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Abstract: Histone methylation tightly regulates chromatin accessibility, transcription, proliferation,
and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In
particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C
(JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases
(KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating
evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering
them attractive targets for drug interventions. In this review, we summarize the known functions of
Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in
understanding the context-dependent mechanisms of these proteins and explore potential future
pharmacological targeting.

Keywords: KDM; Jumonji C (JmjC) domain; histone demethylation; leukemia; myelodysplastic
syndrome; myeloproliferative neoplasm; targeted therapy

1. Introduction

Non-genetic chromatin alterations play a significant role in disease development,
maintenance, and relapse of myeloid malignancies. Among epigenetic modifying enzymes,
histone demethylases have gained special attention in recent years for their involvement
in myeloid malignancies. Histone lysine demethylases (KDMs) are subdivided into two
subclasses, FAD-dependent and Jumonji C (JmjC) domain-containing (JMJD) demethy-
lases (Figure 1). Although there are only two FAD-dependent demethylases, KDM1A and
KDM1B, JMJD demethylases comprise a larger group of more than twenty proteins [1–3].
Based on the evolution of their JmjC domain and the occurrence of additional domains,
JMJD demethylases are subdivided into numbered subgroups (KDM2–7). Most KDMs are
attributed to demethylate methylated lysines of histone 3 or 4, as well as of non-histone pro-
teins, thereby activating or repressing transcription. KDM1A has been studied extensively,
culminating in the development of inhibitors currently in clinical trials for patients with
leukemia [2]. The JmjC domain containing KDMs, which require Fe(II) and a-ketoglutarate
(a-KG) as cofactors, however, have been less intensely studied and their substrate specificity
varies greatly [3–5]. Our lack of knowledge regarding the function of these KDMs in benign
hematopoiesis makes understanding their role in malignancies even harder. Moreover, the
exact contribution of individual KDMs in either a tumor-suppressive or tumor-promoting
manner, is dependent on the specific disease-context. In this review, we will summarize
current knowledge of KDM2–7 protein function both in normal hematopoietic stem cells
and in myeloid malignancies. We highlight the potential use of KDM expression levels
as biomarkers and discuss the implications for future therapeutic targeting of KDMs in
myeloid malignancies.
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biomarkers and discuss the implications for future therapeutic targeting of KDMs in 
myeloid malignancies. 

 
Figure 1. Classification of histone demethylases. (A) Types of histone demethylases. (B) Subfamilies 
of JmjC domain-containing proteins. The KDM2–7 subfamilies are known histone demethylases. 
The JmjC-only subfamily contains demethylases, hydroxylases, and proteins with unknown 
functions. KDM4D+E lack the PHD and the Tudor domains. KDM5C+D only possess one C-terminal 
PHD domain. KDM6B lacks the TPR domains. The figure is based on Klose et al. [1], Chen et al. [6], 
Franci et al. [7], Markolovic et al. [8], and Chang et al. [9]. Abbreviations: αKG (alpha-ketoglutarate), 
AOD (amino oxidase domain), ARID (AT-rich interaction domain) domain, FAD (flavin adenine 
dinucleotide), JmjC (Jumonji C) domain, JmjN (Jumonji N) domain, LRR (leucine-rich repeat) 
domain, PHD (plant homeodomain) domain, TPR (tetratricopeptide repeat domain), ZF (zinc 
finger) domain. 

2. Results 
For all abbreviations of important proteins used in the context of normal 

hematopoiesis and myeloid malignancies, please refer to Supplemental Table S1. 
  

Figure 1. Classification of histone demethylases. (A) Types of histone demethylases. (B) Subfamilies
of JmjC domain-containing proteins. The KDM2–7 subfamilies are known histone demethylases. The
JmjC-only subfamily contains demethylases, hydroxylases, and proteins with unknown functions.
KDM4D+E lack the PHD and the Tudor domains. KDM5C+D only possess one C-terminal PHD
domain. KDM6B lacks the TPR domains. The figure is based on Klose et al. [1], Chen et al. [6],
Franci et al. [7], Markolovic et al. [8], and Chang et al. [9]. Abbreviations: αKG (alpha-ketoglutarate),
AOD (amino oxidase domain), ARID (AT-rich interaction domain) domain, FAD (flavin adenine
dinucleotide), JmjC (Jumonji C) domain, JmjN (Jumonji N) domain, LRR (leucine-rich repeat) domain,
PHD (plant homeodomain) domain, TPR (tetratricopeptide repeat domain), ZF (zinc finger) domain.

2. Results

For all abbreviations of important proteins used in the context of normal hematopoiesis
and myeloid malignancies, please refer to Supplemental Table S1.

2.1. The KDM2 Family

The KDM2 subfamily of the Jumonji domain-containing histone demethylases en-
compasses two members, KDM2A and KDM2B. As reviewed by Markolovic et al., both
enzymes possess catalytic activity towards mono- and di-methylated lysine residues [8].
H3K36 is the known main histone target of KDM2 demethylases [8]. In myeloid malignan-
cies both enzymes have been shown to demethylate H3K36me2 [10–12].
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2.1.1. KDM2A

Cumulating evidence indicates a tumor-suppressor role for this histone demethylase
in myeloid leukemias (Figure 2) [10,13,14]. KDM2A is required for the maintenance of
heterochromatin, as its deletion delocalizes HP1 from chromatin, impairs centromeric
integrity and, thereby, increases genomic instability [14]. Fittingly, Inoue et al. observed
KDM2A downregulation in the bone marrow (BM) of mice with benzene-induced acute
myelogenous leukemia (AML) compared to control BM (Table 1) [13]. Functional evidence
provided by Zhu et al. showed that KDM2A reduces expression of Hoxa9 and other
MLL target genes in MLL-AF10 mice, resulting in increased differentiation [10]. MLL is a
H3K4 histone methyltransferase and MLL gene rearrangements are common chromosomal
abnormalities associated with acute leukemias [15]. Mechanistically, KDM2A reversed
H3K36me2 methylation, a mark written by the histone methyltransferase ASH1L to fa-
cilitate binding of MLL and its associated oncoprotein LEDGF (Table 1) [10]. KDM2A
activity thus counteracts MLL-driven leukemogenesis, underlining an anti-leukemic role
for KDM2A in myeloid leukemias.
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Table 1. Involvement of JmjC domain-containing histone demethylases in myeloid malignancies.

Demethylase Disease Model Effect Mechanism Reference

KDM2A

AML MLL-AF10-induced leukemia in mice
anti-

leukemic

KDM2A antagonizes oncogenic LEDGF/ASH1L [10]

AML Chemically induced leukemia KDM2A is downregulated in
benzene-induced AML cells [13]

KDM2B

AML AML patient cells; MLL-AF9 transduced CD34+
cells; mouse xg models

pro-
leukemic

KDM2B as part of the PRC1.1 complex regulates
LDHA/PKM independent of H3K27me3 [16]

AML Tg mouse model with Kdm2b overexpression KDM2B induces leukemia by increasing
expression of Nsg2 and OXPHOS genes [17]

AML AML cell lines; AML CD34+ primary cells KDM2B promotes cell cycle progression by
reducing the tumor suppressor p15 [11]

AML AML patient cells; Hoxa9/Meis1-induced leukemia KDM2B promotes leukemic transformation by
reducing the tumor suppressor p15 [12]

MDS Primary MDS cells, MDS cell lines
anti-

leukemic

KDM2B suppresses EZH2 through
miRNA let-7b expression [18]

AML KrasG12D mice KDM2B interacts with PRC1/2, increases Irf+Stat,
downregulates Hoxa10+Smarca4/Brg1 [19]
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Table 1. Cont.

Demethylase Disease Model Effect Mechanism Reference

KDM3A AML Primary AML patient cells pro-
leukemic

KDM3A is recruited by Oct1 to the CDX2
promoter to remove repressive H3K9me2 [20]

KDM3B

APL NB4 APL cell line

anti-
leukemic

KDM3B kd enhances proliferation, blocks
differentiation, inhibits degradation of

PML/RARα
[21]

AML Primary AML patient cells; AML cell lines KDM3B is downregulated in AML/MDS and
overexpression represses colony formation [22]

AML AML cell lines Expression of KDM2B reduces leukemic growth [23]

KDM3C

AML AML cell lines

pro-
leukemic

KDM3C modulators selectively inhibit the growth
of leukemic stem cells [24]

Ph+
MPN K562 and MEG-01 cell lines KDM3C kd impairs proliferation, viability, and

sensitivity towards chemotherapy [25]

Ph-
MPN Jak2V617F mice Loss of Kdm3c is dispensable for disease initiation [26]

AML AML; MLL cell lines The Kdm3c inhibitor JDI-16 induces apoptosis
and differentiation [27]

AML Mouse MLL-AF9 leukemia cells
Loss of Kdm3c activity increases

apoptosis+differentiation via RAS/MAPK,
JAK-STAT, IL3

[28]

AML HOXA9/MEIS1 bone marrow
transplantation model

Kdm3c upregulates key glycolytic and oxidative
genes independent of its enzymatic activity [29]

Ph-
MPN

Primary MPN cells; NFE2 overexpressing mice;
MPN cell lines KDM3C and NFE2 form a positive feedback loop [30]

AML MLL-AF9 and HOXA9 leukemia mice KDM3C interacts with HOXA9 and supports a
HOXA9-controlled gene-expression program [31]

AML AML cell lines KDM3C is recruited by RUNX1–RUNX1T1 to
maintain low H3K9me2 at its target genes [32]

AML MLL-AF9 Tx mouse models; AML cell lines Depletion of Kdm3c increases apoptosis of
leukemic cells [33]

KDM4A-C AML MLL-AF9 mouse model and cell lines pro-
leukemic

Combined KDM4 demethylase activity promotes
survival of leukemic cells and increases

expression of Il3ra
[34]

KDM4A

AML Primary AML patient cells; AML cell lines; mouse
xg models pro-

leukemic

Loss of KDM4A induces apoptosis and
downregulates pro-leukemic gene expression [35]

APL NB4 APL and other cancer cell lines KDM4A inhibitors increase H3K9/H3K36
methylation and kill malignant cells [36]

KDM4B AML MLL-AF9 transduced CD34+ cells; Primary AML
patient cells; AML cell lines

pro-
leukemic

KDM4B supports proliferation through
upregulation of S100A8/9 and loss of KDM4B

reduces growth of leukemic cells
[37]

KDM4C

AML Primary AML patient cells; AML cell lines; mouse
xg models

pro-
leukemic

KDM4C regulates miR-328-3p/CCND2 through
MALAT1 resulting in Ara-C resistance [38]

AML Primary AML patient cells; AML cell lines; mouse
xg models

KDM4C upregulates ALKBH5 resulting in
increased AXL mRNA stability [39]

AML Leukemic cells with MLL fusions and MOZ-TIF2;
mouse xg models

KDM4C regulates target genes of MLL
fusions/MOZ-TIF2 via H3K9me3 demethylation

[40]

AML AML cell lines
KDM4C mediates oncogenic activity of PRL-3 by

reducing H3K9me3 at the Leo1 promoter
[41]

KDM4D AML AML cell lines pro-
leukemic

KDM4D promotes proliferation in AML cells and
activates expression of MCL-1 through

H3K9me3 demethylation
[42]

KDM5A

AML Mouse NUP98 fusion-induced leukemia

pro-
leukemic

NUP98-KDM5A (PHD finger) fusions induces
differentiation arrest and leukemia [43]

CML K562 cells KDM5A kd in CML-BP stimulates leukemia cell
differentiation and inhibits cell proliferation [44]

CML K562 cells, primary patient samples miR-181d downregulates KDM5A which inhibits
NF-κB subunit, p65 [45]

KDM5B

AML/CML CD34+ cells, AML and CML cell lines

pro-
leukemic

KDM5B is highly expressed AML/CML cells, kd
reduced leukemia colony-forming abilities [46]

AML Mouse MLL-AF9/10 leukemia
cells, MLLr patient samples KDM5B negatively regulates leukemogenesis [47]

AML Clinical data KDM5B expression predict survival [48]

AML Mouse KDM5B is required for hematopoietic
stem cell self-renewal [49,50]



Biomolecules 2021, 11, 1911 5 of 19

Table 1. Cont.

Demethylase Disease Model Effect Mechanism Reference

KDM5C

AML Primary AML patient cells (M5)
unknown

KDM5C is overexpressed in pediatric AML (M5) [51]

AML Primary AML patient cells KDM5C is mutated and enriched in
chemotherapy-resistant pediatric leukemia [52]

KDM6A

CMML KDM6A ko mice

anti-
leukemic

Loss of KDM6A causes an CMML-like disease [53]

MDS KDM6A ko mice Loss of KDM6A causes myelodysplasia [54]

AML KDM6A ko mice, AML cell lines
KDM6A ko causes COMPASS complex

malfunctioning with
upregulation of ETS signaling

[55]

AML Primary AML patient cells; AML cell lines Loss of KDM6A confers cytarabine resistance
through ENT1 downregulation [56]

CML Primary CML patient cells; CML cell lines

pro-
leukemic

KDM6A promotes imatinib-resistance through
upregulation of TRKA [57]

AML/CML AML and CML cell lines KDM6A depletion reduces Runx1, Mll1 and Scl
expression and impairs proliferation [58]

AML Primary AML patient cells; AML cell lines KDM6A promotes cancer cell survival via
upregulation of DOCK5/8 [59]

KDM6B

MDS Primary MDS patient CD34+ cells

pro-
leukemic

Inhibition of KDM6B resulted in an increase in
erythroid colonies in MDS [60]

AML Clinical data KDM6B is overexpressed in AML and correlates
with a. poor survival [61]

MDS/CMML Tg KDM6B overexpression in mice KDM6B overexpression showed features of MDS
in mice [62]

AML Kdm6b ko (VAVCre, MxCre, ERT2-Cre) Loss of Kdm6b reduced HSCs and attenuates
MLL-AF9-induced AML [63]

AML AML cell lines KDM6B kd reduced the proliferation and
increased chemo-sensitivity [64]

AML HL-60; primary patient samples; PML-RARα-,
AML1-ETO9a, or MLL-AF9 tg mice

anti-
leukemic

KDM6B exerts anti-AML effect by directly
modulating H3K4 and H3K27 [65]

AML (acute myeloid leukemia), APL (acute promyelocytic leukemia), BP (blast phase), CMML (chronic myelomonocytic leukemia), CML
(chronic myeloid leukemia), HSC (hematopoietic stem cell), kd (knockdown), ko (knockout), MDS (myelodysplastic syndrome), MPN
(myeloproliferative neoplasms), tg (transgenic), xg (xenograft).

2.1.2. KDM2B

Two complementary studies suggested an oncogenic role for KDM2B in myeloid
leukemia (Figure 2) [11,12]. KDM2B demethylates H3K36me2 at the promoter of the
tumor suppressor p15 (Ink4b), leading to decreased expression. p15 (lnk4b) silencing leads
to cell-cycle progression in both AML cell lines and in CD34+ primary AML cells [11]
and supports AML transformation by Hoxa9/Meis1 in mice (Table 1) [12]. Moreover,
transgenic (tg) mice overexpressing KDM2B develop myeloid and B cell leukemias through
a KDM2B-mediated increase in Nsg2 and OXPHOS expression [17]. These mice show
impaired HSC differentiation and dysregulation of metabolic processes. Nsg2 impairs HSC
differentiation, while upregulation of OXPHOS genes provides a metabolic proliferative
advantage for tg Kdm2b hematopoietic stem cells (HSCs) [17]. As a member of the non-
canonical polycomb repressive complex 1.1 (PRC1.1) KDM2B also contributes to metabolic
dysregulation. PRC1.1 controls the expression of genes essential for leukemogenesis, for
example pyruvate kinase and lactate dehydrogenase, and is required for the viability of
MLL-AF9 driven murine leukemias, as well as of primary patient AML cells (Table 1) [16].
These data thus suggest an oncogenic role for KDM2B.

Contradictory findings, however, support a tumor-suppressor role for KDM2B in
myeloid malignancies (Figure 2). Karoopongse et al. showed that low expression of
KDM2B, seen in primary MDS cells, allows upregulation of let-7b, a microRNA that tar-
gets EZH2 mRNA for degradation. Vice versa, KDM2B overexpression rescues EZH2
expression in MDS cell lines by suppressing let-7b [18]. EZH2 functions as a tumor sup-
pressor [66,67], clinically apparent by the poor prognosis of patients with AML/MDS
with reduced EZH2 activity [68,69]. Andricovich et al. likewise described an associa-
tion between low expression of KDM2B and reduced survival of AML patients [19,70,71].
Moreover, this finding was confirmed in a Vav1-Cre KrasG12D-driven AML mouse model.
Mice displayed shortened survival upon loss of Kdm2b, while overexpression significantly
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extended survival of KrasG12D-induced AML [19]. Mechanistically, loss of Kdm2b resulted
in cell-cycle activation and reduced interferon signaling. Overexpression led to the ac-
tivation of transcriptional programs linked to interferon signaling (Irf3, Irf5, Irf7, Stat1,
Stat2) and inhibition of the PRC2 antagonists Hox10 and Smarca4/Brg1 (Table 1) [19].
In myeloid disorders, the PRC2 complex is associated with tumor suppressive activ-
ity [72,73]. In several model systems KDM2B acts as a tumor suppressor, by preventing
degradation of a second tumor-suppressor, by inhibiting tumor-suppressor antagonists,
or by reducing cell activation. In conclusion, the role of KDM2B in myeloid malignancies
appears to be strongly context dependent. Future studies exploring any potential therapeu-
tic targeting of KDM2B will need to consider that KDM2B either acts as an oncogene or a
tumor suppressor depending on the specific genetic background.

2.2. The KDM3 Family

The KDM3 subfamily of the Jumonji domain-containing histone demethylases encom-
passes three members, KDM3A, KDM3B, and KDM3C. As reviewed by Markolovic et al.,
all members possess catalytic activity towards mono- and di-methylated lysine residues [8].
H3K9 is the known main histone target of KDM3 demethylases [8]. In myeloid malignan-
cies, KDM3A has been shown to demethylate H3K9me2 [20], while KDM3B is associated
with histone demethylase activity towards H3K9me1–2 [21,22,30]. The catalytic function of
KDM3C in myeloid malignancies is controversial. Histone demethylase activity towards
H3K9me1–3 [28,32] and H3K36me3 [28] has been observed, while other groups propose a
non-enzymatic role in this context [29,31].

2.2.1. KDM3A

Jafek et al., demonstrate that KDM3A supports pro-leukemic processes in AML
(Figure 2). Oct1 recruits KDM3A to the CDX2 promoter to remove the repressive H3K9me2
mark [20]. Overexpression of CDX2 is often observed in AML patients and is sufficient to
induce leukemia in murine BM transplantation models [74,75]. To date, this is the only
study describing a role for KDM3A in myeloid malignancies; further investigation is there-
fore required to corroborate the significance of KDM3A-mediated CDX2 overexpression in
this context or to reveal additional pathophysiological roles for KDM3A.

2.2.2. KDM3B

KDM3B has been proposed to act as a tumor suppressor in myeloid disorders (Figure 2).
Located on chromosome 5, an allele of KDM3B is lost upon 5q deletion, frequently observed
in AML and MDS [23,76]. In AML cell lines harboring the 5q deletion, reintroduction of
KDM3B represses clonogenic growth and colony formation) [22,23]. Moreover, in APL
cell lines, KDM3B downregulation enhanced proliferation, impaired differentiation, and
reduced ATRA-induced degradation of PML/RARα [21]. Mechanistically, KDM3B mod-
ulates H3K9me1–2 levels to maintain a compact chromatin status, thus, loss of KDM3B
enhances chromatin accessibility [21,22]. Open chromatin allows PML/RARa access to
ETS and bZIP transcription factor binding sites, among them the sites of SPI1/PU.1 and
Jun-AP1 [21]. The SPI1/PU.1-mediated gene signature is essential for myeloid differen-
tiation, and this is repressed upon PML/RARA binding [77,78]. Therapy with ATRA
degrades PML/RARA. In APL cell lines, this process is accompanied by KDM3B upregula-
tion, which enhances gene expression required for differentiation through its demethylase
activity [21,22]. Taken together, KDM3B exerts anti-leukemic effects in AML, especially
APL, and MDS by modulating chromatin accessibility through its enzymatic activity.

2.2.3. KDM3C

Research of the last decade revealed an oncogenic role for KDM3C in myeloid
leukemias (Figure 2). Using an shRNA-mediated depletion screen Sroczynska et al. identi-
fied Kdm3c as one of the best candidate drug targets for leukemia therapy among 319 tested
genes. In AML cell lines and in an MLL-AF9 mouse model, depletion of Kdm3c impaired
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growth and colony formation of leukemic cells by increasing apoptosis [33]. Further studies
in the following years confirmed the finding by Sroczynska et al. and revealed catalytic
and non-catalytic mechanisms through which KDM3C exerts its oncogenic potential.

Several groups have proposed that catalytic function of KDM3C is required for its
pro-leukemic activity. In RUNX1-RUNX1T1-driven leukemia, KDM3C is directly recruited
to its target genes by RUNX1-RUNX1T1. KDM3C-mediated demethylation of H3K9me2

at the promoters results in increased expression of its targets among them LMO2, ID1,
EGR1, and CDKN1A. Vice versa, shRNA-mediated depletion of KDM3C reduced target
gene expression and impaired proliferation and survival in AML cell lines [32]. Likewise,
Izaguirre-Carbonell et al. showed that the catalytic JmjC-domain and the zinc finger
domain of KDM3C are required for the survival of MLL-AF9 leukemia cells. Silencing of
KDM3C promoted cell differentiation through upregulation of the IL3 receptor, followed
by enhanced RAS/MAPK and JAK-STAT signaling) (Table 1) [28]. In this model, loss
of KDM3C activity increased H3K36me3 levels while H3K91–3 methylation remained
unaltered [28]. Despite reports showing non-enzymatic modes of action for KDM3C, these
findings clearly show that KDM3C sustains leukemogenicity of AML cells through its
enzymatic activity.

Other groups have suggested that the pro-leukemic role of KDM3C is independent
of its histone demethylase activity. Zhu et al. showed that a knockout of KDM3C in
MLL-AF9 and HOXA9-driven leukemic mice increased overall survival by reducing the
number of leukemia initiating cells (LSCs) and promoting differentiation of leukemic cells
(Table 1) [31]. Mechanistically, KDM3C modulates a HOXA9-controlled gene-expression
program that is independent of histone methylation [31]. Instead, KDM3C directly interacts
with HOXA9 and may serves as a scaffold to facilitate binding between HOXA9 and its
cofactors [31]. Additional evidence for a demethylase-independent role in AML derives
from overexpression of an enzymatically compromised isoform of KDM3C, lacking the
zinc finger domain. Enzymatically inactive KDM3C intensifies the aggressive phenotype of
HOXA9 leukemia in mice similar to the wt protein. Neither wildtype (wt) KDM3C nor the
defective KDM3C isoform showed demethylase activity towards H3K9 [29]. Nonetheless,
both upregulated expression of key glycolytic and oxidative enzymes. KDM3C therefore
also contributes to AML pathophysiology independent of its enzymatic activity.

The oncogenic role of KDM3C was also tested in myeloproliferative neoplasms (MPN).
In Ph-positive CML cell lines, depletion of KDM3C impairs proliferation and viability and
enhances sensitivity towards chemotherapy treatment [25]. In Ph-negative MPN, KDM3C
is regulated by NFE2, a key transcription factor in aberrant MPN signaling [30,79–83].
KDM3C increases the expression of NFE2 by reducing H3K9me1/2 at the NFE2 promoter
region, resulting in a positive feedback loop [30]. Knockdown of Kdm3c in a hematopoi-
etic cell line carrying Jak2V617F significantly reduces cytokine-independent proliferation.
However, Jak2V617F-driven MPN disease initiation was not altered in Kdm3c knockout
mice [26,30]. Since there are controversial findings towards the role of KDM3C in MPN,
further investigation is required to clarify the role of KDM3C and its potential as a pharma-
cological target in MPN.

An increasing number of KDM3C inhibitors are entering pre-clinical investigation.
The Hu laboratory performed a virtual screen for potential small molecular modulators
targeting the Jumonji domain of KDM3C [24,27]. JDI-16 exhibited killing activities against
malignant hematopoietic cells and induced apoptosis and differentiation of MLL rear-
ranged AML cells [27]. In addition, the KDM3C modulator JDM-7 suppressed colony
formation of AML cell lines in semi-solid cell culture by decreasing HOXA9-mediated
expression patterns [24]. Pre-clinical data thus provide efficacy of KDM3C inhibition in
mouse models of AML. Future studies are necessary to determine clinical applicability of
KDM3C inhibitors.
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2.3. The KDM4 Family

The KDM4 subfamily of the Jumonji domain-containing histone demethylases en-
compasses five members, KDM4A, KDM4B, KDM4C, KDM4D, and KDM4E. As reviewed
by Markolovic et al., all enzymes possess catalytic activity towards mono-, di-, and tri-
methylated lysine residues [8]. H3K9, H3K36, and H1.4K26 are the known main histone
target of KDM4 demethylases [8]. In myeloid malignancies H3K9me3 demethylase activity
was described for KDM4A-D [34,35,39–42]. For KDM4A and KDM4C additional activity
was observed towards H3K27me3 [35,40]. The role of KDM4E in myeloid malignancies
remains unknown.

Cumulative evidence from the Helin lab supports the hypothesis that KDM4 family
members exert redundant demethylase activities, suggesting compensation for loss of
single KDM4 proteins. The Helin lab showed that only a combined knockout of several
histone demethylases, especially the combination of Kdm4a and Kdm4c, impaired the main-
tenance of HSCs [84–86]. Furthermore, only simultaneous knockout of the demethylases
Kdm4a, Kdm4b, and Kdm4c perturbed progression of MLL-AF9 translocated leukemias in
mice [34]. Mechanistically, KDM4 proteins remove repressive H3K9me3 to drive their target
gene expression, including Taf1b, Nom1, and Il3ra [34,84–86]. These genes are essential for
normal hematopoiesis and are often deregulated in AML [87–89]. Disease-modification in
myeloid malignancies through targeting of KDM4 demethylases thus appears feasible but
will require the simultaneous inhibition of several enzymes.

Other groups also suggest a pro-leukemic role for KDM4 demethylases (Figure 2).
However, in contrast to the Helin laboratory, these researchers do not see the requirement
for combined targeting to impair leukemogenesis:

2.3.1. KDM4A

Massett et al. show that KDM4A is required for the survival of AML cell lines and
AML primary cells (Table 1) [35]. Loss of KDM4A alone is sufficient to induce apoptosis and
transplantation of human KDM4A-depleted MLL-AF9 AML cells into immunodeficient
mice significantly prolongs survival compared to the control group [35]. Mechanistically,
KDM4A enhances the expression of PAF1 by reducing H3K9me3 and H3K27me3 at its
promoter region. PAF1 is essential for transcriptional elongation as a core component of
the polymerase-associated factor 1 (PAF1) complex [36,90,91]. PAF1 and KDM4A initiate
a pro-leukemic transcriptional program that involves upregulation of pro-survival BCL2
and downregulation of pro-apoptotic BCL2L11 (BIM) [35]. Detailed analysis of this tran-
scriptional program revealed a gene signature that effectively stratifies high-risk AML
patients [35]. In addition, newly developed KDM4A inhibitors efficiently block enzymatic
activity and show antitumor activity in solid and hematological cancer cell lines [92].
Thus, KDM4A is a promising target for novel diagnostic and therapeutic approaches in
myeloid malignancies.

2.3.2. KDM4B

KDM4B expression is increased in both AML patients and in MLL-AF9-transduced
cord blood CD34+ cells, indicating an involvement of KDM4B in AML leukemogenesis
(Figure 2) [37]. Mechanistically, MLL-AF9 enhances the expression of S100A8 and S100A9
which inhibit differentiation in AML [93]. shRNA-mediated knockdown of KDM4B in
THP-1 and MLL-AF9 transduced CD34+ cells significantly reduced growth of leukemic
cells and normalized S100A8/9 expression [37]. These data support the hypothesis that
MLL-AF9 leads to activation of S100A8/9 through KDM4B. However, whether this occurs
through direct demethylase activity at the S100A8/9 loci or by an indirect mechanism
is unclear.
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2.3.3. KDM4C

KDM4C is upregulated in AML primary cells and in AML cell lines (Table 1) [38,39].
Moreover, this histone demethylase is involved in various processes essential for AML
pathophysiology. Xue et al. showed that KDM4C contributed to cytarabine resistance in
AML via regulation of the MALAT1/miR-328-3p/CCND2 axis [38]. In resistant HL-60
AML cells (HL-60/A), KDM4C elevates the expression of MALAT1, a long non-coding
RNA that is associated with increased cell proliferation in AML [94]. MALAT1 allows for
the increased CCND2 expression through inhibition of the microRNA miR-328-3p [38].
As a member of the cyclin family CCND2 has been shown to confer drug resistance in
cancer [95]. Notably, transplantation of KDM4C depleted HL-60/A cells into immunodefi-
cient NOD/SCID mice significantly improved survival compared to KDM4C-expressing
cells [38]. These results underline the potential for novel therapeutic approaches targeting
KDM4C in cytarabine-resistant AML.

Wang et al. described KDM4C as part of the KDM4C/ALKBH5/AXL axis, providing
additional evidence of its contribution to AML. In AML cell lines, KDM4C allows for the
increased expression of the N6-methyladenosine (m6A) demethylase ALKBH5 through
removal of repressive H3K9me3 at its promoter [39]. ALKBH5 increases mRNA stability of
the receptor tyrosine kinase AXL, resulting in enhanced PI3K/AKT/mTOR signaling [39].
Fittingly, knockdown of KDM4C in MOLM13 and THP1 cells inhibited cell growth and
clonogenic ability through the downregulation of ALKBH5 [39]. Thus, KDM4C contributes
to aberrant signaling in AML.

Moreover, KDM4C is involved in the leukemic network mediated by PRL-3 [41], an
oncogenic dual-specificity phosphatase frequently overexpressed in AML patients [96].
In TF-1 cells, PRL-3 promotes KDM4C occupancy of the Leo1 promoter, which is accompa-
nied by a reduction in H3K9me3 repressive marks and increased Leo1 expression [41]. Leo1
is part of the RNA polymerase II–associated factor (PAF) complex and mediates oncogenic
activities in AML [41]. Hence, KDM4C regulates the expression of the oncogenic PRL-3
target gene Leo1 via its histone demethylase activity.

Additionally, Cheung et al. show that KDM4C is essential for MLL- and MOZ-TIF2-
driven leukemia. shRNA-mediated knockdown of KDM4C in MLL-GAS7, MLL-AF9, and
MOZ-TIF2 leukemia cell lines increased differentiation, cell cycle arrest, and apoptosis [40].
Moreover, transplantation of KDM4C-depleted leukemic cells into sub-lethally irradiated
mice significantly improved their survival [40]. Mechanistically, MLL-fusions and MOZ-
TIF2 recruit KDM4C to remove repressive H3K9me3 and H3K27me3 histone marks at their
target genes, among them Myc, Hoxa9, and Meis1. [40]. Consistently, loss of Kdm4c was
accompanied by reduction in H3K9 acetylation, as well as accumulation of H3K9me3 and
H3K27me3 [40]. Furthermore, treatment with the KDM4C inhibitor SD70 [97] drastically
reduced the leukemic burden and significantly extended disease latency in mice trans-
planted with MLL-AF9 leukemia cells [40]. Multiple findings demonstrate a key role for
KDM4C in MLL- and MOZ-TIF2-driven leukemia. This demethylase therefore represents
a promising candidate in this challenging subtype of myeloid leukemia and should be
further investigated in preclinical and clinical studies to test its applicability as potential
drug target.

2.3.4. KDM4D

Wu et al. recently suggested a role for KDM4D in AML pathophysiology (Table 1,
Figure 2). Using the databases SurvExpress and GEPIA, they found high expression
of KDM4D to be significantly correlated with a poor prognosis in AML [42]. Fittingly,
KDM4D is highly expressed in HL-60, MOLM-13, and NB4 AML cells. Overexpression or
downregulation of KDM4D in these cell lines caused an increase or decrease in proliferation,
respectively [42]. Mechanistically, KDM4D increases the expression of the anti-apoptotic
MCL1 through removal of repressive H3K9me3 [42]. This study is the first to propose
involvement of KDM4D in AML.
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2.4. The KDM5 Family

The KDM5 subfamily of the Jumonji domain-containing histone demethylases encom-
passes four members, KDM5A, KDM5B, KDM5C, and KDM5D. As reviewed by Markolovic
et al., all enzymes possess catalytic activity towards mono-, di-, and tri-methylated lysine
residues [8]. H3K4 is the known main histone target of KDM5 demethylases [8]. In myeloid
malignancies KDM5A and KDM5B show enzymatic activity towards H3K4me3 [47,98]
while little is known about KDM5C [51,52] and KDM5D in this context.

2.4.1. KDM5A

The function of KDM5A was recently comprehensively reviewed by Kirtana et al. [99].
The role of KDM5A in myeloid malignancies is best understood in the context of NUP98 fu-
sions. NUP98 is frequently fused to a variety of genes in pediatric acute leukemias through
translocations or inversions, for instance it can fuse to the PHD domain of KDM5A [43,100],
forming NUP98-KDM5A. These fusions increase expression of the Hoxa gene cluster
by binding of promoters. The KDM5A PHD domain exerts a histone reader function,
which is redirected to NUP98 targets through the aberrant fusion. As a result, regular
myelo-erythroid differentiation is perturbed [101–108]. Consequently, transplantation of
BM infected with a NUP98-KDM5A fusion induced the development of AML in mice
(Table 1) [43].

The mode of action of KDM5A fusions is distinct from the enzymatic function of the
physiological JmjC domain in full-length KDM5A, which acts as a histone eraser. It is
therefore also important to understand how deregulated expression of full-length KDM5A
contributes to disease evolution and progression. In solid tumors KDM5A is overexpressed
and contributes to tumorigenesis by reduction in differentiation, to metastasis, and to
drug resistance [98,101,109–113]. However, little is known about the role of full-length,
enzymatically active, KDM5A in myeloid malignancies. In chronic myelogenous leukemia
(CML) blast phase (CML-BP), KDM5A plays an important role [44,45], bar one exception.
MicroRNA-181d (miR-181d) is overexpressed in CML-BP, which directly targets and dereg-
ulates the expression of KMD5A. Elevated KDM5A levels in turn inhibit the transcriptional
repression of NF-kB subunit p65, a direct KDM5A target. The ensuing increase in NF-kB
activation is further augmented by a positive feedback loop through binding of p65 to the
miR-181d promoter [45]. This sustained activation suggests both miR-181d and KDM5A as
potential therapeutic targets in CML-BP.

Another study described KDM5A downregulation in CML-BP and found that KDM5A
downregulated miR-21 expression by demethylation of H3K4me3 at the miR-21 pro-
moter [98]. Physiological miR levels derepressed the expression of PDCD4, which inhibited
proliferation and increased cell differentiation. Upon ectopically restoring KDM5A expres-
sion in CML cells, differentiation was restored, and proliferation inhibited. This study
suggests the potential use of KDM5A level as biological marker for CML progression
towards blast phase. Further investigation will be necessary to provide evidence for a
tumor suppressive function for KDM5A in CML.

Paralleling reports from solid cancers, Garcia and colleagues found that the chemo-
resistant AML cell lines Molm13 and Jurkat could be re-sensitized to AZD1775 treat-
ment [114,115] by knockdown of KDM5A, resulting in cell death. This was achieved either
directly by using the KDM5 inhibitor CPI-455 or indirectly by inhibition of HDACs which
negatively regulate the activity of KDM5A [108].

Together, these findings suggest an important role for KDM5A in disease progression
and drug resistance (Figure 2). Future investigation and more selective drug development
will be necessary to determine clinical applicability of KDM5A inhibitors especially in
accelerated CML, for which few therapeutic options exist.

2.4.2. KDM5B

Similar to KDM5A, evidence suggests a pro-leukemic role for KDM5B in myeloid
malignancies (Figure 2). KDM5B is required for HSC self-renewal in mice [49,50] and
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is expressed in human CD34+ cells and in the CML cell line K562, as well as in several
AML cell lines (Kasumi-1, KG-1, HEL, HL60, MonoMac-60) (Table 1) [46]. Knockdown of
KDM5B in K562 cells has shown to reduce colony-forming potential [46]. Recent expression
data from CML patients show that during chronic phase KDM5B level are not changed
compared to healthy controls, but significantly increase in CML-BP [116]. Follow-up studies
in mouse models of CML-BP will be necessary to determine the functional relevance of
this overexpression.

In AML, Wong et al. demonstrated that KDM5B negatively regulates leukemogenesis
in both mouse and human MLL-rearranged AML cells [47] through H3K4 demethylation,
which leads to cell differentiation. Orgueira and colleagues used a computer learning
algorithm termed ST-123 to predict survival of AML patients [48]. Their results suggest
that, aside from age, expression of KDM5B and LAPTM4B are the strongest predictors of
overall survival using multivariate cox regression analyses. The authors argue that KDM5B
may regulate the expression of several oncogenes and tumor suppressors, witnessed in
both solid tumors, as well as in leukemia [117–119]. Together, these findings highlight a
role of KDM5B in myeloid malignancies as predictive marker and a therapeutic target. A
first approach to exploring a therapeutic window could consist of determining a potential
selective vulnerability of KDM5B-overexpressing leukemic cells versus healthy CD34+

HSCs. This is crucial as KDM5 expression is required for normal stem cell function and
therapeutic applicability might thus be hampered by toxicity.

2.5. The KDM6 Family

The KDM6 subfamily of the Jumonji domain-containing histone demethylases en-
compasses three members, KDM6A, KDM6B, and KDM6C. As reviewed by Markolovic
et al., all enzymes possess catalytic activity towards mono-, di-, and tri-methylated lysine
residues [8]. H3K27 is the known main histone target of KDM6 demethylases [8]. KDM6A
contributes to myeloid malignancies in an enzymatic (H3K27me3 demethylation) [120]
and in a non-enzymatic [55] manner. KDM6B demethylates H3K27me3 and increases
H3K4me3 levels as it associates with the H3K4 methyltransferase complex [60,61,65]. No
major contribution of KDM6C to myeloid malignancies has been described, which is why
we focus on KDM6A and KDM6B in the following section.

2.5.1. KDM6A

In myeloid malignancies KDM6A is frequently mutated, resulting in reduced expres-
sion or loss of function [121–125]. KDM6A deficient mice display a CMML/MDS-like
phenotype that frequently transforms into AML (Table 1) [53–55]. Mechanistically, KDM6A
is required for differentiation [120]. In cord blood CD34+ HSCs, KDM6A maintains low
H3K27me3 levels, allowing binding of the lineage-determining transcription factors CEBPA,
SPI1/PU.1 and GATA1 [120]. Increased H3K27me3 through KDM6A inhibition prevents
recruitment of these transcription factors and results in impaired differentiation [120].

Gozdecka et al. revealed that KDM6A also exerts its tumor suppressive role through
noncatalytic mechanisms [55]. KDM6A interacts with members of the COMPASS com-
plex. Loss of KDM6A results in malfunctioning of this complex, causing reduced H3K4
methylation leading to upregulation of oncogenic ETS and repression of tumor suppressive
GATA transcriptional programs [55]. Importantly, ETS factors are known to recruit histone
acetyltransferases and consequently increase H3K27ac deposition [55,126]. Work by Stief
et al. revealed that H3K27ac accumulation upon loss of KDM6A confers cytarabine resis-
tance in AML through downregulation of the nucleoside membrane transporter ENT1 [56].
Moreover, Wu et al. showed that the KDM1A/LSD1 inhibitor SP2509 reverses the differen-
tiation block mediated by KDM6A deficiency. These authors propose a model in which
both LSD1 and the malfunctioning COMPASS-like complex demethylate H3K4. LSD1
inhibition increases H3K4 methylation and restores differentiation [127]. In summary, loss
of KDM6A contributes to leukemogenesis and drug resistance in myeloid malignancies
both dependent on and independent of its enzymatic activity (Figure 2).
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KDM6A may also possess oncogenic potential in CML and AML (Figure 2), as high
expression was observed in patients with poor prognosis [57,59,128]. In CML, KDM6A
promotes imatinib-resistance through upregulation of TRKA, a high affinity receptor for
the growth factor NGF [57]. Pro-survival TRKA/NGF signaling is associated with therapy
resistance in hematological disorders [129–133]. Targeting KDM6A in CML cell lines and
primary cells reduced TRKA levels and sensitized cells towards imatinib-induced apopto-
sis [57]. KDM6A is also required for cell expansion as its depletion significantly reduced
proliferation in AML cell lines [58]. Mechanistically, KDM6A diminishes H3K27 promoter
methylation of target genes, resulting in increased expression [58,59]. Targets include
Runx1, Mll1, and Scl, frequently deregulated in AML [58]. Moreover, KDM6A elevates
levels of the guanine exchange factors DOCK5/8 that convert Rac-GDP to Rac-GTP [59].
Signaling mediated by Rac GTPases promotes cancer cell survival in AML [134–136].
To conclude, these studies demonstrate an oncogenic role for KDM6A and provide a
rationale for targeted therapies.

2.5.2. KDM6B

In unbiased whole-genome wide ChIP-seq analyses of primary MDS CD34+ BM
samples, Wei et al. were able to identify 36 genes with elevated H3K4me3 levels at their
promoters (Table 1) [60]. KDM6B was overexpressed in these cells [60]. Functionally,
shRNA-mediated knockdown of KDM6B in primary MDS samples increased the numbers
of erythroid colonies [60]. In more recent studies, overexpression of KDM6B in transgenic
mice let to a mild hematopoietic phenotype with features of MDS and CMML, including
dysplasia, leukopenia, and an impaired repopulation capacity of HSPCs [62]. KDM6B is
also overexpressed in AML where its levels correlated positively with poor survival [61].
GSK-J4, a KDM6B inhibitor, showed efficacy in both the AML cell line Kasumi-1, as
well as in primary AML patient cells, by decreasing proliferation and colony formation,
respectively [61]. Moreover, GSK-J4 treatment of a human AML xenograft mouse model
halted disease progression. Mechanistically, treatment enriched H3K27me3 at HOX gene
promoters, abrogating their expression [61]. Fittingly, Mallaney et al. reported that a
complete loss of Kdm6b severely impaired HSCs stem cell self-renewal and prolonged
survival of MLL-AF9 leukemic mice [63]. Likewise, KDM6B knockdown re-sensitized
AML cell lines to daunorubicin and cytarabine by downregulation of IL6 [64]. Together,
these studies clearly suggest a potential for KDM6B as a drug target in MDS and AML.

Although the abovementioned studies focus on KMD6B as a potential oncogene in
disease initiation and progression of myeloid malignancy, Yu et al. found a significant
role of KDM6B in the differentiation of AML FAB subtypes M2 and M3. Combining ChIP
and RNA-sequencing the authors show that KDM6B enables the expression of myeloid
differentiation genes. Mechanistically KDM6B reduces H4K27me3 and increases H3K4me3

levels through its demethylase activity and association with the H3K4 methyltransferase
complex, respectively [65]. CEBPB is a KDM6B target gene and expression of the two
genes is correlated in primary AML blasts [65]. Knockdown of CEBPB reversed the effect
of KDM6B on myeloid gene expression, cell-cycle arrest, and cell death [65]. As shown
for other KDMs, whether KDM6B functions as an oncogene or as a tumor suppressor is
strongly disease stage and cell lineage dependent (Figure 2).

2.6. The KDM7 Family

The KDM7 subfamily of the Jumonji domain-containing histone demethylases en-
compasses three members, KDM7A, KDM7B, and KDM7C. As reviewed by Markolovic
et al., all enzymes possess catalytic activity towards mono-, di-, and tri-methylated lysine
residues [8]. H3K9, H3K27, and H3K20 are the known main histone target of KDM7
demethylases [8]. The role of KDM7A-C in myeloid malignancies remains unknown.
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3. Discussion

Recent research on JmjC domain-containing histone demethylases has revealed clear
contributions to disease initiation and progression in myeloid malignancies. However,
this emerging field faces several challenges including heterogeneity, potential functional
redundancy, and substantial context-sensitivity of function both between KDM families
and among members of individual families. For example, KDM5B is required for normal
HSC function as witnessed by compromised reconstitution of Kdm5b knockout PB cells
in a BM transplantation [49]. However, when KDM5B is constitutively knocked out, it is
dispensable for HSC function. This raises the question whether other KDMs compensate
for embryogenic loss of this enzyme. Another obstacle in defining the role of individual
KDMs derives from contradictory, context-dependent findings. For example, KDM2B
has been described as oncogenic by repressing the tumor suppressor p15 in AML [12].
However, other groups have found that low KDM2B expression was associated with poor
survival in AML patients [19,70,71]. Likewise, in a mouse model of AML, low KDM2B
expression resulted in shortened survival while overexpression significantly extended the
survival [19].

Evidence suggesting oncogenic potential has led to the development of pharmaco-
logical KDM inhibitors. Future studies will determine if inhibition of a single KDM is
sufficient to reduce leukemic growth or whether other KDMs compensate, abrogating any
effect. Moreover, is there a therapeutic window, can healthy cells be spared? Given the
high degree of similarity between individual KDMs, it seems likely that inhibitors will
affect multiple members of the same family. Nonetheless, with careful drug design and
optimization, KDM inhibition might serve to overcome non-genetic drug resistance in
myeloid malignancies [137–139].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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