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ABSTRACT Colorectal adenomas are precancerous lesions of colorectal cancer (CRC)
that offer a means of viewing the events key to early CRC development. A number
of studies have investigated the changes and roles of gut microbiota in adenoma
and carcinoma development, highlighting its impact on carcinogenesis. However,
there has been less of a focus on the gut metabolome, which mediates interactions
between the host and gut microbes. Here, we investigated metabolomic profiles of
stool samples from patients with advanced adenoma (n � 102), matched controls
(n � 102), and patients with CRC (n � 36). We found that several classes of bioactive
lipids, including polyunsaturated fatty acids, secondary bile acids, and sphingolipids,
were elevated in the adenoma patients compared to the controls. Most such metab-
olites showed directionally consistent changes in the CRC patients, suggesting that
those changes may represent early events of carcinogenesis. We also examined gut
microbiome-metabolome associations using gut microbiota profiles in these patients.
We found remarkably strong overall associations between the microbiome and
metabolome data and catalogued a list of robustly correlated pairs of bacterial taxa
and metabolomic features which included signatures of adenoma. Our findings high-
light the importance of gut metabolites, and potentially their interplay with gut mi-
crobes, in the early events of CRC pathogenesis.

IMPORTANCE Colorectal adenomas are precursors of CRC. Recently, the gut microbi-
ota, i.e., the collection of microbes residing in our gut, has been recognized as a key
player in CRC development. There have been a number of gut microbiota profiling
studies for colorectal adenoma and CRC; however, fewer studies have considered
the gut metabolome, which serves as the chemical interface between the host and
gut microbiota. Here, we conducted a gut metabolome profiling study of colorectal
adenoma and CRC and analyzed the metabolomic profiles together with paired mi-
crobiota composition profiles. We found several chemical signatures of colorectal ad-
enoma that were associated with some gut microbes and potentially indicative of
future CRC. This study highlights potential early-driver metabolites in CRC pathogen-
esis and guides further targeted experiments and thus provides an important step-
ping stone toward developing better CRC prevention strategies.
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Colorectal cancer (CRC) remains the second leading cause of cancer death in the
United States (1). Colorectal adenomas, or adenomatous polyps, can progress into

malignant tumors by acquiring a series of genetic mutations and are thus considered
the major precursor lesions of CRC (2, 3). The transformation process is referred to as
the adenoma-carcinoma sequence and is known to be associated with many risk
factors, including not only sociodemographic (e.g., age, sex, and race) and medical (e.g.,
family history) but also lifestyle (e.g., smoking history) and dietary (e.g., high consump-
tion of red and processed meat and low intake of dietary fibers) factors (4, 5).
Nowadays, establishing causal mechanistic links between such risk factors and CRC
pathogenesis has become highly important for identifying effective primary prevention
strategies and for further lowering CRC risk (6).

Recently, the gut microbiota has emerged as a central player mechanistically linking
various risk factors to CRC pathogenesis (7–9). Several lines of evidence support the
idea that many of the known CRC risk factors are also key determinants of the structure
and function of gut microbiota, which in turn influence host metabolism, immune
responses, and cancer-driving genomic/epigenomic alterations, thereby affecting CRC
development. For example, a higher consumption of red and processed meats, which
are high in sulfur-containing amino acids and inorganic sulfur, has been shown to
increase abundances of sulfidogenic bacteria such as Bilophila wadsworthia and Pyra-
midobacter spp.; these microbes are known to produce genotoxic hydrogen sulfide in
the gut, thereby inducing DNA damage in intestinal epithelial cells and promoting
carcinogenesis (10–13). In another example, intake of dietary fibers results in enrich-
ment of Bifidobacterium and Lactobacillus spp., which are capable of fermenting dietary
fibers into short-chain fatty acids (SCFAs) (14). SCFAs are known to exert protective
effects against CRC through a variety of mechanisms including modulation of regula-
tory T cell homeostasis and epigenetic modification in tumor cells via inhibition of
histone deacetylase (15, 16). Therefore, it has been posited that reduction in dietary
fiber intake, accompanied by changes in gut microbiota composition and SCFA pro-
duction, is mechanistically linked with increased risk of colorectal adenoma and CRC
(17, 18). Given the importance, gut microbiota profiling studies have been extensively
conducted using 16S rRNA gene sequencing or shotgun metagenomics techniques to
uncover links between the gut microbiota dysbiosis and development of colorectal
adenoma and CRC and possibly CRC risk factors (19–24).

However, it is the gut metabolome, rather than the gut microbiota itself, which
directly affects CRC development in the above examples (hydrogen sulfide and SCFAs).
These examples accentuate the importance of characterizing changes in the gut
metabolome along the adenoma-carcinoma sequence to better understand the bio-
chemical consequences of different CRC risk factors and their mechanistic implications
in CRC pathogenesis. It is even more desirable to have a paired gut microbiota-
metabolome data set to dissect the contribution of gut microbiota in metabolomic
profiles, as the gut metabolome is derived not only from microbial metabolism but also
jointly from diet and host metabolism. So far, in the context of CRC research, there have
been only a few studies which globally profiled both gut microbiome and metabolome
simultaneously (25–27). However, all such studies included only CRC patients and
controls and lacked patients with adenoma in the study populations. Therefore, it is still
not very clear how and which microbes and metabolites interactively trigger or support
the early events of CRC development.

In this study, we profiled the fecal metabolome, serving as a proxy of the gut
metabolome as it largely reflects gut physiology (28), of patients with adenoma
(n � 102) and matched controls (n � 102) to characterize biochemical signatures asso-
ciated with the early events of CRC pathogenesis. To the best of our knowledge, this
study represents the largest number of patients with adenoma with fecal metabolomics
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data, more than tripling the current record (29). Moreover, for each sample character-
ized herein, a paired gut microbiome profile was available as part of a data set that we
reported previously (20), providing us a means to decipher the potential interplay
between gut microbes and metabolites. Lastly, our study also included patients with
CRC (n � 36), which enabled us to address questions about signature continuity along
the adenoma-carcinoma sequence. In short, we present fecal metabolomic signatures
that are characteristics of colorectal adenoma patients and their associations with gut
microbiota and CRC pathogenesis. Our unique findings provide a useful resource for
guiding further targeted experiments and developing new CRC prevention strategies.

RESULTS
Patient groups. Fecal samples from 102 patients with one or more advanced

adenomas (�1 cm; “adenoma” group) and 102 matched controls without any polyps
based on colonoscopy (“control” group; frequency matched to the adenoma group by
age, sex, and race) were profiled using the ultraperformance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) platform at Metabolon, Inc. While the pri-
mary aim of this study was to elucidate fecal metabolomic signatures of adenoma in
comparison to controls, we additionally profiled fecal samples from 36 CRC patients
(“carcinoma” group) in order to gain more insight into the adenoma-carcinoma se-
quence. The groups did not show any significant differences in terms of potential
confounders such as age, sex, race, and history of smoking (Table 1).

Metabolomic signatures of adenoma. To identify metabolomic signatures of
adenoma, we compared metabolomic profiles of patients with adenoma to those of
controls in a hierarchical manner using permutation-based statistical tests. First, to
assess the overall difference, we performed permutational multivariate analysis of
variance (PERMANOVA) on the Euclidean distance matrix between samples based on
abundances of all annotated metabolites (Table 2 and Fig. 1A). Factors such as group
(adenoma/control), age, sex, race, and history of smoking were tested as predictors of
the observed variance between metabolomic profiles using both marginal and ad-
justed models (Table 2). We found that, regardless of the model of choice, the two
factors of group and sex explained small but significant portions of the variance (0.9%
and 1.4% of the total variance, respectively; P � 0.05). This indicates that the fecal
metabolomic profiles were, at least in part, dependent on not only presence/absence
of adenoma but also sex. Therefore, for our subsequent analyses, we investigated

TABLE 1 Demographics of the control, adenoma and carcinoma groups

Demographic
characteristic

No. of patients in group:

P valuea

Control
(n � 102)

Adenoma
(n � 102)

Carcinoma
(n � 36)

Age (yr)
50–59 18 17 6 0.994
60–69 49 50 19
�70 35 35 11

Sex
Female 40 40 16 0.833
Male 62 62 20

Race
White 95 96 33 0.799
Hispanic 4 2 1
Black 2 2 2
Other/unknown 1 2 0

Smoking history
Smoker 58 66 18 0.340
Nonsmoker 43 36 18
Missing 1 0 0

aFisher’s exact test was used to calculate the P values.
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metabolomic differences by adenoma status while adjusting for sex and age, and
additionally checked whether the metabolomic features also showed sex differences
(Fig. 1; see Materials and Methods).

To determine groups of metabolites that were associated with the presence of
adenoma, we broke down the overall metabolomic profiles into pathway-level profiles
using Metabolon’s pathway definition (see Materials and Methods). Using PERMANOVA
on Euclidean distance matrices based on the pathway-level profiles, we found that the
adenoma group displayed distinct pathway-level profiles in three superpathways (Fig. 1B;
“lipid,” “xenobiotics,” and “cofactors and vitamins”) and five subpathways (Fig. 1C; “endo-
cannabinoid,” “polyunsaturated fatty acid” [PUFA], “secondary bile acid metabolism,” “xan-
thine metabolism,” and “sphingolipid metabolism”) at a false-discovery rate (FDR) of 0.1. All
the distinct subpathways, except xanthine metabolism, belonged to the lipid superpath-
way, suggesting that the overall difference between the groups could be mainly attribut-
able to various classes of lipids and their metabolism. It should be noted that sex differences
existed in the pathway-level profiles for all the mentioned superpathways as well as the
sphingolipid metabolism subpathway (tested using PERMANOVA).

Next, we sought to identify metabolite-level signatures of adenoma using a permu-
tation test (see Materials and Methods). We identified 24 metabolites that were
differentially abundant between the adenoma and control groups at an FDR of 0.2
(Fig. 1D; the relatively larger FDR cutoff was used so as not to miss important
metabolites with moderate effects). Interestingly, all the differentially abundant
metabolites, except for carotene diol, were found to have increased abundances in
the adenoma group compared to the control group. Meanwhile, 19 out of the 24
metabolites belonged to the lipid superpathway. These include three endocannabi-
noids (more precisely, N-acylethanolamines; see Discussion), three PUFAs, two
secondary bile acids, and five sphingolipids, again suggesting that lipid metabolites
were the main contributors for the overall difference between the metabolomic
profiles of the two groups. It should also be mentioned that eight of the 24
differentially abundant metabolites, including all of the five differentially abundant
sphingolipids, also showed sex differences in their abundances (tested using the
permutation test). In particular, when we further examined sphingolipid levels by
simultaneously considering both group and sex factors, female controls displayed
strikingly low levels of sphingolipids compared to other metagroups (see Fig. S1 in
the supplemental material).

Metabolomic signatures along the adenoma-carcinoma sequence. We next
leveraged data from the carcinoma group to check whether the identified metabolomic
signatures were retained in the adenoma-carcinoma sequence. In other words, we
aimed to test whether the metabolomic signatures of adenoma can be regarded as
early markers of carcinogenesis. Due to the much smaller size of the carcinoma group,
we focused the analysis on the adenoma-associated metabolomic signatures to reduce
the multiple testing burden. At the subpathway level, we used PERMANOVA to test

TABLE 2 Factors explaining variance between overall metabolomic profiles of the
adenoma and control groupsa

Factor

Marginal model Adjusted model

Variance
explained (%) P value

Variance
explained (%) P value

Group 0.91 0.013 0.91 0.018
Age 1.19 0.156 1.15 0.191
Sex 1.4 0.004 1.4 0.001
Race 1.54 0.323 1.6 0.244
Smoking history 1.03 0.334 0.87 0.627
aIn the first two columns (under “Marginal model”), percent variance explained by a given factor and the
corresponding P value were derived from a marginal model not adjusted for other factors. In the last two
columns (under “Adjusted model”), percent variances explained by factors and the corresponding P values
were derived from a model adjusted for all factors. PERMANOVA with 999 permutations was used to
calculate the P values.
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which of the aforementioned five subpathways that were associated with adenoma
were different between the carcinoma and control groups. We found that two sub-
pathways, PUFA and sphingolipid metabolism, showed distinct pathway-level profiles
in the carcinoma group in comparison to the control group (Benjamini-Hochberg FDR

FIG 1 Fecal metabolomic signatures of colorectal adenoma. The adenoma (n � 102) and control (n � 102) groups were compared in a hierarchical manner. (A)
Principal component analysis (PCA) plot based on intensity profiles of all annotated metabolites showing overall difference in metabolomic profiles between the
adenoma and control groups. (B and C) Similar PCA plots based on superpathway-level profiles (B) and subpathway-level profiles (C). Metabolon’s definitions of
superpathway and subpathway were used. Superpathways and subpathways which displayed distinct pathway-level profiles by patient group tested using
PERMANOVA (q � 0.1) are shown. In PCA plots, centroids and dispersion of the groups are shown using thin colored lines (from each sample point to corresponding
centroid) and ellipses (at 90% confidence level), respectively. All PCA plots are supplemented with PERMANOVA statistics for the group factor. Euclidean distance
matrices were used for the PERMANOVA tests. (D) Abundance profiles of differentially abundant metabolites identified by permutation test (q � 0.2). #, features also
showed differences by sex.
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q � 0.1). This suggests that PUFAs and sphingolipids are playing certain roles in
carcinogenesis throughout the adenoma-carcinoma sequence.

Next, at the metabolite level, we compared the fold changes in metabolite abun-
dances for the adenoma and carcinoma groups in comparison to the control group
(Fig. 2; fold changes for adenoma versus control and for carcinoma versus control on
the x axis and y axis, respectively). Among the 24 metabolites that were differentially
abundant in the adenoma group compared to the control group (Fig. 1D), all except for
3-hydroxypalmitate showed directionally consistent changes when the carcinoma and
control groups were compared (Fig. 2) (23 of 24 red points were placed in the first and
third quadrants; see Fig. S2 for detailed metabolite abundances). However, the majority
of the metabolite-level signatures of adenoma seemed to be weakened in carcinoma
(Fig. 2) (20 of the red points were located between the x axis and the line y � x). While
this may be due to a statistical phenomenon called “winner’s curse,” in which the effect
sizes of the largest signals are generally overestimated due to the bias introduced by
thresholding (30), this may also indicate that there is no metabolite which clearly shows
progressive increase or decrease in its abundance along the disease progression. In
addition, this may imply that the metabolite-level signatures are not very robust
throughout the adenoma-carcinoma sequence. The pathway-level signatures may
serve as more robust markers for the early events of carcinogenesis than the
metabolite-level signatures (Fig. 2) (triangles and squares regardless of color indicate
PUFAs and sphingolipids, respectively).

Overall association between gut microbiota and metabolome. In our previous
study, moderate but systematic differences in fecal bacterial compositions between
patients with and without adenoma (n � 233 and n � 547, respectively) were identified
using 16S rRNA gene sequencing techniques (20). The subjects in the adenoma and
control groups of the current study were a subset of the patients included in the
previous study. As both fecal bacterial composition and metabolomic profiles were
available, and having confirmed that the fecal samples also contained metabolomic
signatures of adenoma, we took an integrative, multi-omics approach to uncover

FIG 2 Fold changes in metabolite abundances for the adenoma and carcinoma groups in comparison
to the control group. Fold changes for adenoma versus control and carcinoma versus control are shown
on x and y axes, respectively. Metabolites that were differentially abundant in the adenoma group in
comparison to the control group are highlighted in red. Triangles and squares regardless of color
represent metabolites belonging to two subpathways, “polyunsaturated fatty acid (n-3 and n-6)” and
“sphingolipid metabolism,” respectively. All other metabolites are shown as small gray circles. Blue
diagonal dashed line represents the line y � x.
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potential interplay between gut microbiota and metabolome in the early events of CRC
pathogenesis.

First, to assess the overall association between the bacterial composition and
metabolomic profiles, we calculated the correlation between the first principal coordi-
nate (PCo1) of the microbiome data based on unweighted UniFrac distance and the
first principal component (PC1) of the metabolomics data. As shown in Fig. 3, we found
a very significant correlation between microbial PCo1 and metabolite PC1 using data
from the adenoma and control groups (Spearman’s � � �0.684, P � 10�28). Correlation
coefficients calculated separately for each group were similar to the overall correlation
coefficient and showed no significant difference between each other (Spearman’s � �

�0.686, P � 10�14 for the adenoma group; Spearman’s � � �0.673, P � 10�14 for the
control group; difference between the two correlation coefficients was tested using
Fisher r-to-z transformation, P � 0.87). Similar results were obtained when the carci-
noma group was considered together with the adenoma and control groups: overall
correlation was again very strong (Spearman’s � � �0.688, P � 10�34), and all groups
showed similar correlations (Fig. S3). While the presence of adenoma or carcinoma did
not seem to affect the correlation between microbial PCo1 and metabolite PC1, females
showed a higher microbial PCo1-metabolite PC1 correlation than males (Spear-
man’s � � �0.772, P � 10�19 for females; Spearman’s � � �0.643, P � 10�17 for males;
difference was marginally significant when tested using Fisher r-to-z transformation,
P � 0.06). Nonetheless, additional 6-group analysis (control/adenoma/carcinoma � sex)
showed that there were significant correlations between microbial PCo1 and metabo-
lite PC1 regardless of disease status and sex, even though female groups showed
consistently higher correlations than male groups (Fig. S3). Finally, we confirmed that
the overall correlation between microbiota and metabolome existed beyond PCo1 and
PC1 by using coinertia analysis and Procrustes analysis (Fig. S4), both of which are
multivariate statistical methods for testing inter-omics correlations by simultaneously
considering multiple principal coordinates or principal components using permutation-
based significance assessment methods (31).

FIG 3 Correlation between the first principal coordinate (PCo1) of microbiome data based on un-
weighted UniFrac distance and the first principal component (PC1) of metabolomics data. Spearman’s
correlation coefficient and its significance were calculated using the adenoma and control samples
together (n � 204). The black line and gray area show a linear model and its 95% confidence interval
describing the overall trend. Green and orange lines represent linear trends for the control and adenoma
groups, respectively.
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Correlations underlying the microbiota-metabolome association. To investigate
which bacterial taxa and metabolite groups (or individual metabolites) were responsi-
ble for the overall association between gut microbiota and metabolome, we
surveyed individual correlations between genus-level bacterial abundance profiles
and subpathway-level (individual metabolite-level) intensity profiles (see Materials and
Methods). First, we calculated correlations between 69 genera and 37 subpathways
using data from the adenoma and control groups and found several genera that were
correlated with many subpathways (Fig. 4). In particular, four genera from the Firmicutes
phylum (Clostridium, Dehalobacterium, Ruminococcus, and Oscillospira) and a genus
from the Actinobacteria phylum (Adlercreutzia) showed Bonferroni-significant negative
correlations with 10 or more subpathways. While these genera mainly showed negative

FIG 4 Correlations between bacterial genera and metabolic subpathways. Spearman’s correlation coefficients and
their significances were calculated using residual profiles from linear models accounting for the factors, such as
patient group, age, sex, race, and history of smoking, to deemphasize associations mainly driven by such factors.
The residual profiles were calculated for abundance profiles of each bacterial genus or metabolic subpathway
across the adenoma and control groups (n � 204). For the subpathway abundance profiles, coordinate values
along the first principal components (PC1s) of each subpathway were used. The direction of PC1 was flipped over
when a PC1 showed a negative correlation with the averaged intensity profiles of metabolites in the subpathway.
Metabolon’s definition of subpathway was used, and only subpathways with at least five metabolites and their
PC1s explaining more than 20% of the variance in subpathway-level profiles were considered for the correlation
analysis. Features involved in at least one Bonferroni-significant correlation (q � 0.05) are shown in the hierarchi-
cally clustered heatmap. Names of subpathways which showed distinct pathway-level profiles in the adenoma
group compared to the control group are highlighted in bold. �, q � 0.1; *, q � 0.01; **, q � 0.001.
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correlations with subpathways, they also showed positive correlations with the sub-
pathway “fatty acid, dicarboxylate” (Oscillospira was also correlated with the subpath-
way “fatty acid, monohydroxy”). Meanwhile, Bacteroides from the Bacteroidetes phylum
also displayed Bonferroni-significant correlations with 10 or more subpathways, but in
the opposite direction, i.e., it mainly showed positive correlations. Among the subpath-
ways which showed distinct profiles in the adenoma and control groups (Fig. 1C),
“endocannabinoid” and “secondary bile acid metabolism” showed significant correla-
tions with all six of the aforementioned genera; “PUFA” was correlated with all but one
(not with Adlercreutzia); and “sphingolipid metabolism” showed negative correlations
with Dehalobacterium, Ruminococcus, and Oscillospira. In contrast, “xanthine metabo-
lism” was only moderately correlated with Oscillospira. A similar trend was observed
when we investigated individual metabolite-level correlations (Fig. 5).

DISCUSSION

In this work, we identified metabolomic signatures of colorectal adenoma through
untargeted metabolomics profiling of stool samples. To the best of our knowledge, we
profiled the largest number of samples from adenoma patients, which enabled us to
discover many metabolomic signatures associated with adenoma. Both the pathway-
and metabolite-level analyses revealed that the majority of the metabolomic signatures
belonged to different classes of bioactive lipids with diverse functions and were
associated with CRC development. Although the observed changes in such bioactive
lipids were too small to be used as metabolic biomarkers for adenomas (e.g., for
diagnostic purposes), these signatures provide key mechanistic insights into early

FIG 5 Correlations between bacterial genera and differentially abundant metabolites. Spearman’s correlation coefficients and their significances
were calculated using residual profiles from linear models accounting for the factors, such as patient group, age, sex, race, and history of smoking,
to deemphasize associations mainly driven by such factors. The residual profiles were calculated for abundance profiles of each bacterial genus
or metabolite across the adenoma and control groups (n � 204). All annotated metabolites were considered for the calculation, including
Bonferroni correction, but only the metabolites that were differentially abundant in the adenoma group in comparison to the control group were
shown in the hierarchically clustered heatmap. Bacterial genera correlated with at least one differentially abundant metabolite (q � 0.05) are
shown in the heatmap. �, q � 0.1; *, q � 0.01; **, q � 0.001.
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events of CRC pathogenesis (see below). Moreover, exploiting the advantage of having
paired microbiome data, we discovered that there existed a strong coupling of the gut
microbiota and metabolome and that a part of the metabolomic signatures of ade-
noma were associated with gut microbes.

Most of the differentially abundant bioactive lipids were elevated in the adenoma
group; however, inferring the contribution of such changes to carcinogenesis is not
straightforward because the function of a bioactive lipid is dependent on not only its
own molecular characteristics but also the balance and relationship with other bioac-
tive lipids (32). For example, we observed that both n-3 and n-6 PUFAs were elevated
in adenoma patients. It is well known that n-3 PUFAs have anti-inflammatory and
antineoplastic effects (33, 34), and a higher intake of n-3 PUFAs lowers the risk of CRC
(35, 36). In contrast, n-6 PUFAs, which are often working in a competitive way with n-3
PUFAs, have proinflammatory effects and may promote carcinogenesis (37, 38). There-
fore, the balance between n-3 and n-6 PUFAs, rather than their respective abundances,
may be more relevant to their actual biological activities with regard to carcinogenesis
(39, 40). However, this untargeted metabolomics study is limited in that we could not
assess the absolute concentrations of metabolites which were required for the calcu-
lation of n-3:n-6 PUFA ratios and for the determination of whether PUFAs are in
physiologically relevant concentrations. In another example, we found that sphingosine
and other sphingolipids (such as sphinganine and N-palmitoyl-sphinganine, which can
be converted into sphingosine via ceramide in the host cells) were elevated in the
adenoma group. It may seem ironic as these sphingolipids are known to have antipro-
liferative and proapoptotic effects on various cancer cell lines including human colon
cancer (41–43). However, it should be also considered that sphingosine can be readily
phosphorylated to form sphingosine-1-phosphate, which exerts proliferative and anti-
apoptotic effects on cancer cells as opposed to sphingosine (44–46). Moreover,
some studies showed that adenomas and cancers have higher expression levels of
sphingosine kinase 1, which is responsible for the conversion of sphingosine into
sphingosine-1-phosphate, compared to normal mucosa using human colon samples
(47–49). Therefore, the balance between sphingosine-1-phosphate and sphingosine
(and other sphingolipids) should be assessed to conclusively state the role of sphin-
golipids in colorectal dysplasia (50, 51). Unfortunately, sphingosine-1-phosphate was
out of the coverage of the untargeted metabolomics platform used in this study.
Nevertheless, based on the additional observation that PUFAs and sphingolipids were
also perturbed in the carcinoma group at the pathway level, we suggest that imbal-
ances in PUFAs and sphingolipids seem to play a significant role in the adenoma-
carcinoma sequence and require further investigation, for example, through targeted
metabolomics.

Other bioactive lipids elevated in the adenoma group include secondary bile acids
and endocannabinoids (N-acylethanolamines). Secondary bile acids, including deoxy-
cholic acid, are known to have cytotoxicity on colonic epithelial cells and promote
carcinogenesis (52–54). N-Acylethanolamines, such as palmitoyl-, oleoyl-, and linoleoyl-
ethanolamides (which belonged to the subpathway “endocannabinoid” according to
the Metabolon’s pathway definition but more precisely are nonendocannabinoids as
they are cannabinoid receptor inactive), exert their main biological activities through
the activation of peroxisome proliferator-activated receptor � (PPAR�) (55–57). How-
ever, the role of PPAR� in CRC pathogenesis remains controversial (58). Some studies
showed that PPAR� has anti-inflammatory and antitumor activities in human CRC cells
(59). However, another study suggested that PPAR� has a tumor-promoting activity in
CRC cells through cross talk with the farnesoid X receptor pathway when there exist
endogenous bile acids (60). As these two subpathways did not show statistically
significant alterations in the carcinoma group in comparison to the control group,
bioactive lipids in these classes may be involved in early steps of carcinogenesis rather
than later steps.

Through the multi-omics profiling, we were able to investigate the associations
between the gut microbiota and metabolome. Regardless of disease status, we ob-
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served remarkably strong overall associations between microbial taxonomic and
metabolomic profiles using different statistical tests. Such a strong coupling of gut
microbiota and metabolome has been reported elsewhere (61, 62). Not only direct
interplays between microbes and metabolites, e.g., consumption/production of metab-
olites by microbes and promotion/suppression of microbial growth by metabolites, but
also complex and indirect interplays mediated by other factors, such as diet, host
physiology, and immune response, might drive the overall association. Unfortunately,
we were not able to quantify the contribution of the latter to the overall association as
we did not have measurements for such mediating factors, e.g., dietary fatty acid
content (diet), body mass index (host physiology), and fecal calprotectin level (immune
response). Nevertheless, it is possible to provide some reasonable explanations for the
observed overall associations by surveying the individual correlations between micro-
bial and metabolomic features. For example, PUFAs and endocannabinoids (N-
acylethanolamines), which were likely to originate from diet (57, 63), are unlikely to be
extensively metabolized by gut microbiota; however, they were significantly correlated
with multiple bacterial genera. Therefore, this may imply that dietary factors drove a
certain part of the gut microbiota-metabolome association in accordance with previous
reports which showed that diet can shape both the gut microbiota and metabolome
(64, 65). Meanwhile, we also found possibly direct interactions between microbes and
metabolites, i.e., positive correlations between Bacteroides and secondary bile acids.
Some Bacteroides species, such as Bacteroides fragilis and Bacteroides thetaiotaomicron,
are known to possess bile salt hydrolases and hydroxysteroid dehydrogenases, which
are responsible for converting host-produced conjugated primary bile acids into sec-
ondary bile acids (66). However, we still want to leave a caution that the links between
Bacteroides and secondary bile acids may be spurious as there exists a complex cross
talk between dietary lipid intake, host metabolism, bile acids, and microbiota (67, 68).
Taken all together, our results may indicate that (i) some dietary bioactive lipids (e.g.,
PUFAs and N-acylethanolamines) directly promote carcinogenesis without the involve-
ment of gut microbiota and (ii) nonspecific dietary lipids indirectly contribute to
carcinogenesis via relevant changes in host-microbiota cometabolism (e.g., secondary
bile acid metabolism).

It is noteworthy that, despite their potential importance in the adenoma-carcinoma
sequence, metabolites in the de novo sphingolipid biosynthetic pathway, such as
sphinganine and N-palmitoyl-sphinganine, showed almost no correlations with mi-
crobes. While such sphingolipids were likely derived from the host cells rather than
microbes or diet, it is well known that some bacterial species, e.g., members of the
Bacteroidetes phylum, produce sphingolipids that are structurally similar but not iden-
tical to mammalian sphingolipids, and such bacterial sphingolipids can modulate the
host immune system (69). However, this study is limited in that the metabolomics
platform primarily covers human-derived metabolites, not microbiota-derived metab-
olites. Therefore, in future studies, it would be interesting to focus on bacterial
sphingolipids and their roles in the adenoma-carcinoma sequence.

Interestingly, we found some sex differences in our data set. Specifically, we
observed that (i) the female control group showed uniquely low levels of sphingolipids
compared to other groups and (ii) the overall gut microbiota-metabolome association
was stronger in females than males regardless of the presence of adenoma or carci-
noma. Nowadays, researchers are becoming increasingly aware of sex differences in
CRC as more evidence suggests that risk factors and molecular events leading to the
disease are substantially different by sex (70, 71). Here, this work is one of the first
studies which highlighted the importance of sex differences in gut metabolome (and
potentially its association with gut microbiota) in CRC development. It would be worth
investigating whether sex differences in gut metabolome are associated with different
paths of CRC development in the future (72, 73). It should be also noted that, in contrast
to the fact that we devoted a fair amount of effort to investigating sex differences in
our data set, we were not able to study the effect of ethnicity on metabolomic and
taxonomic profiles as our study population is predominantly non-Hispanic white. This is
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reflective of the geographic distribution of ethnic groups in the areas where participating
medical centers are located (74). Further studies are warranted to replicate our findings
across different ethnicities.

This study is exploratory in nature. It is a limitation of our study that we could not
provide clear causalities for our findings. First, the cross-sectional nature of this study
does not allow us to determine the time order of variables which is required for
establishing causal relationships. Second, we are not able to guarantee that the
observed associations are not spurious at all, which is a condition required for the
causal inference, in some degree, due to the lack of information on diet and other
potential confounding factors. Nevertheless, lists of the metabolomic signatures of
adenoma and correlated pairs of microbes and metabolites catalogued in this study
would be useful for directing further targeted studies. For example, in vivo and in vitro
experiments using mouse models and cell lines can be designed based on our findings
to further investigate cause-effect relationships. Especially, it would be interesting to
see if microbes (e.g., Bacteroides species) are required for mediating effects of dietary
risk factors (e.g., high-fat diets) on malignant transformations via altering bile acid
profiles: a study similar in concept already exists in which, however, microbiome has
not been considered a variable (75). Drawing a complete interaction map including
players like diet, microbiota, and metabolome and highlighting their roles in the
adenoma-carcinoma sequence would be a challenging but prominent goal which could
lead to better diagnosis and prevention strategies for CRC in future studies.

MATERIALS AND METHODS
Study design, subject enrollment, and sample collection. Individuals were selected from a

previous study of 4,482 participants with average risk for CRC (74). Initially, 241 fecal samples were
selected from the frozen stool archive for the original study and sent for metabolomics profiling;
however, one sample was later excluded from all the statistical analyses as it lacked information on many
demographic factors. It should be noted that 780 fecal samples from the original study were previously
characterized for microbial composition (20), and a subset of 204 of them (comprising the adenoma and
control groups) were selected again for this study. To be more specific, 102 patients with adenoma were
first selected to include various types of adenomas in terms of growth pattern (tubular, tubulovillous,
villous, or serrated), size, and grade of dysplasia. Then, 102 controls were selected to match the sex, age,
and race distribution of the adenoma group. For the carcinoma group, all CRC cases that were available
in the original study population were selected (74). More details on the subject enrollment, exclusion
criteria, and sample collection processes are available in Text S1 in the supplemental material and the
previous studies (20, 74).

Approval for this study was granted by the Mayo Clinic’s Institutional Review Board. Fecal samples
were collected under protocol no. 15-004021, from patients who had previously enrolled under protocol
no. 532-00, undergone standard screening colonoscopies, and given consent for the use of their samples
in future research studies.

Microbiota analyses. Experimental procedures, including DNA extraction from the fecal samples
and amplification/sequencing of 16S rRNA genes, were previously described in detail (20). Briefly, DNA
was extracted from a core part of the frozen fecal sample, and the V3-V5 region of the 16S rRNA genes
was amplified as described previously (76). The sequencing library was prepared at the University of
Minnesota Genomics Center, and sequencing was performed using the Illumina MiSeq system at the
Mayo Clinic Medical Genome Facility. After sequencing, obtained sequence reads were processed using
our custom bioinformatic pipeline called IM-TORNADO with 97% identity threshold for operational
taxonomic unit (OTU) assignment (77).

Metabolomics analyses. Untargeted metabolomics profiling of the fecal samples through a UPLC-
MS/MS platform was performed by Metabolon, Inc. (Durham, NC, USA). Detailed methods are described
in Text S1.

Statistical analyses. Statistical analyses on metabolomics data were performed using scaled im-
puted data provided by Metabolon, Inc. Briefly, the raw data were normalized to account for interday
difference, which is a result of UPLC-MS/MS run over multiple days, and then the peak intensities were
rescaled to set each metabolite’s median equal to 1. Missing values were then imputed with the
minimum observed value of the metabolite across all the samples, yielding the scaled imputed data. We
further trimmed the metabolomics data to obtain more reliable and interpretable results: we (i)
considered only the metabolites detected in at least 80% of the samples from the adenoma and control
groups and (ii) discarded metabolites with unknown identities. Abundance profiles for the remaining 462
metabolites were log10 transformed and subjected to the following analyses.

To identify metabolomic signatures of adenoma, samples from the adenoma and control groups
were considered. PERMANOVA (78, 79) was first performed on the Euclidean distance matrix between
samples to assess the effects of factors (group, age, sex, race, and history of smoking) on variance
between overall metabolomic profiles (462 metabolites). Both marginal (not adjusted for other factors)
and adjusted (adjusted for all the factors) models were tested using the “adonis” function in the R
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“vegan” package v2.5-2 with 999 permutations. PERMANOVA was also applied on Euclidean distance
matrices based on pathway-level metabolite abundance profiles to identify metabolic pathways, where
the variance can be explained by the group factor, using models adjusted for sex and age with 999
permutations. For the definition of metabolic pathways, we followed Metabolon’s definition of super-
pathway and subpathway, and 8 superpathways and 38 subpathways with at least 5 annotated,
frequently detected metabolites were considered. To identify differentially abundant metabolites, be-
cause some metabolites showed nonnormal distributions, we performed a permutation test based on
the F statistic of a regular linear model while adjusting for sex and age using an in-house R function. To
correct for multiple testing, we performed FDR control using Storey’s q-value approach (“qvalue”
function in R “qvalue” package v2.10.0) (80). Note that we made another set of tests using models
adjusted for the group and age factors to identify metabolomic features that showed sex differences.

To evaluate the adenoma-carcinoma sequence in metabolomics data, we examined whether the
metabolomic signatures of adenoma could be consistently found by comparing the carcinoma and
control groups. First, for the five distinct subpathways of adenoma, PERMANOVA was performed again
using models adjusted for sex and age with 999 permutations to identify subpathways which also
showed distinct profiles between the carcinoma and control groups. Then, for each metabolite, we
calculated fold changes in mean metabolite abundance for the comparisons adenoma-versus-control
and carcinoma-versus-control and checked whether the fold change values for the two comparisons
were directionally consistent.

To assess the overall association between bacterial composition and metabolomic profiles, we first
reduced the dimensionality of data using ordination techniques, i.e., principal coordinate analysis and
principal component analysis for microbiome and metabolome data, respectively (“cmdscale” and
“prcomp” functions in R “stats” package). For the principal coordinate analysis of microbiome data, the
unweighted UniFrac distance matrix calculated using the OTU table and a phylogenetic tree was used.
Then, we calculated correlations between the first principal coordinate of microbiome data and the first
principal component (PC1) of metabolome data. We also performed coinertia analysis and Procrustes
analysis on the ordinated data using “coinertia” and “RV.rtest” functions in R “ade4” package v.1.7-11 and
“procrustes” and “protest” functions in R “vegan” package v2.5-2, respectively.

To identify individual features contributing to the overall microbiome-metabolome association, we
computed correlations of bacterial genera with metabolic subpathways and individual metabolites using
the data from the adenoma and control groups. As the microbiome data are sparser than the metabo-
lomics data, i.e., have many more zeros, here we applied a looser criterion and considered 69 bacterial
genera detected in at least 20%, rather than 80%, of the samples from the adenoma and control groups.
We also applied the arcsine square root transformation to relative abundance profiles of bacterial genera
to minimize potential bias. For the subpathway abundance profiles, coordinate values along PC1s of each
subpathway were used. Again, Metabolon’s definition of subpathway was used, and 37 subpathways
with at least 5 metabolites and their PC1s explaining more than 20% of the variance in subpathway-level
profiles were considered. Direction of PC1 was flipped over when a PC1 showed a negative correlation
with the averaged intensity profiles of metabolites in the subpathway. Then, abundance profiles for the
bacterial genera, metabolic subpathways, and individual metabolites were adjusted for group, age, sex,
race, and history of smoking, i.e., residual profiles were obtained from linear models accounting for the
factors, to deemphasize associations mainly driven by such factors. Using the residual profiles, Spear-
man’s correlation coefficients and their significances were computed for 2,553 (� 69 � 37) genus-
subpathway pairs and 31,878 (� 69 � 462) genus-metabolite pairs. Only Bonferroni-significant correla-
tions (� � 0.05) were presented and discussed in this study.

All the statistical analyses were performed in R version 3.4.4 (R Foundation for Statistical Computing,
Vienna, Austria; https://www.R-project.org/).

Data availability. The data supporting the findings of this study are available in the supplemental
material (Tables S1 and S2). The raw sequence files were deposited in the database of Genotypes and
Phenotypes (https://www.ncbi.nlm.nih.gov/gap) with the study accession number phs001204.v1.p1 at
the time of original publication (20).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, DOCX file, 0.02 MB.
FIG S1, PDF file, 0.2 MB.
FIG S2, PDF file, 0.2 MB.
FIG S3, PDF file, 0.3 MB.
FIG S4, PDF file, 0.3 MB.
TABLE S1, XLSX file, 1.5 MB.
TABLE S2, XLSX file, 0.2 MB.
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