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Abstract

The spliceosome is a large ribonucleoprotein complex that removes introns from pre-

mRNAs. At its functional core lies the essential pre-mRNA processing factor 8 (Prp8) pro-

tein. Across diverse eukaryotes, this protein cofactor of RNA catalysis harbors a self-splicing

element called an intein. Inteins in Prp8 are extremely pervasive and are found at 7 different

sites in various species. Here, we focus on the Prp8 intein from Cryptococcus neoformans

(Cne), a human fungal pathogen. We solved the crystal structure of this intein, revealing

structural homology among protein splicing sequences in eukaryotes, including the Hedge-

hog C terminus. Working with the Cne Prp8 intein in a reporter assay, we find that the biolog-

ically relevant divalent metals copper and zinc inhibit intein splicing, albeit by 2 different

mechanisms. Copper likely stimulates reversible modifications on a catalytically important

cysteine, whereas zinc binds at the terminal asparagine and the same critical cysteine.

Importantly, we also show that copper treatment inhibits Prp8 protein splicing in Cne. Lastly,

an intein-containing Prp8 precursor model is presented, suggesting that metal-induced pro-

tein splicing inhibition would disturb function of both Prp8 and the spliceosome. These

results indicate that Prp8 protein splicing can be modulated, with potential functional implica-

tions for the spliceosome.

Introduction

The spliceosome is a massive ribonucleoprotein complex that performs intron splicing, an

important process for maintaining genome diversity in eukaryotes. At the heart of the spliceo-

some is pre-mRNA processing factor 8 (Prp8), a large (approximately 270 kDa) and highly
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conserved protein [1]. Prp8 helps generate mature mRNA by coordinating critical rearrange-

ments at the catalytic core of the spliceosome. This essential protein has been implicated in

human disease [2,3], is evolutionarily linked to group II introns [4,5], and is structurally

related to telomerase [6]. Recent advances in structural biology have shed new light onto both

Prp8 and the spliceosomal machinery at atomic resolution, unveiling an unprecedented level

of detail into the molecular steps of intron splicing [5,7–12].

A particular reason for our interest in Prp8 is that, across several organisms, this large pro-

tein contains a self-splicing intein at different positions, implying independent acquisition.

Inteins are internal proteins that invade at the DNA level and undergo transcription and trans-

lation with the host gene [13–15]. The intein-containing precursor undergoes protein splicing,

a process that excises the intein and ligates the flanking sequences, called exteins, to form the

functional protein. Inteins are often bipartite, encoding a splicing domain for excision and

ligation, and an endonuclease domain for homing [16,17]. Since some inteins are mobile, they

are generally considered selfish genetic elements, but new research indicates that inteins can

post-translationally regulate proteins [18–25].

Inteins are found in all 3 domains of life and are especially abundant in bacteria and archaea

[26]. In eukaryotes, inteins are sparse but have been found in nuclear and chloroplast genomes

with distinct patterns of insertion [27]. Nuclear inteins tend to be in proteins that are involved

in energy metabolism and RNA processing, whereas chloroplast inteins are found in proteins

that carry out transcription and replication. Out of all the intein-harboring proteins in eukary-

otes, Prp8 is overwhelmingly favored. There are over 100 inteins identified across various sites

of Prp8 in different species.

Pathogenic fungi seem to be enriched for inteins [27,28]. Several notable human pathogens

contain Prp8 inteins, including Aspergillus fumigatus, Histoplasma capsulatum, and Cryptococ-
cus neoformans (Cne). Intriguingly, many organisms with Prp8 inteins also tend to be intron-

rich [29]. The presence of inteins in Prp8 and the correlation with intron density beg the ques-

tion of an intein benefit to the host and especially to pathogens. To begin to answer this ques-

tion, we focus on the Prp8 intein from Cne. This is a mini-intein, naturally lacking the homing

endonuclease domain, at only 171 amino acid residues. The intein is also found at a highly

conserved site at the center of Prp8 and thus is at the core of the spliceosome [1,5,30].

Studying the Prp8 intein present in Cne addresses questions of conditional protein splicing

in an important human pathogen in an entirely new domain of life. Solving the Prp8 intein

structure set the stage for beginning such studies and provided evolutionary context by reveal-

ing similarities to the metazoan Hedgehog protein. Biochemical experiments then showed that

the Cne Prp8 intein is differentially responsive in vitro to copper and zinc, metals encountered

by pathogens in immune cells during infection. Importantly, copper also showed protein splic-

ing inhibition in vivo in Cne, the native host. Further, creation of a Prp8 precursor model illus-

trates how intein presence relates to the native protein and hints at how the intein could

influence both Prp8 function and spliceosome assembly.

Results

Prp8 is an intein hot spot with diverse insertion sites

Recent data mining revealed over 100 inteins in the Prp8 protein present across assorted

eukaryotic groups, some of which emerged as far back as approximately 1,100 million years

ago (mya; Fig 1A, left) [27,31–33]. The vast majority of Prp8 inteins are found across different

fungal species, particularly in Ascomycota, and the rest are dispersed in other eukaryotic phyla

(Fig 1A, left). To characterize these Prp8 inteins, we performed comparative and phylogenetic

analyses on a representative subset based on the splicing motifs (Fig 1; S1–S4 Figs) [15,34]. In
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Fig 1. Prp8 is an intein hot spot with multiple, independent insertion sites. (A) Modified phylogenetic tree of eukaryotes (left) shows the phyla that contain Prp8

inteins, with representative genera listed. Evolutionary divergence times are denoted in mya. The number of Prp8 inteins in each phylum is shown in superscript, and
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total, there are 7 distinct intein insertion points, denoted Prp8-a through Prp8-g (Fig 1; S1–S4

Figs) [33,35,36]. With only a few exceptions, fungal Prp8 inteins occupy the same insertion

site, Prp8-a (Fig 1A and 1B) [27,31,33]. The Prp8-g insertion is reported here for the first time

(Fig 1B) and was found at the N-terminal end of Prp8 in the social amoeba Acytostelium sub-
globosum [37] (S3 Fig).

The reconstructed phylogenetic tree reveals that Prp8 inteins group by insertion site (Fig

1A, right; S1 Fig). Although insertion sites b through g have limited representation, the

observed clustering, as well as the level of sequence divergence between inteins from different

insertion sites, suggest multiple independent intein invasion events throughout evolutionary

history. Importantly, bifurcation of Prp8-a inteins into 2 well-supported clusters (a1 and a2,

interior-branch test value of 92%) indicates recurrent invasion of inteins into site a across

diverse fungi (S1A Fig). Furthermore, Prp8 extein phylogenetic analyses show clustering by

host organism, adding support to independent intein acquisitions (S4 Fig). All 7 insertion sites

were mapped to a simplified line diagram of Prp8 exteins and are peppered across the various

domains (Fig 1B).

A multiple sequence alignment of the intein splicing motifs, referred to as Blocks A, B, F,

and G, demonstrates the sequence divergence among Prp8 inteins (Fig 1C; S2 Fig). Other than

identical residues located in Blocks A, B, and G (Fig 1C, black shading; S2 Fig), Prp8 inteins

from different insertion sites share limited sequence homology. Block A contains the first resi-

due of the intein, a highly conserved cysteine called C1, which performs the first nucleophilic

attack of the protein splicing pathway. This amino acid is identical across the disparate Prp8

inteins (Fig 1C, Block A; S2 Fig). Block B usually carries a highly conserved motif known as

TxxH [38]. Across the Prp8 inteins, Block B histidine of TxxH is present in all analyzed inteins,

whereas the threonine is not as conserved (Fig 1C, Block B; S2 Fig). Also alike across all Prp8

inteins is a terminal asparagine at the C terminus of the intein in Block G, which also directly

participates in splicing (Fig 1C, Block G; S2 Fig). The first amino acid of the C extein, known

as the +1 residue, is usually a cysteine, serine, or threonine, and all Prp8 inteins use one of

these as the +1 nucleophile. Block F shows little conservation across Prp8 inteins. The Saccha-
romyces cerevisiae (Sce) Vma1 intein, in the vacuolar ATPase, is as similar to Prp8 inteins as

other Prp8 inteins are to each other (Fig 1C), indicating a close ancestral relationship. The

poor sequence alignment among Prp8 inteins reinforces that distinct inteins recurrently

invaded Prp8.

Cne Prp8 intein structure shows similarity to eukaryotic protein splicing

elements

We next solved the crystal structure of the Cne Prp8 intein found at site a (Fig 2A; S4A Table).

This intein was chosen because of its small size and because it is found in a significant human

pathogen. The Cne Prp8 intein was solved to 1.75 Å resolution (Fig 2A). This novel structure

insertion sites are shown on the branches (colored a–g). A phylogenetic intein tree (right) was reconstructed based on the amino acid sequences of intein splicing blocks

for a subset of 50 Prp8 inteins. The radial tree shows numerous clusters, which correspond to grouping by insertion site. Abbreviated species names are shown (full

names in S1 Fig). Shading (dark gray, light gray, or white) indicates phylogenetic distribution. The divergence of the inteins despite extein conservation (S4 Fig) suggests

independent invasions. (B) A line diagram of the exteins (amino acid residues 127 to 2084) shows the domains of the Prp8 protein. The arrows below indicate the site of

intein insertion (a–g) with the corresponding residue number based on Saccharomyces cerevisiae Prp8 (PDB 5GMK, chain A). Shapes represent how many inteins are

found at each site (square = 10 inteins, triangle = 1 intein) and are shaded to denote phylogenetic origin as in Fig 1A. Prp8-a is the most common insertion site with

approximately 100 inteins. (C) Multiple sequence alignment of the splicing blocks of Prp8 inteins from each insertion site. Comparative analysis of residues found in

Blocks A, B, F, and G reveals that Prp8 inteins occupying other insertion sites are substantially different from one another, indicating independent acquisition. Identical

residues are critical to self-splicing. Triangles indicate residues of general interest and those shaded blue are of specific interest. Numbers correspond to the Cne Prp8

intein. Shading is as follows: black, identical amino acid; dark gray, conserved amino acid; light gray, similar amino acid substitution. Cne, Cryptococcus neoformans;
mya, millions of years ago; PDB, Protein Data Bank; Prp8, pre-mRNA processing factor 8.

https://doi.org/10.1371/journal.pbio.3000104.g001
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helped us develop a sense of structural relatedness of the Cne Prp8 intein to other inteins and

intein-like elements and to later model the intein into both the Prp8 protein and the

spliceosome.

The Cne Prp8 intein structure represents only the second known fungal nuclear intein

structure. The first was of the Sce Vma1 intein, which was solved with its linker domain, a

connector between the splicing blocks and the internal endonuclease domain [39,40]. As with

all solved intein structures so far, the Cne Prp8 intein has the canonical horseshoe shape, cre-

ated by pseudo–2-fold symmetry that positions the catalytic N- and C termini in close proxim-

ity (Fig 2A). Highlighting the splicing blocks (A, B, F, and G), we see the active core that

carries out autocatalytic protein splicing (Fig 2A and 2B) [15,34]. This catalytic center contains

the residues essential for splicing: the nucleophilic cysteine (C1) in Block A, and the terminal

Fig 2. Structure and features of the Cne Prp8 intein. (A) A crystal structure of the Cne Prp8 intein from site a was solved to 1.75 Å resolution. This structure has the

canonical horseshoe shape and resolution of the 4 splicing blocks, indicated in cyan (Block A), green (Block B), gray (Block F), and purple (Block G; Fig 1C). The NT

and CT are annotated. Some regions of the structure are unresolved (dashed lines) and likely represent remnants of the original endonuclease domain or linker

sequences. (B) Features of the active site. The catalytic center is shown, highlighting the first residue of the intein (C1), the penultimate histidine (H170), and the

terminal asparagine (N171). The Block B TxxH motif is shown in green with T62 and H65 represented as sticks. These residues are critical to carrying out autocatalytic

protein splicing. (C) Sequence of the Cne Prp8 intein (residues 1–171) overlaid with secondary structure features. Blocks distant in sequence fold close in 3D space to

allow protein splicing to occur. Unresolved regions (dashed lines) are between Blocks B and F. Arrows represent β-strands, rectangles are α-helices. Residues noted in

Fig 2B are highlighted. Cne, C. neoformans; CT, carboxy terminus; NT, amino terminus; Prp8, pre-mRNA processing factor 8.

https://doi.org/10.1371/journal.pbio.3000104.g002
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asparagine (N171) in Block G (Fig 2B and 2C; S5 Fig). The C1 and N171 are also positioned in

the vicinity of the conserved Block B TxxH residues (T62 and H65), which are important for

priming the intein for self-excision at its amino terminus (Fig 2B) [41]. All of these residues

contribute critically to the protein splicing pathway, which involves a series of nucleophilic

attacks, cyclization of the terminal asparagine, and reformation of a peptide bond between the

exteins to form the functional protein [42]. Overlaying the Cne Prp8 intein primary sequence

with its secondary structure shows the position of residues from each block within the context

of the 3D architecture (Fig 2C). For example, Blocks A and B are far apart in sequence but fold

proximally in 3D space to execute protein splicing (Fig 2). This representation also illustrates

that the unresolved regions of the intein are between Block B and Block F and likely represent

flexible linker sequences of a former endonuclease domain (Fig 2A and 2C).

We next performed a 3D BLAST to compare the Cne Prp8 intein structure to other solved

structures (Fig 3). Unsurprisingly, the Cne Prp8 intein structure as the query returns the Sce
Vma1 intein as the top hit (Fig 3A, PDB 1GPP) [39]. These are both fungal inteins encoded in

nuclear genomes. An overlay of the Cne Prp8 intein (red) and the Sce Vma1 intein (splicing

domain in cyan, linker/endonuclease domain in gray) displays high structural similarity in the

splicing modules (Fig 3A, Root-mean-square deviation [RMSD] of 1.06 Å). The unstructured

regions in the Cne Prp8 intein structure are where the Sce Vma1 intein encodes a linker

domain (Fig 3, dashed red lines). A closer look at the active centers of the Cne Prp8 intein and

the Sce Vma1 intein demonstrates unmistakable overlap of the catalytic residues (S5A Fig),

further confirming the similarities.

Another top hit from the 3D BLAST is the 17 kDa fragment of the Drosophila melanogaster
(Dme) Hedgehog C-terminal domain (HHc; Fig 3B and 3C) [43]. Hedgehog is an essential sig-

naling molecule in higher eukaryotes with an analogous cleavage reaction performed by a

highly conserved cysteine [44]. This allows the N-terminal domain of Hedgehog to ligate to a

cholesterol molecule, which plays a critical role in metazoan development. There has been con-

siderable speculation about the relatedness of Hedgehog and inteins [43,45]. It was recently

proposed, based on sequence similarity, that the N-terminal portion of Hedgehog was

acquired through horizontal gene transfer from a prokaryote [46]. However, a sequence align-

ment between the Cne Prp8 intein, the Sce Vma1 intein, and Dme HHc shows only an average

of 22.6% sequence identity (Fig 3B, 26.4% identity Vma1 to Prp8, 19.2% HHc to Prp8, 22.2%

Vma1 to HHc). One highly conserved residue across the 3 proteins is the initiating cysteine,

shared by all the sequences, as well as a C-terminal valine (Fig 3B, black shading). Despite the

sequence divergence, a secondary structure overlay demonstrates that these sequences all code

for the same structural elements (Fig 3B). The Cne Prp8 intein and Dme HHc have an RMSD

of 1.88 Å (Fig 3C, PDB 1AT0), sharing a similar degree of structural relatedness as a bacterial

and a fungal intein (S5B Fig, RMSD 2.22 Å, PDB 2IMZ) [47]. These results reinforce the evolu-

tionary connection between inteins and Hedgehog proteins.

Cne Prp8 intein is responsive to stress

With the structure solved, we next sought to investigate Prp8 intein splicing and whether it is

regulated in any way. For simplicity, the Cne Prp8 intein was studied in Escherichia coli. Given

that full-length Prp8 contains approximately 2,500 amino acids, we cloned the Cne Prp8 intein

into a reporter construct that uses maltose binding protein (MBP) and green fluorescent pro-

tein (GFP) as foreign N and C exteins, respectively [21,24] (Fig 4A). From this construct,

termed MBP-Intein-GFP (MIG), which contains 5 native N- and C-extein residues, expression

is induced and splicing products, such as ligated exteins (Fig 4A, LE), are visualized using non-

reducing SDS-PAGE and scanning for GFP fluorescence (Fig 4A, left). Off-pathway cleavage
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(OPC) products, the result of either N-terminal or C-terminal cleavage, are also detectable in

the gels. N-terminal cleavage occurs when the thioester bond generated by the first step of pro-

tein splicing is cleaved by an external nucleophile. C-terminal cleavage is caused when the ter-

minal asparagine (N171) cyclizes prior to the first step of protein splicing (Fig 4A, right).

First, we observed that the Cne Prp8 intein splices well in the foreign context to yield ligated

exteins, as has been published previously by Pearl and colleagues [48]. However, splicing was

so rapid that the amount of precursor remaining after induction (0 h) did not provide a suit-

able dynamic range for performing splicing assays (Fig 4B, WT). To slow down splicing and

accumulate precursor, a mutation was made to the last residue of the N extein (referred to as

Fig 3. Similarity of the Cne Prp8 intein to eukaryotic protein splicing elements. (A) Overlay of the Cne Prp8 intein (red) with the Sce Vma1 intein (cyan and gray,

PDB 1GPP) with an RMSD of 1.06 Å. Structural similarities are most pronounced in the splicing domain (Blocks A, B, F, and G, cyan) of the Sce Vma1 intein, whereas

the linker/endonuclease domain (gray) is where the Cne Prp8 intein did not resolve (dashed lines). The NT and CT are annotated. (B) Multiple sequence alignment of

Cne Prp8 intein, Sce Vma1 intein, and Dme HHc. Sequence comparison (residues 1–193) reveals significant differences across the 3 proteins, which are only 22.6%

identical. Overlaying secondary structure shows that, despite sequence divergence, the proteins have high structural similarity. Shading is as follows: black, identical

amino acid; dark gray, conserved amino acid; light gray, similar amino acid substitution. Arrows represent β-strands, rectangles are α-helices. Unresolved regions

shown as dashed lines. (C) Overlay of the Cne Prp8 intein (red) with Dme HHc (yellow, PDB 1AT0). Structural 3D BLAST shows parallels between the eukaryotic intein

and the eukaryotic protein splicing Hedgehog domain, with an RMSD of 1.88 Å. The NT and CT are annotated. Cne, C. neoformans; CT, carboxy terminus; Dme,
Drosophila melanogaster; HHc, Hedgehog C-terminal domain; NT, amino terminus; PDB, Protein Data Bank; Prp8, pre-mRNA processing factor 8; RMSD, Root-

mean-square deviation; Sce, Saccharomyces cerevisiae.

https://doi.org/10.1371/journal.pbio.3000104.g003
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Fig 4. MIG Prp8 A-1V is responsive to metal and RNS treatment. (A) Schematic of the MIG reporter. The construct contains MIG and is expressed in E. coli. GFP

allows monitoring of splicing using in-gel fluorescence. The P can undergo protein splicing (left), yielding LE and free INT (not seen on gels). OPC reactions (right),

such as N- and C-terminal cleavage, can also occur. The catalytic cysteine, C1, is labeled. (B) MIG Prp8 WT splices rapidly. A fluorescent gel of a splicing time course

shows that the WT Cne Prp8 intein in MIG is entirely spliced by the start of the assay (left, WT, 0 h). The A-1V mutant had precursor at the assay start and spliced over

time (right, A-1V, 0 h). Quantitation is shown below in stacked plots. Data are representative of 3 biological replicates and mean standard deviations are shown. Data

available in S1 Data. (C) MIG Prp8 A-1V accumulates precursor under RNS and metal treatment. After 5 h in vitro treatment with a panel of environmental stressors,

there was an increase in P compared to the UT (red line) with the RNS compounds DEA at 1.2 mM and 12 mM and AS at 2 mM and 20 mM, and the metals Cu and Zn

at 0.5 mM and 2 mM. H2O2 and Mg showed no effect at either concentration. Quantitation is shown below in a stacked plot. Data are representative of 3 biological

replicates and mean standard deviations are shown. Data available in S1 Data. AS, Angeli’s salt; Cne, C. neoformans; DEA, DEA NONOate; GFP, green fluorescent

protein; INT, intein; LE, ligated exteins; MBP, maltose-binding protein; MIG, MBP-Intein-GFP; OPC, off-pathway cleavage; P, precursor; Prp8, pre-mRNA processing

factor 8; RNS, reactive nitrogen species; UT, untreated; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000104.g004
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-1), a site previously shown to affect splicing rates [49]. After random mutagenesis, a slower

splicing mutant was isolated (Fig 4B, A-1V). The MIG Prp8 A-1V mutant has 40% precursor

at 0 h and is splicing active over time (Fig 4B, A-1V). Interestingly, an A-1V mutant of the Cne
Prp8 intein was previously shown to have attenuated splicing in other extein contexts [48],

suggesting that splicing is somewhat dependent on both local flanking residues and distant

extein context. It is worth noting that splicing rates are also intein-dependent, given that other

Prp8-a inteins from fungal pathogens exhibit diverse splicing phenotypes when cloned into

MIG (S6 Fig).

Next, using MIG Prp8 A-1V, we asked whether a condition exists in which intein splicing

might be regulated. Treatments chosen were to mimic environmental stress that Cne experi-

ences during infection, such as reactive oxygen species (ROS), reactive nitrogen species (RNS),

and metals, all of which prevail during the intracellular respiratory burst (Fig 4C) [50,51].

From this initial panel, the RNS compounds DEA NONOate and Angeli’s salt showed signifi-

cant precursor accumulation (Fig 4C, DEA and AS). It also appears that copper and zinc can

cause splicing inhibition of MIG Prp8 A-1V (Fig 4C, Cu and Zn). Under these conditions,

splicing was inhibited by approximately 50% (Fig 4C). This preliminary compound screen

indicates that the Cne Prp8 intein may be subject to inhibition by specific conditions that

occur during infection.

Splicing inhibition is mechanistically distinct under copper and zinc

treatment

Metal binding has been reported for other inteins and often engages catalytic residues, which

would stall protein splicing [47,52–57]. Therefore, we chose to follow up on the observed cop-

per and zinc inhibition by running in vitro MIG Prp8 A-1V assays to further assess effects on

protein splicing over time (Fig 5; S7 and S8 Figs). Because higher concentrations of copper can

cause protein precipitation (Fig 4C), we decreased each metal to 1 mM.

We found that 1 mM CuSO4 caused strong splicing inhibition for up to 22 h compared

with untreated controls (Fig 5A, Untreated and Cu; S7 Fig). This inhibition persisted up to 30

h (S7A Fig). To test a copper-binding hypothesis, the same assay was carried out, but after 2 h

of incubation with copper, ethylenediaminetetraacetic acid (EDTA) was added in excess to the

remaining copper-treated lysate. EDTA chelates copper and should strip bound copper from

the Cne Prp8 intein so that splicing can occur. However, addition of EDTA did not rescue

splicing, ruling out the possibility of inhibition purely by copper binding (Fig 5A, Cu

+ EDTA).

Copper is a redox active metal that can cause cysteine oxidation, either by promoting disul-

fide bond formation or by catalyzing reversible or irreversible oxidative modifications [58].

We next tested whether the Cne Prp8 intein cysteines are being reversibly modified by copper,

which would prevent the C1 from performing the first nucleophilic attack, and has precedent

in intein biology [21,25]. We added the reducing agent tris-(2-carboxyethyl)phosphine

(TCEP) to copper-treated lysate after collecting a sample after 2 h incubation. Strikingly,

TCEP completely relieved the splicing inhibition (Fig 5A, Cu + TCEP). After reduction, MIG

Prp8 A-1V precursor conversion into ligated exteins occurred at a rate similar to that of no

copper treatment (Fig 5A, bottom), indicating reversible cysteine oxidation. TCEP can reduce

copper, which could also lead to the loss of inhibition.

The Cne Prp8 intein only has 2 cysteines: C1 in Block A, and C61 in Block B, immediately

preceding the TxxH motif (see Fig 1C, blue arrowheads). The C1 to C61 distance is 8.9 Å (S7B

Fig), generally too far to form a disulfide bond [21,59,60]. We also found that C61 is not con-

served among known Prp8 inteins (Fig 1C; S2 and S7C Figs), and the most commonly used
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residue at this site is valine (S2 Fig). Therefore, to investigate if C1 modifications are sufficient

to inhibit protein splicing, several mutants of C61 in MIG Prp8 A-1V were tested for splicing

activity (S8A Fig) and treated with copper (S8B Fig). The C61 mutants also showed precursor

accumulation with copper treatment (S8B Fig), suggesting that C1-C61 disulfide bonding is

not the underlying inhibitory mechanism, and that copper induces at least C1 oxidation,

which is enough to cause the nonsplicing phenotype.

We further confirmed cysteine modification by performing mass spectrometry on purified

Cne Prp8 intein. This showed a peak shifted by 32 Da, consistent with an addition of 2 oxygen

atoms (S9A Fig). Additional validation pinpointed reversible sulfenic acid modifications

(-SOH) to C1 and C61 with copper treatment (S9B Fig), but these were also present in the

untreated Cne Prp8 intein (S9A Fig). This indicates that the Cne Prp8 intein has highly reactive

cysteines that can be modified by atmospheric oxygen alone. Such extreme sensitivity has been

observed for other inteins that are regulated by cysteine modification [21]. At this time, it is

unclear whether the modifications in this assay are the result of copper, oxygen in air, or both.

Based on our MIG data, reversible, copper-induced cysteine modifications are the most likely

explanation for the inhibition we observe (Fig 5A) and are mediated mainly through C1

(S8B Fig).

Next, zinc, a metal without redox activity, was added to MIG Prp8 A-1V lysates given that it

too was inhibitory in preliminary treatments (Fig 4C). The addition of 1 mM ZnSO4 also

caused protein splicing inhibition and for similar time periods (Fig 5B, Untreated and Zn). To

probe the mechanism of zinc inhibition, we followed up with the same EDTA chelation and

TCEP reduction after taking samples treated with zinc for 2 h. In contrast to copper, EDTA

alleviated protein splicing inhibition with zinc (Fig 5B, Zn + EDTA), but TCEP reduction did

not (Fig 5B, Zn + TCEP). Thus, zinc likely causes inhibition by binding to the Cne Prp8 intein,

because it is redox inactive and TCEP treatment yielded no change.

To corroborate zinc binding, purified Cne Prp8 intein was titrated with zinc in an isother-

mal titration calorimetry (ITC) experiment. This revealed tight binding of zinc to the intein,

with a Kd in the 1 nM range (Fig 5C). To further understand the mode of zinc binding, we

Fig 5. MIG Prp8 A-1V is differentially inhibited by copper and zinc. (A) Copper inhibition is alleviated by reducing agent only. MIG

Prp8 A-1V splicing was completely inhibited by 1 mM copper treatment (Cu) over 22 h, given minimal loss in P or increase in LE

occurred compared with the UT control. The inhibition was unaffected by treatment with metal chelator EDTA at 10 mM (Cu + EDTA).

Upon adding copper for 2 h and then reducing agent TCEP at 40 mM (Cu + TCEP), splicing was restored and P converted into LE over

time. Red arrows indicate splicing rescue. The splice products were quantitated, and the percent precursor is plotted as a proxy for splicing

inhibition. Representative gels are shown. Data are representative of 3 biological replicates and mean standard deviations are shown. Data

available in S1 Data. Lines through gels indicate where intervening lanes were cropped out of the image. (B) Zinc treatment is relieved by

EDTA only. MIG Prp8 A-1V splicing was strongly inhibited by 1 mM zinc treatment (Zn) over 22 h compared with UT lysates. The zinc-

based inhibition was relieved when treated with 10 mM EDTA (Zn + EDTA) after 2 h of zinc treatment, and splicing was observed at a

rate comparable with the untreated samples. Red arrows indicate splicing rescue. When adding zinc for 2 h and then reducing agent TCEP

at 40 mM (Zn + TCEP), splicing was unaffected. Representative gels are shown. Data are representative of 3 biological replicates and mean

standard deviations are shown. Data available in S1 Data. Lines through gels indicate where intervening lanes were cropped out of the

image. (C) Zinc binds to the Cne Prp8 intein tightly. Using ITC, 16 μM purified Cne Prp8 intein was titrated with 0.05 mM ZnSO4 over 20

injections at 37˚C and pH 7.0 on a Nano ITC. The binding isotherm (bottom) shows integrated heat per mole of ZnSO4 as a function of

the molar ratio of ZnSO4 to the Cne Prp8 intein and a Kd of 1 ± 0.82 nM was calculated. The NanoAnalyze ITC software automatically

discarded outlier data points. Experiment was performed in triplicate. (D) Two binding sites in the Cne Prp8 intein-Zn2+ crystal structure.

A close-up view of the crystal structure of the Cne Prp8 intein soaked with zinc shows 2 densities, one surrounding the terminal asparagine

(N171) at the C terminus and one around the catalytic cysteine (C1), at the N terminus. Electron density maps are shown for the bound

Zn2+ with an omit Fo-Fc difference map (green mesh) contoured at 5δ level and for the alternative conformation of N171 with a 2Fo-Fc

map (gray mesh) contoured at 1δ level. Atomic colors are as follows: oxygen, red; carbon, yellow; nitrogen, blue; Zn2+, gray. Zn2+ and

water molecules are shown as spheres, and the Cne Prp8 intein residues at the binding site are represented as sticks. (E) Minor

conformational changes in the zinc-bound Cne Prp8 intein. A structural superimposition is shown of the native Prp8 intein (red) and the

Prp8-Zn2+ complex (yellow) at the Zn2+ binding sites. Atomic colors are as in panel D, except that the carbon atoms for residues C1, H65,

H170, and N171 of the native structure are in cyan. Cne, C. neoformans; EDTA, ethylenediaminetetraacetic acid; ITC, isothermal titration

calorimetry; LE, ligated exteins; MIG, MBP-Intein-GFP; P, precursor; Prp8, pre-mRNA processing factor 8; TCEP, tris-(2-carboxyethyl)

phosphine; UT, untreated.

https://doi.org/10.1371/journal.pbio.3000104.g005
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turned to crystal soaking in zinc acetate (S4B Table). We determined the crystal structure of

the Cne Prp8 intein in complex with Zn2+ at 1.85 Å resolution (Fig 5D and 5E). Compared

with the native form, the complex does not show significant conformational changes, as is

reflected by a small overall RMSD (0.17 Å) between the 2 structures (Fig 5E). There are 6 mole-

cules per asymmetric unit cell. All 6 molecules bind 1 Zn2+ at their C terminus with the termi-

nal asparagine (N171), and 3 molecules bind an additional Zn2+ at their N terminal C1 (Fig

5D). It is currently unclear why all 6 molecules do not bind a second Zn2+ at C1. It is possible

that the second zinc site, coordinated by the C1 side chain and main chain amide, has a lower

affinity, and the high concentration of Zn2+ (4 mM) used for soaking allowed partial binding.

Interestingly, a dissociated platinum atom binds to the C1 in a similar fashion in the mycobac-

terial RecA intein [52]. The Zn2+ at the C terminus is coordinated by the main chain carboxyl

oxygen of the N171 and 2 water molecules. Binding at this site induces an alternative confor-

mation for the main chain peptide carboxyl group to provide a ligand for Zn2+. This alternative

conformation is not seen in the native structure (Fig 5D and 5E). Zn2+ binding to either of

these 2 catalytic residues prevents Prp8 protein splicing.

Protein splicing in Cne is inhibited by copper

To investigate whether metal stress affects protein splicing in vivo, in Cne, Western blotting

was employed to probe for intein using a Prp8 intein antibody (Fig 6). The level of excised

intein is a read-out for inhibition, because protein splicing is the most plausible pathway to

yield free intein. We first determined that the intein antibody can detect the Prp8 intein,

because it reacts with overexpressed Cne Prp8 intein at the expected size of approximately 20

kDa (Fig 6A and 6B, [+] lane). Moreover, the intein antibody does not detect any bands close

to 20 kDa in an inteinless strain of Cne that we constructed (Fig 6A and 6B, Prp8ΔIn). Upon

metal treatment, blots consistently revealed that incubation with CuSO4 (1 mM) caused a

marked decrease in the amount of free intein (Figs 4C, 5A and 6A, Cu). Compared with

unsupplemented media, copper treatment showed up to 50% reduction of free intein in Cne,
correlating with the expected protein splicing inhibition. Importantly, this inhibition was

relieved in vitro by addition of reducing agent β-mercaptoethanol to the treated lysate (Fig

6B), agreeing well with our MIG data that showed reversible cysteine modifications after cop-

per incubation (Fig 5A). The ZnSO4 treated cultures show only a minimal decrease in free

intein, possibly because the zinc, which we showed to be reversibly bound (Fig 5B), dissociates

from the intein during lysate preparation. The intein antibody was unable to detect Prp8 pre-

cursor, perhaps because at a size of>290 kDa, the protein transfers poorly to the membrane.

Regardless, these results indicate that Prp8 intein splicing is regulated in vivo, with implica-

tions for biological relevance to intron splicing.

A precursor model of Prp8 relates intein retention to spliceosome function

Finally, we wished to ask how protein splicing inhibition might affect both Prp8 and the spli-

ceosome. Therefore, we docked the intein into a known Prp8 structure and generated a pre-

cursor model, in which the intein is still covalently connected to the exteins. In this model, the

bonds flanking the intein were broken at site a in Prp8 from the spliceosomal U4/U6.U5 triple

small nuclear ribonucleoprotein (tri-snRNP) solved from Sce (Fig 7A, PDB 5GAN, chain A)

[12,61]. The Cne Prp8 intein structure was computationally inserted using an energy optimiza-

tion protocol, allowing insight into how intein presence might affect Prp8 and spliceosome

assembly or activation.

Upon docking, it appears that the Cne Prp8 intein is accommodated in the Prp8 protein,

albeit in a crowded area that would otherwise be occupied by helical folds (Fig 7A). The
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insertion site is in the 1585 loop, 1 of 3 structural motifs responsible for directly facilitating

both steps of intron splicing [62]. Presence of the intein likely interrupts Prp8 function; given

the importance of this location, the supporting contacts Prp8 makes within the spliceosome,

and the RNA splicing defects in Prp8 mutants [1,2] (see Discussion). Mapping the other inser-

tion sites onto another Prp8 structure from Sce also reveals that their presence would presum-

ably disrupt Prp8 function, because they too cluster around the active site (S10 Fig, PDB

5GMK, chain A) [10].

We next overlaid the Prp8 intein-containing precursor in the tri-snRNP from Sce (Fig 7B,

PDB 5GAN) [61]. It appears that the intein now occupies a cramped area of the spliceosome

(S11 Fig). There are a few crucial components, both protein and RNA, in the vicinity of the

intein. For example, one essential splicing protein, the U5 component Dib1, is located in the

same 3D space as the intein (Fig 7B, top) [63]. Furthermore, there are important RNAs in the

area of the intein (Fig 7B, bottom). These include the U4 and U6 snRNAs, which are central to

spliceosome activation and RNA splicing catalysis [62]. Generally, the information gleaned

from our precursor model suggests that the tri-snRNP subunit of the spliceosome would be

Fig 6. Native protein splicing in Cne is inhibited by copper. (A) Copper treatment shows decreased intein (In) levels under nonreducing conditions. Cne (WT) and an

inteinless strain (Prp8ΔIn) were grown in defined media supplemented with 1 mM CuSO4 or 1 mM ZnSO4 for 3 h. Top blot is probed with Prp8 intein antibody, and

the bottom blot is probed with Cdc2 antibody as a loading control. Intein bands at approximately 20 kDa often appear as doublets because of different oxidation states of

cysteines. Bands migrating around 150 kDa that appear in the Prp8ΔIn and WT strain have not been identified, whereas bands from Sce lysate may be related to the

Vma1 intein. Lanes are as follows: (+), 2.5 ng of overexpressed pET47b Cne Prp8 intein in E. coli lysate; Sce, 10 μg of soluble S. cerevisiae extract; UT, unsupplemented

SC media; Cu, SC media + 1 mM CuSO4; Zn, SC media + 1 mM ZnSO4. All Cne lysates contain 20 μg of soluble protein. (B) Reducing conditions alleviate splicing

inhibition in vitro. Blots are as in panel A but treated with βME in the loading dye. The reducing conditions in the lysate are sufficient to cause splicing in vitro and the

intein band reappears. βME, β-mercaptoethanol; Cdc2, cyclin-dependent kinase 1; Cne, C. neoformans; Prp8, pre-mRNA processing factor 8; SC, synthetic complete;

Sce, Saccharomyces cerevisiae; UT, untreated; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000104.g006
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disturbed by intein retention before spliceosomes are even fully formed, which would lead to

inhibition of RNA splicing.

Discussion

Here, we have shown that Prp8 inteins are widely distributed across eukaryotes and have

invaded the Prp8 protein repeatedly and independently (Fig 1A and 1B), suggestive of poten-

tial adaptation that provides an advantage to the host. The crystal structure of the Cne Prp8

intein showed similarities to the metazoan Hedgehog protein and has facilitated studies of

function as well as provided a basis for molecular modeling (Figs 2, 3 and 7). Initial studies

demonstrated that some environmental stressors that are prevalent in infected macrophages

are capable of modulating protein splicing of the Cne Prp8 intein, both in vitro and in vivo

(Figs 4C and 6). Specifically, copper and zinc are potent inhibitors of protein splicing, with

each metal interacting with the intein in distinct ways (Fig 5). Copper likely hinders protein

splicing by cysteine oxidation and zinc inhibits by tenacious binding to the intein (Fig 5; S9

Fig). This work supports a growing theme in intein research that underscores the reactivity of

catalytic cysteines [21–23,59,60]. We propose that the Cne Prp8 intein, at the nexus of protein

Fig 7. Modeling the Cne Prp8 intein into Prp8 and docking into the spliceosomal U4/U6.U5 tri-snRNP reveals unfavorable interactions. (A) Cne Prp8 intein in

Prp8 exteins. The Cne Prp8 intein structure (red) was modeled into a structure of S. cerevisiae (PDB 5GAN, chain A) Prp8 exteins (lavender). The S+1 is shown as blue

spheres to indicate the site where a peptide bond was broken to insert the intein. The C1 is shown as yellow spheres and specifies start of the intein. The Prp8 intein

localizes to a crowded site of the Prp8 structure, in a region that is highly conserved and functionally important. (B) The Cne Prp8 intein in the spliceosomal U4/U6.U5

tri-snRNP. The intein-containing Prp8 was overlaid into the tri-snRNP subunit structure (PDB 5GAN). This revealed a clash of the intein with spliceosomal protein

Dib1 (top panel, orange). There are also possible clashes with the intein and U4 snRNA and U6 snRNA (bottom panel, teal and pink, respectively). Cne, C. neoformans;
PDB, Protein Data Bank; Prp8, pre-mRNA processing factor 8; snRNA, small nuclear RNA; tri-snRNP, triple small nuclear ribonucleoprotein.

https://doi.org/10.1371/journal.pbio.3000104.g007
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and RNA splicing, may sense metals to pause Prp8 function during stressful conditions. This is

reinforced by an intein-containing Prp8 precursor model, which suggests that protein splicing

inhibition would interfere with Prp8 activity and disrupt full spliceosome assembly (Fig 7; S11

Fig).

Prp8 is an intein sink with functional implications

We demonstrated a broad distribution of Prp8 inteins with multiple insertion sites (Fig 1A

and 1B), a pattern noted by others as well [27,31,33]. Our data support the notion that Prp8

was invaded repeatedly, including at least twice at site a (Fig 1A, a1 and a2; S1A Fig). Previ-

ously, a limited number of site a inteins was analyzed and shown to be highly similar to each

other [35]. We further discovered a novel insertion in a social amoeba, site g, bringing the total

number of known insertion sites in Prp8 to 7 (Fig 1C; S3 Fig). This preponderance suggests

Prp8 inteins have been retained over evolutionary time with functional implications. Similar

trends were formerly reported with the mycobacterial iron-sulfur cluster assembly protein

SufB, which has 3 distinct insertion sites, and the mycobacteriophage terminase TerL, which

has at least 5 intein insertion sites [20,21,26]. Such bioinformatics observations have led to

fruitful research on intein function, which is now beginning to show that inteins can be tuned

to respond to environmental cues [19,21,23,24]. A striking example is a mycobacterial intein

in DnaB helicase, located in the P loop of the ATPase domain [64], which is sensitive to ROS

both in vitro and in vivo [59].

Structural insights into the Prp8 intein

Here, we present the second structure of a eukaryotic intein, and the sole structure of a eukary-

otic intein in an essential protein (Fig 2A). The Cne Prp8 intein structure provides insight into

the similarity of inteins in eukaryotes (Fig 3A), suggesting that they likely evolved from a com-

mon ancestor. The Cne Prp8 intein also has a comparable structure to the C terminus of a

Hedgehog protein (Fig 3C), which executes a cleavage and ligation reaction to cholesterol also

by utilizing a cysteine [44]. These results suggest that eukaryotic inteins and Hedgehog pro-

teins might be ancestrally related, but why inteins do not exist in metazoan genomes is a puzzle

yet to be explained.

Around a dozen intein structures have been solved so far, comprising of mainly bacterial

and archaeal inteins [65]. These have proven useful for studying inteins as novel drug targets

[52]. As inteins often invade essential proteins in pathogens, inhibiting them from splicing out

is an attractive option for developing new antimicrobials [52,66,67]. Progress toward this goal

has been made in prokaryotes using the mycobacterial RecA recombinase intein. A co-crystal

of the RecA intein and the antineoplastic compound, cisplatin, helped resolve the mechanism

of protein splicing inhibition [52]. This showed that the platinum ions of cisplatin bind to the

RecA intein at its 2 catalytic cysteines, C1 and C+1. Concurrent work studying cisplatin and

the Prp8 intein also demonstrated effective splicing inhibition, both in vitro and in a mouse

model, although the mechanism is different than the RecA intein [68]. Solving the Cne Prp8

intein structure, along with the observed metal inhibition, provides impetus for advancing

these studies in an essential protein in a eukaryote, at an opportune time given that the anti-

fungal pipeline is drying up [69].

Cne Prp8 intein is responsive to metals in vitro and in vivo with biological

ramifications

The Cne Prp8 intein was studied here using MIG, a GFP splicing reporter, given that full-

length Prp8 could not be expressed well in E. coli. Studies have shown that intein splicing with
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surrogate exteins can be less effective than with native exteins [70,71]. However, we found that

the wild-type Cne Prp8 intein spliced well in the MIG reporter. This illuminates how impor-

tant extein context is in either constraining or allowing splicing of the Cne Prp8 intein. Previ-

ous studies placed the Cne Prp8 intein into non-native contexts and showed splicing, but

contrary to our work, there was almost complete inactivation by the A-1V mutation [48]. This

earlier work only used 1 to 2 flanking extein residues, whereas MIG contains 5, suggesting that

more native context allows greater tolerance to sequence variation. Such discrepancies do raise

the important point that the extein context of an intein is extremely important when asking

questions about splicing.

Here, MIG Prp8 was useful in a screen for identifying the divalent metals copper and zinc

as potential regulatory signals for protein splicing. Given that the intein-containing organism

is the pathogenic fungus Cne, we wondered whether metal-based inhibition contributes to a

stress response during infection. Pathogenic microbes occupy niches that expose them to the

opposing toxicities of metal ion excess and deprivation [72]. Cne employs extensive strategies

to control metal ion concentrations, including responsive transcription factors, transporters,

importers, and exporters [73]. Many of these are utilized during the oxidative burst of the pha-

golysosome when the fungus is exposed to acute metal stress [73]. Levels of copper can reach

up to several hundred micromolar, while zinc concentrations are initially high, but drop with

ongoing infection [72,74,75].

We speculate that the Cne Prp8 intein might provide cryptococci an additional means to

sense metals during infection. The sensing “machinery” of the Cne Prp8 intein is its catalytic

C1 and N171 (Fig 5). Cysteines are reactive amino acids that endow proteins with catalytic

activity, redox chemistry, and metal binding capacity, whereas asparagines can be both cata-

lytic and metal-coordinating residues [58]. A pause in protein splicing may be useful for over-

coming toxic levels of copper or zinc (Figs 4C, 5 and 6). Copper generates destructive ROS

intermediates and can displace iron from iron-sulfur clusters [74], whereas both copper and

zinc can dislodge divalent metals from other metalloprotein complexes. Like other stressors

known to inhibit RNA splicing, copper and zinc would act post-translationally to block Prp8

intein splicing and inhibit spliceosome function until levels of the metals are diminished by

scavenger proteins or metal transporters [73]. Indeed, we provide the first evidence here that

Prp8 intein splicing in Cne can be modulated under metal stress (Fig 6).

Post-translational programs that regulate expression of intron-containing transcripts in

response to environmental cues have been described in the budding yeast, Sce [76] and in Cne
[77]. Work done on alternative splicing in Cne supports pausing of spliceosome function [77].

This fungus is intron dense, with over 40,000 introns in its genome, and abundant alternative

splicing has been observed [29]. Intriguingly, the most common type of aberrant splicing is

intron retention [77]. Intron retention has even been shown to play a role in virulence and is

regulated by environmental conditions [77]. If intron retention is an adaptive mechanism for

Cne to finely tune expression levels in adverse environments, then inhibiting Prp8 intein splic-

ing is a possible means of controlling that intron retention.

Protein splicing inhibition and its implications for RNA splicing

We turned to molecular modeling of structures to help predict in vivo effects of intein splicing

inhibition. The intein-containing Prp8 precursor model generated from a solved Sce U4/U6.

U5 tri-snRNP revealed a snug accommodation of the intein in a highly conserved region of

Prp8 (Fig 7A, PDB 5GAN, chain A) [61]. This insertion (site a) is in a linker located between

the thumb domain and the endonuclease-like domain of the reverse transcriptase (Fig 1B; S10

Fig). This highly conserved region of Prp8 (55%–87% identity over 113 residues) contains the
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1585 loop and its longer version, the α-finger [62]. These structural motifs are involved in

coordinating the RNA-mediated catalysis that leads to eventual intron removal [1,62], at the

core of the protein and at the catalytic center of the spliceosome.

Although Prp8 likely cannot perform its critical functions with the intein present, the struc-

tural tolerance of a flexible linker domain may allow for proper folding of the intein, as well as

that of Prp8. In the longer term, this flexibility gives the intein freedom to adapt to its sur-

roundings, supporting some degree of Prp8 function in a precursor state. Mini-inteins, such as

the one present in Cne Prp8, are not mobile and may therefore be under more selective pres-

sure to adapt to their exteins. This is in line with work that shows partial activity of the RadA

precursor with its mini-intein intact [19].

If the Cne Prp8 intein remains unspliced in the tri-snRNP, perhaps because of metal sensing

and inhibition, it would almost certainly be disruptive. In the subunit modeled here, the intein

would overlap with the Dib1 protein (Fig 7B, top) [61], which is an essential spliceosome com-

ponent. Dib1 is a small, 16.8 kDa protein well-conserved from yeast to humans and is postu-

lated to play a central role in preventing premature spliceosome activation [63]. If Dib1 is

unable to localize to its cognate site, this would likely be detrimental to spliceosomal function

[63]. Furthermore, certain RNAs, such as U4 and U6, thread close to the intein (Fig 7B, bot-

tom). Dislodging these critical snRNAs would almost certainly disrupt intron splicing.

If the Cne Prp8 intein were to sense a stressor, such as metals, and stay lodged in Prp8, then

Prp8 precursor would undoubtedly affect spliceosome assembly and possibly activation (Fig 7;

S11 Fig). Such spliceosome assembly defects may lead to pre-mRNA accumulation, as even

point mutations in Prp8 are known to do [2]. Thus, this work proposes that the Cne Prp8

intein is subject to modifications that influence protein splicing and thereby Prp8 function,

with implications for spliceosome activity.

Materials and methods

Bioinformatic and phylogenetic analyses

The Prp8 intein sequences used to build the phylogenetic trees in Fig 1A and S1 Fig and the

Prp8 extein sequences used to build the phylogenetic trees in S4 Fig were accessed from Green

and colleagues, 2018 [27]. For comparative and phylogenetic analyses, amino acid sequences

of inteins were manually trimmed to the splicing blocks (A, B, F, and G). All multiple sequence

alignments of the amino acid sequences were performed using ClustalOmega with default

parameters [78] and edited manually (Fig 1; S1, S2 and S4 Figs). Where alignments are shown

shaded, black represents an identical amino acid, dark gray is a conserved amino acid, whereby

the same amino acid is at the same position in a majority of the sequences, and light gray is a

similar amino acid, defined as a semiconserved amino acid substitution from the same class.

Phylogenetic analysis was performed using the neighbor-joining (NJ) method in the MEGA7

program [79]. Statistical support for the NJ tree was evaluated by interior-branch test (number

of replications, 1,000) [80]. The sequence logo for Block B was generated based on the multiple

sequence alignment using WebLogo3 [81] (http://weblogo.threeplusone.com). The 7 Prp8

intein insertions were mapped onto a model of a Sce Prp8 (S10 Fig, PDB 5GMK). All intein,

Prp8, and spliceosome structures were viewed, edited, or aligned using PyMol 1.3 (http://

pymol.org). The 3D BLAST protein structure search was performed by BioXGEM with default

parameters (http://3d-blast.life.nctu.edu.tw).

Bacterial strains and growth conditions

All strains used in the present study can be found in S1 Table. E. coli DH5α, MG1655(DE3),

and BL21(DE3) were grown in Luria Broth (LB), unless otherwise indicated, with aeration at
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250 rpm. Media contained kanamycin (50 μg/mL) or chloramphenicol (25 μg/mL) where

appropriate. Plasmids were transformed into cells by electroporation using a Bio-Rad Gene

Pulser (Hercules, CA) and recovered for 1 h at 37˚C in SOC medium (0.5% yeast extract, 2%

tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose).

Transformants were selected by plating on LB agar with the appropriate antibiotic and incu-

bated at 37˚C overnight.

Construction of plasmids

All plasmids used in the present study can be found in S2 Table and all oligonucleotides, syn-

thesized by Integrated DNA Technologies (IDT, Coralville, IA), are in S3 Table. Plasmid DNA

was prepared using EZNA Plasmid Mini Kit (Omega, Norcross, GA). DNA was visualized in

1% agarose gels using EZ-Vision DNA Dye (Amresco, Radnor, PA). PCR fragments were

amplified using CloneAmp HiFi PCR Premix (Clontech, Mountain View, CA) from genomic

DNA of Cne var. grubii H99 or C. gattii NIH444 (Dr. Sudha Chaturvedi, New York State

Department of Health), A. fumigatus AF293 (Dr. Robert J. Cramer, Darmouth College), B.

dendrobatitidis JEL423 (Dr. Timothy James, University of Michigan), or H. capsulatum
G186A (Dr. Chad Rappleye, Ohio State University). For insertion into the MIG construct, the

inserts included 5 native N- and C-extein residues flanking the intein. For insertion into the

overexpression vector, pET47b, the intein alone with 3 native N exteins was PCR amplified.

Digested backbone was gel purified using Zymoclean Gel DNA Recovery Kit (Zymo Research,

Irvine, CA). Restriction enzymes (NEB, Ipswitch, MA), T4 ligase (NEB, Ipswitch, MA), and

In-Fusion HD Cloning Plus Kit (Clontech, Mountain View, CA) were all used per manufac-

turer protocol. Mutagenesis was performed using the QuikChange Lightning Site-Directed

Mutagenesis Kit (Agilent, Santa Clara, CA) for single amino acid mutations or the Quik-

Change Lightning Multi Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA) for multiple

amino acid mutations. For the A-1V mutation, primers were designed to randomly mutate the

A-1 to all other possible codons using a degenerate primer with NNS at the mutated location.

All clones were verified by sequencing (EtonBio, Union, NJ).

MIG splicing assays

MIG Prp8 (WT, A-1V, and derived C61 mutants) was transformed by electroporation into

MG1655(DE3). The cells were subcultured 1:100 from an overnight culture into fresh LB

medium and grown at 37˚C with 250 rpm shaking to an OD600 of 0.5. Cells were induced with

0.5 mM IPTG for 1 h at 30˚C and pelleted by spinning for 10 min at 4,000 rpm. The pellets

were lysed immediately using tip sonication (20 s on/30 s off at 30% amplitude for 1 min total)

in 50 mM Tris (pH 8.0) and 10% glycerol or stored at −80˚C until lysis. For any ROS/RNS or

metal treatment, the indicated compound was added to cells at the desired concentration prior

to incubation at 30˚C for the specified time. For the assays to determine mechanism of inhibi-

tion, MIG Prp8 A-1V lysate was split, and half was left untreated, whereas the other was prein-

cubated with 1 mM CuSO4 or ZnSO4. After 2 h, each lysate (with metal or untreated) was split

in half and either treated with EDTA to a final concentration of 10 mM or with TCEP to a

final concentration of 40 mM. Aliquots of the EDTA/TCEP-treated lysates were then collected

immediately at t0, 2 h, and 22 h postincubation with EDTA/TCEP. Because EDTA/TCEP is

added after an initial 2 h incubation, these new t0, 2 h, and 22 h samples actually represent 2 h,

4 h, and 24 h since start of the assay. Upon completion of the assay or time point, the lysate

was frozen at −80˚C. To visualize MIG splicing assay results, samples were separated under

nonreducing conditions on Novex WedgeWell 12% Tris-Glycine gels (Invitrogen, Carlsbad,

CA) using loading dye lacking β-mercaptoethanol and visualized using a Typhoon 9400
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scanner (GE Healthcare, Chicago, IL) with excitation at 488 nm and emission at 526 nm.

Quantitation and analysis were done using ImageJ and GraphPad Prism (version 7.02).

Prp8 intein purification

For isothermal titration calorimetry and mass spectrometry, the Cne Prp8 intein from Cne var.

grubii H99 was amplified with 3 native N-extein residues (EKA) and cloned into pET47b in

front of an N-terminal His6-tag and an HRV 3C protease site. For crystallization, the Cne Prp8

intein with 2 native N-extein residues (KA), and the native C-extein S+1 was amplified and

cloned into pET28a with a C-terminal His6-tag using a megaprimer approach as described pre-

viously by Li and colleagues [82].

The pET47b (or pET28a) Cne Prp8 intein construct was transformed by electroporation

into BL21(DE3) cells. The cells were subcultured 1:100 from an overnight culture into fresh LB

medium and grown to an OD600 of 0.6. Cells were induced with 0.5 mM IPTG and grown with

shaking at 250 rpm overnight at 16˚C. The following morning, cells were harvested by centri-

fugation at 4,000 rpm for 10 min. Pellets were frozen at −80˚C until ready for lysis. Tip sonica-

tion was performed (30 s on/59 s off at 30% amplitude for 4 min total) in buffer containing 20

mM Tris (pH 7.8), 500 mM NaCl, 25 mM imidazole, and 5% glycerol. Whole cell lysate was

centrifuged at 20,000g for 20 min to separate the soluble fraction, which was loaded onto a

nickel affinity column equilibrated with the lysis buffer. Washes were carried out using buffer

containing 20 mM Tris (pH 7.8), 500 mM NaCl, 75 mM imidazole, and 5% glycerol and elu-

tion buffer with 20 mM Tris (pH 7.8), 500 mM NaCl, 250 mM imidazole, and 5% glycerol.

Purified fractions of the Cne Prp8 intein were checked by separation on SDS-PAGE, and the

cleanest elution samples were pooled. For the pET47b construct, the His6-tag on the Cne Prp8

intein was removed through digestion with HRV 3C protease according to the manufacturer’s

protocol (Thermo Fisher, Waltham, MA). The cleaved Cne Prp8 intein reaction was passed

back over a nickel affinity column, and the flow-through was collected to ensure no His6-

tagged Cne Prp8 intein or HRV 3C protease was in the sample. For analysis by ITC, the flow-

through intein was exchanged into 50 mM sodium acetate (pH 7.0), 100 mM NaCl using a

HiPrep 26/10 desalting column or a dialysis cassette. For mass spectrometry, the flow-through

intein was used directly for metal treatments and then further purified by liquid chromatogra-

phy (LC) prior to spraying on the instrument. For the pET28a construct, the imidazole-eluted

fractions were concentrated and subjected to size exclusion chromatography by a gel filtrations

16/60 Superdex column (GE Healthcare, Chicago, IL). For crystallization, the purified Cne
Prp8 intein was concentrated to 9.5 mg/mL in a buffer composed of 25 mM HEPES (pH 7.5)

and 150 mM NaCl.

Mass spectrometry of Prp8 intein

Purified Cne Prp8 intein was reduced with 40 mM TCEP and exchanged into deoxygenated

exchange buffer (20 mM Tris [pH 7.5], 200 mM NaCl) using 7K MWCO Zeba spin desalting

columns (Thermo Fisher, Waltham, MA) to remove TCEP. The protein concentration was

measured and then treated with 10X of CuSO4 and incubated at 30˚C for 1 h. Following treat-

ment, the purified intein was denatured with 6 M urea at 37˚C for 30 min. The urea concentra-

tion was diluted down to less than 0.8 M with 50 mM Tris (pH 7.6) and 1 mM CaCl2. Trypsin

digest of the intein was performed by adding activated trypsin (Promega, Madison, WI) to a

final ratio of 1:20 and incubating overnight at 37˚C. The oxidation of Cne Prp8 intein cysteines

after treatment was analyzed by multiple reaction monitoring-initiated detection and sequenc-

ing (MIDAS) as described by Unwin and colleagues [83]. The trypsin-digested mixture was

acidified followed by LC-MS/MS analysis. LC-MS/MS analysis was performed on a microflow
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LC-MS/MS system configured with a 3-pumping Micromass/Waters CapLC system with an

autosampler, a stream select module configured for precolumn plus analytical capillary col-

umn, and a QTRAP 6500 (ABSCIEX) mass spectrometer fitted with Turbo V microflow

source, operated under Analyst 1.63 control. Injected samples were first trapped and desalted

isocratically on an LC-Packings PepMa C18 μ-Precolum Cartridge (5 μm, 500 μm ID × 20

mm; Dionex, Sunnyvale, CA) for 7 min with 0.1% formic acid delivered by the auxiliary pump

at 40 μL/min after which the peptides were eluted from the precolumn and separated on an

analytical C18 capillary column (15 cm × 500 μm ID, packed with 5 μm, Jupiter 300 C18 parti-

cles, Phenomenex, CA) connected inline to the mass spectrometer at μL/min using a 50 min

gradient of 5% to 80% acetonitrile in 0.1% formic acid. The oxidized peptide identification was

conducted through multiple reaction monitoring (MRM) triggered enhanced product ion

(EPI) scan using information dependent acquisition (IDA). The utilization of chromato-

graphic separation, MRM transitions, and EPI scan allows accurate peptide identification and

confirmation. The 2 MRM transitions including m/z 404.19 > 532.22 and m/z 786.04 >

895.41 for C[Oxi]LQNGTR.+2b5 and THEGLEDLVC[Oxi]THNHILSMYK.+3b8 were used

to trigger the EPI experiment, respectively. The instrument was operated in a positive ion

mode with a Turbo V ion drive electrospray source. The parameters for the operation were as

follows: curtain gas, 20 psi; heated nebulizer temperature 180˚C, ion spray voltage, 5,500 V;

gas1, 18 psi; gas 2, 15 psi, declustering potential, 65 V, EP, 10 V and CAD gas, high.

ITC of Prp8 intein

ITC measurements were carried out on a TA Instruments Nano ITC (TA Instruments, Inc.,

New Castle, DE). Aqueous solutions of metal titrants (CuSO4 or ZnSO4) were prepared to be

0.3- to 30-fold higher than the concentration of the Cne Prp8 intein, in the range of 0.05 to 5.0

mM. The titrant and wild-type Cne Prp8 intein were degassed before each titration. The puri-

fied Cne Prp8 intein was concentrated from 10 μM to 16 μM in 300 μL and were placed in a

2.5 mL reaction cell, and the reference cell was filled with 300 μL deionized water. All titrations

were carried out at 37˚C. After baseline equilibration, successive injections of an indicated

titrant were made into the reaction cell in 2.5 μL increments at 400 s intervals with stirring at

250 to 350 rpm to ensure an equilibrium was achieved for a return to baseline. The resulting

heats of reaction were measured over 20 consecutive injections. Optimization of buffer was

required for purified Cne Prp8 intein and found to be stable over long periods for ITC data col-

lection only in 50 mM sodium acetate (pH 7.0), 100 mM NaCl, 10 mM TCEP. Buffer control

experiments (50 mM sodium acetate [pH 7.0], 100 mM NaCl, ± 10 mM TCEP) to determine

the heats of titrant dilution were carried out by making identical injections in the absence of

the Cne Prp8 intein. The net reaction heat was obtained by subtracting the heats of dilution

from the corresponding total heat of reaction. The titration data were deconvoluted based on

best-fit binding models containing either 1 or 3 sets of interacting binding sites, using a non-

linear least-square algorithm through the NanoAnalyze software. The binding enthalpy change

(ΔH), dissociation constant (Kd), and binding stoichiometry (n) were permitted to vary during

the least-square minimization process and taken as best-fit values.

Crystallization, structure determination, and refinement of Prp8 intein

Initial crystallization conditions were obtained by screening the Hampton crystallization

screens (I, II, and Research Index HT), using the hanging-drop vapor diffusion method. Upon

optimization, large crystals were grown by mixing 1 μL of Cne Prp8 intein and 1 μL of reser-

voir solution containing 22% to 28% PEG4000, 0.1 M sodium acetate (pH 4.2), 0.2 M ammo-

nium acetate. The Cne Prp8 intein crystallizes in space group P1 with 6 intein molecules per
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asymmetric unit (S4A Table). The crystals of the Cne Prp8 intein-Zn2+ complex were obtained

by soaking native crystals in mother liquor supplemented with 4 mM zinc acetate. Prior to

data collection, all crystals were transferred to a cryo-protectant solution containing crystalli-

zation buffer supplemented with 20% glycerol without (native) or with 4 mM zinc acetate

(Prp8-Zn2+ complex). The crystals were flash-cooled directly in liquid nitrogen. Diffraction

data for the native and the Prp8-Zn2+ complex crystals were collected at 100 K using a Pilatus

detector at the BL9-2 beamline of the Stanford Synchrotron Radiation Laboratory (native) and

using an ADSC HF-4M detector at the 19-ID NYX beamline of the National Synchrotron

Light Source II (complex), respectively. Data were processed, scaled, and reduced using the

programs HKL2000 [84] and PHENIX suite [85]. The structure of the Cne Prp8 intein was

determined by molecular replacement, with the crystal structure of the C. gattii Prp8 intein

[68] as a search model. The Prp8-Zn2+ complex structure was determined by molecular

replacement, with the refined structure of the Cne Prp8 intein as a search model. The molecu-

lar replacement was carried out using the PHENIX program suite. Structure refinement was

carried out using the PHENIX program suite and monitored using Coot [86] (S4B Table).

Generation of an inteinless Cne (Prp8ΔIn)

The synthetic inteinless PRP8 gene (designated PRP8ΔIn) was cloned into the Cne Safe Haven

vector pSDMA25 [87]. Plasmid pSDMA25-Prp8ΔIn was linearized with PacI (NEB, Ipswitch,

MA) and used for biolistic transformation of wild-type Cne H99. After selection on YPD agar

plates containing nourseothricin (NAT), insertion at the Safe Haven site was validated by mul-

tiplex PCR. Both the intact wild-type locus of PRP8 as well as the PRP8ΔIn locus within the

Safe Haven site were verified by PCR. To construct a knock-out of the wild-type PRP8 gene, a

hygromycin (HYG) cassette flanked by 1 kb of PRP8 sequence was used to transform Cne har-

boring PRP8ΔIn at the Safe Haven site. HYG was used as the selection marker. Proper deletion

of wild-type PRP8 and retention of PRP8ΔIn at the Safe Haven site, generating the strain

Prp8ΔIn, was again validated by PCR amplification as well as by Southern blotting.

Cne culture and Western blot

Cne H99 derivatives and Sce S288C were grown in defined synthetic complete media (SC)

after diluting overnight cultures to an OD600 of 0.2 in fresh SC. After 3 h at 30˚C, 200 rpm,

cells were supplemented with 1 mM CuSO4 or ZnSO4. Cells were incubated an additional 3 h

at 30˚C, 200 rpm, harvested, washed with 3 × 5 mL PBS and resuspended in 0.6 mL lysis buffer

(25 mM Tris [pH 7.4], 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1 mM PMSF, and 1×
fungal specific protease inhibitor [Sigma Aldrich, St. Louis, MO] and lysed with acid-washed

glass beads in a Bead Ruptor 12 (Omni International, Keenesaw, GA). Cell debris was centri-

fuged for 10 min at 16,000g and soluble extracts were mixed with 4x Laemmli Sample Buffer

(Bio-Rad, Hercules, CA) either with or without added β-mercaptoethanol. Samples were then

boiled for 10 min at 90˚C and 20 μg total protein loaded on a 4% to 20% Criterion TGX gel

(Bio-Rad, Hercules, CA), electrophoresed at 150 V in SDS running buffer for 1 h, then trans-

ferred onto a nitrocellulose membrane using a TransBlot Turbo system (Bio-Rad, Hercules,

CA). Transfer quality was assessed by Ponceau-S stain. Membranes were washed 2 × 10 min in

PBS with Tween-20 (PBST), then blocked for 1 h in 5% milk PBST. Membranes were washed

again 2 × 5 min in PBST, then probed with primary anti-Prp8 intein (1:1,000) or anti-Cdc2

(1:5,000) in 2% milk PBST overnight at 4˚C. Membranes were washed 3 × 15 min with PBST

and then applied with HRP-conjugated secondary antibodies (GE Healthcare, Chicago, IL;

rabbit or mouse at 1:10,000) in 2% milk PBST and incubated for 1 h. Blots were washed again

3 × 15 min with PBST, and then applied with SuperSignal West Femto (Thermo Scientific,
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Waltham, MA) chemiluminescent reagents, and images developed using X-ray film at differ-

ent exposures.

Precursor modeling

The Prp8 protein structure (chain A) in the 3.7 Å cryo-EM structure of the Sce spliceosomal

tri-snRNP [61] (PDB 5GAN) was used as a structural template for constructing a homology

model of the Cne Prp8 extein. A pair-wise Needleman-Wunsch [88] sequence alignment using

EMBOSS Needle [89] shows 55.3% sequence identity and 68.3% sequence similarity between

the full Sce and Cne extein sequences. The Cne Prp8 extein homology model was constructed

using MODELLER [90] with the DOPE [91] and GA341 [92] energy functions to identify the

best model. The 171-residue Cne intein sequence is an insert between residues 1530 and 1531

in the extein. The Cne Prp8 extein homology model was combined with the Cne Prp8 intein

crystal structure to generate a model for the full Cne Prp8 precursor. The orientation of the

intein with respect to the extein was manually adjusted using VMD software [93] to avoid any

steric overlap and keep the intein and extein ends that are joined by peptide bonds sufficiently

close together. This combined intein-extein structure was then used as a structural template to

generate a continuous Cne Prp8 precursor homology model using MODELLER. Further mini-

mization on this precursor homology model was performed using the program CHARMM,

version c35b3 [94,95] with the CHARMM36 force field for proteins [96]. All atoms not within

the precursor amino acid sequence range encompassing the intein and its neighboring extein

regions (residues 1520–1720) were initially held fixed, and a low-temperature (150 K) optimi-

zation protocol was used to improve the homology model. This protocol included 5 iterations

of the following steps: (a) 5,000 steps of Steepest Descent (SD) minimization followed by 5,000

steps of Adapted-Basis Newton-Raphson (ABNR) minimization, each with an energy change

tolerance of 0.001 kcal/mol; (b) 1,000 steps of Langevin dynamics at a temperature of 150 K

and a friction coefficient of 5.0 ps−1; (c) another 5,000 steps of SD and 5,000 steps of ABNR

minimization. All nonhydrogen atoms were then restrained using harmonic restraints with a

force constant of 1.0 kcal/mol/Å2. SHAKE constraints [97] were applied on all hydrogen

atoms, and 5,000 steps of SD and 5,000 steps of ABNR minimization were performed to obtain

the final Cne Prp8 precursor model.

Supporting information

S1 Fig. Distribution of Prp8 inteins. (A) A phylogenetic tree of Prp8 inteins was recon-

structed based on an amino acid multiple sequence alignment of the splicing blocks (A, B, F,

G) using the NJ algorithm and an interior-branch test with 1,000 replicates. Fifty representa-

tives covering Prp8 intein diversity were selected, and the full name of each intein-containing

organism is listed. Colored symbols represent the insertion site and correspond to colors in

Fig 1A. Letters (a1, a2, b, c, d, e, f, g) represent each of the 7 unique insertion sites. (B) A phylo-

genetic tree of Prp8 inteins was reconstructed based on an amino acid multiple sequence align-

ment of the splicing blocks (A, B, F, G) using the ML method and evaluated with SH-aLRT.

The substitution model, WAG+G+I, was selected using ProtTest 3 (https://github.com/

ddarriba/prottest3). ML tree follows the same formatting as in panel A and shows similar

architecture as NJ tree. Amoebo, Amoebozoa; Asco, Ascomycota; Basidio, Basidiomycota;

Blasto, Blastocladiomycota; Choano, Choanoflagellida; Chloro Viridipl, Chlorophyta Viridi-

plantae; Chytridio, Chytridiomycota; ML, maximum likelihood; Mucoro, Mucoromycota; NJ,

neighbor-joining; Opistho, Opisthokonta; Prp8, pre-mRNA processing factor 8; SH-aLRT,

Shimodaira–Hasegawa nonparametric approximate likelihood-ratio test

(TIF)
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S2 Fig. Amino acid multiple sequence alignment of Prp8 inteins utilized for phylogenetic

analysis. Comparative analysis of amino acid residues found in Blocks A, B, F, and G from the

selected 50 representative Prp8 inteins, shown with abbreviated species names (full names in

S1 Fig). Letters (a1, a2, b, c, d, e, f, g) represent each of the 7 unique insertion sites. Shading is

as follows: black, identical amino acid; dark gray, conserved amino acid; light gray, similar

amino acid substitution. Prp8, pre-mRNA processing factor 8

(TIF)

S3 Fig. Novel Prp8 insertion site g. In the amoeba Asu, an intein was identified at a new site

in Prp8, here termed g. This is the seventh site in which a Prp8 intein has been found. The full

site g intein sequence is shown, plus 10 flanking N-extein (blue) and C-extein (green) amino

acids. The Asu C1 (yellow) and terminal asparagine (red) are highlighted. Residue numbering

corresponds to the Asu Prp8 exteins. Accession number: XP_0127532. Asu, Acytostelium sub-
globosum; Prp8, pre-mRNA processing factor 8

(TIF)

S4 Fig. Conservation of Prp8 exteins. (A) A phylogenetic tree of Prp8 exteins corresponding

to inteins (see S1 Fig) was reconstructed based on an amino acid multiple sequence alignment

using the NJ algorithm and an interior-branch test with 1,000 replicates. Extreme conservation

among Prp8 exteins is observed along with grouping by host organism phylogeny. Colored

symbols represent the intein insertion site of the exteins and correspond to colors in Fig 1A.

Letters (a1, a2, b, c, d, e, f, and g) represent each of the 7 unique insertion sites. Phylum abbre-

viations are listed in the S1 Fig legend. (B) A phylogenetic tree of Prp8 exteins was recon-

structed based on an amino acid multiple sequence alignment of the splicing blocks (A, B, F,

G) using the ML method and evaluated with SH-aLRT. The substitution model, LG+G, was

selected using ProtTest 3 (https://github.com/ddarriba/prottest3). Tree follows the same for-

matting as in panel A. ML, maximum likelihood; NJ, neighbor-joining; Prp8, pre-mRNA pro-

cessing factor 8; SH-aLRT, Shimodaira–Hasegawa nonparametric approximate likelihood-

ratio test.

(TIF)

S5 Fig. Overlays of the Cne Prp8 intein with other inteins. (A) Overlay of the Sce VMA1

intein and Cne Prp8 intein active sites. The Sce VMA1 intein (cyan, PDB 1GPP) was overlaid

with the Cne Prp8 intein (red). The active site residues, crucial to protein splicing, are shown

as sticks and labeled. A majority of these conserved residues overlap exactly, such as the cata-

lytic C1, and the Block B TxxH motif. The Sce VMA1 intein uses an asparagine (N76) rather

than threonine in the TxxH motif, but the positioning is similar to the threonine (T62) of the

Cne Prp8 intein. The penultimate histidines (H170 and H453) are in comparable positions

except for the side chains, whose chi angles are different by 45˚. The Sce VMA1 intein was not

solved with the terminal asparagine. (B) Structural comparison of bacterial Mtu RecA intein

and fungal Cne Prp8 intein. Overlay of the Mtu RecA intein (brown, PDB 2IMZ), and the Cne
Prp8 intein (red) reveals structural similarities in major intein features, such as the anti-parallel

β-sheet folding, that contribute to the horseshoe shape. The Hint domain, comprised of splic-

ing Blocks A, B, F, and G, are generally aligned between the 2 inteins. The structures deviate at

sequences between Blocks B and F, where the Cne Prp8 intein encoded a linker or endonucle-

ase domain. The 2 structures have an RMSD value of 2.22 Å. Cne, C. neoformans; Mtu, Myco-
bacterium tuberculosis; PDB, Protein Data Bank; Prp8, pre-mRNA processing factor 8; RMSD,

Root-mean-square deviation; Sce, Saccharomyces cerevisiae
(TIF)
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S6 Fig. Splicing of Prp8-a inteins from other fungal pathogens in MIG. (A) Diverse Prp8

intein splicing patterns. Several Prp8 inteins from other fungal pathogens Afu, Bde, and Hca
were cloned into MIG. Splicing was observed over time by the loss of precursor (P) and

increase in LE, or simply by the presence of ligated exteins (for Afu). The gel shows that not all

Prp8 inteins splice similarly, despite being placed in an identical extein context. (B) Precursor

amounts vary greatly. A quantitation of precursor (P) at each time point shows that these Prp8

inteins are active but splice at variable rates. The Afu Prp8 intein is almost entirely spliced at

the start of the assay (0 h), whereas Bde has 31% precursor at 0 h and Hca has 14% precursor at

0 h. Initial splicing rates were determined by calculating the loss of precursor over time (Pt0−-

Pt1/60 min) with standard error for MIG Bde Prp8 and MIG Hca Prp8, and are (5.9 ± 0.4) ×
10−2% per min and (2.7 ± 0.9) × 10−2% per min, respectively. This suggests intein-mediated

control of protein splicing. Data are representative of 3 biological replicates and mean standard

deviations are shown. Trend lines are fit to show the decay curve. Data available in S1 Data.

Afu, Aspergillus fumigatus; Bde, Batrachochytrium dendrobatidis; Hca, Histoplasma capsula-
tum; LE, ligated exteins; MIG, MBP-Intein-GFP; Prp8, pre-mRNA processing factor 8

(TIF)

S7 Fig. MIG Prp8 A-1V copper inhibition and cysteine analysis. (A) Copper treatment

causes inhibition. Induced MIG Prp8 A-1V cells were lysed and treated with 0 or 1 mM

CuSO4. The lysates were incubated for the indicated time at 30˚C and then frozen. Samples

were separated on SDS-PAGE and scanned for GFP fluorescence. In the absence of copper,

MIG Prp8 A-1V spliced well over 30 h, converting P into LE. There was little to no conversion

of P to LE over time with copper addition. Quantitation is shown below in a stacked plot. Data

are representative of 3 biological replicates and mean standard deviations are shown. Data

available in S1 Data. (B) Relative position of 2 cysteines. There are only 2 cysteines present in

the Cne Prp8 intein. Using the solved structure, a measurement of the distance between C1

and C61 (shown as sticks) was calculated to be 8.9 Å. (C) Valine is the preferred residue at

position 61. A sequence logo was constructed of Block B from the 50 representative Prp8

inteins (S1 Fig). This shows absolute conservation of the histidine (position 10) and a strong

preference for threonine (position 7) in the TxxH motif. However, the Block B cysteine (posi-

tion 6, red box) is not highly conserved across Prp8 inteins, and most encode valine at this site.

Cne, C. neoformans; GFP, green fluorescent protein; LE, ligated exteins; MIG, MBP-Intein-

GFP; P, precursor; Prp8, pre-mRNA processing factor 8

(TIF)

S8 Fig. Copper inhibition of MIG Prp8 A-1V C61 mutants. (A) Mutations to C61 in MIG

Prp8 A-1V slow down splicing. The B block C61 was mutated to valine (C61V), alanine

(C61A), and serine (C61S), and splicing was observed over time in MIG. Initial splicing rates

were determined by calculating the loss of precursor over time (Pt0−Pt1/60 min) with standard

error and are as follows: WT, (1.01 ± 0.07) × 10−1% per min; C61V, (1.07 ± 0.08) × 10−1% per

min; C61A, (6.22 ± 0.50) × 10−2% per min, and C61S, (2.92 ± 1.04) × 10−2% per min. The

C61V mutant splices similarly to WT, whereas C61A and C61S are slower. A quantitation is

shown to the right with the amount of precursor (P) at each time point. Data are representative

of 3 biological replicates and mean standard deviations are shown. Trend lines are fit to show

the decay curve. Data available in S1 Data. (B) MIG Prp8 A-1V B block cysteine mutants are

inhibited by copper. To test whether copper inhibition was caused by C1 oxidation, C61

mutants were treated with CuSO4. After induction of MIG, the cells were lysed, and 1 mM

CuSO4 was added. The lysates were incubated at 30˚C, and aliquots were collected at the indi-

cated time. Samples were run on SDS-PAGE and scanned for GFP fluorescence. None of the

C61 mutants show an increase in LE over time, with little loss of precursor (P). This indicates
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that at least C1 oxidation by copper is sufficient to cause the observed splicing inhibition and

that disulfide bonds are not involved. Quantitation is shown below in a stacked plot. Data are

representative of 3 biological replicates, and mean standard deviations are shown. Data avail-

able in S1 Data. GFP, green fluorescent protein; LE, ligated exteins; MIG, MBP-Intein-GFP;

Prp8, pre-mRNA processing factor 8; WT, wild type.

(TIF)

S9 Fig. Mass spectrometry of cysteine modifications. (A) Intact Cne Prp8 intein shows small

mass shift. Purified Cne Prp8 intein was untreated or treated with 10× excess copper and sepa-

rated and analyzed using LC-MS. The peaks were deconvoluted, and the expected mass of the

Prp8 intein, 19,588 Da, is seen as the largest peak. A small, 32 Da shift (19,620 Da) was visible

with both no treatment and copper treatment only (arrow). This suggests that highly reactive

cysteines are modified by atmospheric oxygen alone. (B) C1 and C61 are oxidized with copper

treatment. Trypsin-digested fragments of copper-treated Cne Prp8 intein were separated and

sprayed using LC-MS/MS (insets). Peptides (red peaks) containing C1 or C61 were detected

and further analyzed using multiple reaction MIDAS to confirm the identity and location of

oxidation. The chromatogram shows elution time for both cysteines consistent with a single

additional oxygen or a sulfenic acid modification. Cne, C. neoformans; LC-MS, liquid chroma-

tography-mass spectrometry; LC-MS/MS, liquid chromatography-mass spectrometry/mass

spectrometry; MIDAS, monitoring-initiated detection and sequencing; Prp8, pre-mRNA pro-

cessing factor 8

(TIF)

S10 Fig. Mapping of Prp8 intein insertion sites to Prp8 extein domains. The 7 unique inser-

tion sites (a–g) were mapped to a solved structure of Prp8 from a S. cerevisiae C complex spli-

ceosome (PDB 5GMK, chain A from Wan and colleagues, 2016) by locating the +1 residue.

This Prp8 structure was used because the insertion sites are all resolved. The +1 residues are

shown as red spheres and labeled a through g. Most Prp8 inteins localize close to the active

center of Prp8. Some insertions are in the N-terminal domain, which provides structural integ-

rity to the spliceosome. A corresponding line diagram of Prp8 exteins shows the domains of

the host protein from amino acid residues 127 to 2084 with arrows indicating the site of intein

insertion with the residue number and insertion site letter. The domains are as follows: N-ter-

minal domain, gray; RT Palm/Finger, dark blue; Thumb/X, light blue; linker, green; endonu-

clease, yellow; and RNase H-like, orange. PDB, Protein Data Bank; Prp8, pre-mRNA

processing factor 8

(TIF)

S11 Fig. Model of the Cne Prp8 intein interrupting Prp8 and the spliceosomal U4/U6.U5

tri-snRNP. The Prp8 intein-containing Prp8 precursor model was docked into a cryo-EM tri-

snRNP structure from Sce (PDB 5GAN) to look for intein-spliceosome disruptions. Prp8 is

shown as lavender, and the Prp8 intein is shown as red, and the rest of the tri-snRP compo-

nents are colored by chain. This reveals that the Prp8 intein would occupy a relatively

crowded, centralized location of the tri-snRNP (circled). The intein clashes are shown here

(with labels) and noted in Fig 7B. Cne, C. neoformans; cryo-EM, cryogenic electron micros-

copy; PDB, Protein Data Bank; Prp8, pre-mRNA processing factor 8; Sce, S. cerevisiae; tri-

snRNP, triple small nuclear ribonucleoprotein.

(TIF)

S1 Table. Bacterial and fungal strains. A list of bacterial strains used for various cloning,

overexpression, and purification studies is provided. Strains of fungi and yeast used for in vivo
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studies are also listed.

(DOCX)

S2 Table. Plasmids and constructs. A list of MIG constructs and purification vectors with

corresponding backbones are provided. MIG, MBP-Intein-GFP.

(DOCX)

S3 Table. Oligonucleotide primers. Primers used for the construction of various vectors or

for the mutation of plasmids are provided.

(DOCX)

S4 Table. Crystallization information. Data collection, refinement statistics, and model

details for (A) the unbound and (B) the Zn2+-bound Cne Prp8 intein crystal structures. Cne, C.

neoformans; Prp8, pre-mRNA processing factor 8

(DOCX)

S1 Data. MIG Prp8 quantitation. Individual numerical values that underlie any graphs (Figs

4B, 4C, 5A, 5B, and S6B, S7A, S8A and S8B Figs) are provided in separate sheets. Values were

calculated from biological triplicate gel images using ImageJ software. Levels of precursor (P),

LE, and OPC products are given out of a total of 100. Some graphs use percent precursor as a

proxy for splicing. Time points are indicated. LE, ligated exteins; MIG, MBP-Intein-GFP;

OPC, off-pathway cleavage; Prp8, pre-mRNA processing factor 8

(XLSX)
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