thetic microbiota and developing potential therapies (Supple-
mentary Fig 9). Thanks to the large scale of the data established in
this work, potential useful details for the QS-based communica-
tions among different gut microbes can be obtained in our
QSHGM database. At the strain level, QSHGM and QSCN will
provide user-friendly data searching, and assist the scientific
community in various interferences and manipulations of QS
systems to alleviate antimicrobial resistance, inhibit pathogenic
bacteria, and develop new QS-based synthetic gene circuits for
various applications. At the community level, the
communication-based regulations can be visualized for human
gut microbiota, users can search many QS-based communications
for various microbial consortia including multi-component
strains based on diverse QS languages. The predicted commu-
nications will provide guidance for consortia-based therapies or
constructing new synthetic microbial consortia. Furthermore,
QSHGM furnishes high-throughput data for large-scale QS-
relevant statistical analysis.

Methods
Data acquisition. QS is a common mechanism which includes autoinducer synthase
and relevant QS receptors77. For most Gram-negative bacteria, the autoinducer
produced by the autoinducer synthase accumulates in the culture with the cell density
increasing; When the concentration of the autoinducer reaches a certain threshold, it
will diffuse back into strain and be recognized and bonded by the QS receptor to be a
complex to activate or inhibit the transcription of downstream genes56. The auto-
inducer synthases and receptors for Gram-negative bacteria from SigMol (http://
bioinfo.imtech.res.in/manojk/sigmol), and QS receptors for Gram-positive bacteria
from Quorumpeps (http://quorumpeps.ugent.be) are utilized as the validated QS
proteins in our research. Their corresponding amino acid sequences are obtained
from UniProt (https://www.uniprot.org/)39. Note that QS entries in Sigmol and
QuorumPeps database without corresponding amino acid sequences were discarded
in this study. We have also made some choices about the entries from Sigmol and
QuorumPeps database to improve the efficiency of Local BLAST. For example, we
kept only one related entry for the same QS entries, such as the S-ribosylhomocysteine
lyase (LuxS), Acyl-homoserine-lactone synthase LuxM, and accessory gene regulator
C (AgrC). The autoinducer peptides (AIPs), such as Nisin precursor peptide (NisA)
and competence stimulating peptide AgrD, were not considered in the BLASTP-
related work. Because the signal peptide sequence of Gram-positive bacteria is rela-
tively short (about 10–30 amino acids), which will be easy to increase the false
positives for the BLASTP. Therefore, to increase the reliability of the ML-based
classifiers, we have removed the signal peptides in the BLASTP-related datasets (I and
VII) by more exact matches (with lower E-value) and manual checking of their
protein annotations or the open reading frames (ORF) in the NCBI database. In
addition, 818 gut microbes from a virtual metabolic human database (www.vmh.
life)28 are regarded as the human gut microbiota in this study, and their corre-
sponding proteomes are also obtained from UniProt.

Feature extraction and classifiers development. The secondary and tertiary
structure of a protein depends on its amino acid sequence78. In this study, the
information of amino acids in protein sequences was calculated with the help of the
iFeature package, ML algorithms (SVM79, RF80, and KNN81), and deep learning

algorithms (DNN82) were trained on the carefully curated positive and negative
samples to develop different classifiers. We calculated the frequency of each amino
acid type in each QS-related protein sequence. The frequencies of all 20 natural
amino acids are the percent of the number of amino acid types divided by the
length of a protein sequence43, which is listed as follows:

f ðtÞ ¼ NðtÞ=N; t 2 fA;C;D; ¼ ;Yg ð1Þ
where N(t) is the number of amino acid type t, while N is the length of a protein or
peptide sequence.

Positive and negative samples construction. With the help of the evolution
analysis of amino acid sequences of autoinducer synthases and receptors, we collected
the reported and annotated QS proteins for 818 gut microbes as positive samples. The
finally obtained positive samples (Dataset III) were the arrays of 21,383 amino acid
frequencies of the collected QS entries. In the collecting module, we did an evolu-
tionary analysis for the validated QS entries to propose a possible cluster rule for
negative samples collection with the help of MEGA X83 and iTOL84. The evolutionary
history was inferred using the Neighbor-Joining method85. The tree is drawn to scale,
with branch lengths in the same units as those of the evolutionary distances used to
infer the phylogenetic tree86. The evolutionary distances were computed using the
Poisson correction method and are in the units of the number of amino acid sub-
stitutions per site83. We constructed negative samples by removing QS-related
components from typical Gram-negative bacteria (Aliivibrio fischeri, Escherichia coli,
Pseudomonas aeruginosa, Salmonella typhimurium, and Vibrio parahaemolyticus) and
Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Lactococcus lac-
tis), and removing proteins that directly and indirectly associated with QS, i.e., cluster
rules, such as quorum sensing, luxR, two-component, homoserine-lactone synthase,
histidine kinase, biofilm, autoinducer, bacteriocin, competence, virulence, signal,
sensor, response, regulator, membrane, binding, transcriptional activator, etc. Sub-
sequently, we got an output array of 22,780 (negative Dataset IV) amino acid fre-
quencies, which were calculated from amino acids sequences of proteins of the above
eight organisms after removing QS-related entries.

ML-based classifiers. The amino acid composition (AAC) calculates the fre-
quency of each amino acid type in a protein or peptide sequence. We calculated
AAC in each entry sequence as the protein features. “model.py” was created for
training samples with SVM, KNN, and RF (random forest), “nn.py” was the script
used for training samples with Neural Network. Classifiers were trained and
validated based on the positive and negative samples, and then tested on dataset
VII (Fig. 2). Performances of the four ML-based classifiers were measured based on
the accuracy, precision, recall, and F1 score, which are defined as follows87.

Accuracy ¼ ðTNþ TPÞ=ðTNþ FPþ FNþ TPÞ ð2Þ

Precision ¼ TP=ðTPþ FPÞ ð3Þ

Recall ¼ TP=ðTPþ FNÞ ð4Þ

F1 ¼ 2 *Precision *Recall=ðPrecisionþ RecallÞ ð5Þ
where TP represents true positives, TN denotes true negatives, and FP and FN are
false positives and false negatives, respectively. F1 score is the harmonic mean of
prediction and recall. The higher the F1 score is, the better performance the
classifier will be of.

All the four classifiers were applied to predict whether the input amino acid
sequences are QS entries or not with the output being 1 (yes) or 0 (no),
respectively. SVM is a commonly used supervised ML algorithm in protein
prediction87. The basic idea of SVM is to find the separated hyperplane in a very
high-dimension feature space that can correctly partition the training dataset79.
SVM can also integrate kernel functions, which makes it to be a nonlinear classifier.
In this study, for our results, we applied the radial basis function (RBF) with
standard deviation σ= 0.125 and set regularization parameter C= 4 to train the
positive and negative samples. The GridSearchCv code88 was used to select and
determine the optimal combination of hyper-parameters automatically to achieve
the best performance.

K-nearest-neighbor (KNN) is also a traditional classification method when
there is little or no prior knowledge about the distribution of the data89. The
principle behind KNN is to find k training positive and negative samples nearest in
the distance to the new point and predict the label from these samples. Firstly, the
distance between the test sample point and each other sample point is calculated,
then each distance will be sorted and k points with the smallest distance will be
selected, and the categories of K points will be compared and classified. We used a
MultiScheme package in WEKA to choose between 12 KNN models (1, 3, 5, 10, 20,
30, 50, 100, 150, 200, 250, and 300) and the KNN with k= 5 yielded the best result.

Random forest (RF) is a classification algorithm that uses a set of decision
trees80. Each decision tree is constructed by using a sample of training data, and
each segmentation candidate set is a subset of random characteristics. RF has been
proven to have excellent performance in classification tasks82. In this study,
positive and negative samples are randomly selected from the original data to
construct the sub-training set to generate the decision tree. At each node, we
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randomly selected the n child variables (n≪N) from the N input variables. The
optimal segmentation coefficients on these N sub-variables are used to segment the
nodes. The n value remains constant during the growth of the forest. For new
samples, the classification results can be obtained by voting on these decision trees.
N is generally taken as the square root of the dimension of the eigenvector of the
input samples. Here, we set n_estimators= 122 (the number of trees in the forest),
and max_depth= 55 (maximum depth of the tree). Other hyper-parameters were
also generated and selected with the help of GridSearchCv88.

Neural networks (NN) play an essential role in biomedicine82, antiviral peptides
prediction, protein–RNA interaction90, and protein data mining. For regular neural
networks, the most common layer type is the fully-connected layer in which
neurons between two adjacent layers are fully pairwise connected. In the input
layer, there are a certain number of neurons corresponding to input features. In the
first layer (one-to-one layer), the same number of neurons are used, and each is
connected to one neuron from the input layer. Then we added two hidden layers
after the one-to-one layer. The first hidden layer is fully connected with the one-to-
one layer and the second hidden layer is fully connected with the first hidden layer.
The last layer is an output layer which only has two neurons. Batch normalization
was applied to a one-to-one layer and each hidden layer to accelerate the training
process. SGD optimizer was used to train the DNN model and the learning rate
was fixed as 0.01. Default values of the other hyper-parameters of the DNN model
were set to default ones without tuning.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
About 28,567 redundancy removal entries for 818 gut microbes generated in this study
have been deposited in our QSHGM database, which is freely available at: (http://www.
qshgm.lbci.net/). We will continuously update the database QSHGM. Computer-readable
tables generated in this study are provided in Supplementary Data 1–13. More details for
the relevant data of QS entries from Gram-negative microbes, QS entries from Gram-
positive microbes, 818 human gut microbes, and their corresponding proteomes can be
searched in SigMol29, Quorumpeps30, VMH28, and UniProt39 databases, respectively.

Code availability
We also used Python 3.7 to write the method and analyse the collected data to construct
ensemble classifiers. The codes have been provided in a GitHub repository at: https://
github.com/guofei-tju/qshgm-code91.
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