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It is intuitive that fertilization—the 
start of life—involves communica-

tion between a sperm cell and an egg. 
It has been known that to become able 
to fertilize an egg, a sperm must first 
communicate with stimuli in the female 
tract. For example, sterol removal from 
the plasma membrane is required for 
sperm to undergo membrane fusion 
during acrosome exocytosis (AE). How-
ever, how membrane lipid changes 
were transduced into initiation of AE 
remained unclear. Recently, we found 
that sperm phospholipase B (PLB) is 
activated in response to sterol removal 
and released into the extracellular fluid 
by proteolytic cleavage. The resultant 
active PLB fragment can stimulate 
initiation of AE without other physi-
ological stimulation. These results pro-
vide a possible mechanism for how AE 
is triggered, a critical question given 
recent data from others that show that 
AE is induced prior to contact with the 
egg’s extracellular covering, the zona 
pellucida.

Mammalian sperm are unable to fertil-
ize an egg immediately after ejaculation, 
but acquire the ability during migration 
through the female reproductive tract. 
This process, collectively referred to as 
“capacitation”1, is a prerequisite to ini-
tiate acrosome exocytosis (AE), which 
is itself necessary for a sperm to pass 
through the covering of the egg, known 
as the zona pellucida (ZP). Removal of 
sterols from the sperm plasma membrane 
is one of the initial triggers for the onset 
of capacitation.2,3 This was demonstrated 
by evidence that exposure of sperm to 
cholesterol acceptors, such as BSA or 

2-hydroxypropyl-β-cyclodextrin, trig-
gers activation of the signaling cascades 
inherent to capacitation and potentiates 
responsiveness to initiate AE.4 Despite 
the strict requirement for sterol removal 
prior to undergoing fusion of the plasma 
membrane overlying the acrosome (APM) 
with the outer acrosomal membrane, the 
molecular mechanism(s) by which sterol 
removal is transduced into the initiation 
of AE, have remained unknown.

Membrane rafts are membrane 
domains highly enriched in specific lip-
ids and proteins, and play important roles 
in the regulation of diverse cellular pro-
cesses including communication between 
cells and the extracellular environment.5 
Using live murine sperm, we previously 
demonstrated that the APM is a macro-
domain highly enriched in sterols and the 
ganglioside G

M1
.6 This membrane region 

is itself composed of multiple, dynamic 
domains,7 consistent with our biochemi-
cal results demonstrating that murine 
sperm possess at least 3 raft sub-types 
differing in lipid and protein composi-
tion.8 Our recent proteomic analysis of 
sperm rafts identified phospholipase B 
(PLB) in all of the raft sub-types.9 PLB 
is a membrane-anchored phospholipase 
that possesses calcium-independent 
PLA

1
, PLA

2
, and lysophospholipase 

activities.10 Although PLB expression has 
been reported in sperm,11 the physiologi-
cal functions of PLB remained unclear. 
We recently reported that sperm PLB is 
localized in both the APM and acroso-
mal membranes where membrane fusion 
occurs.12 Furthermore, sperm PLB is 
activated by sterol removal from the 
APM, providing an important link in 
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the communication of the sperm with 
its external environment and playing an 
important role in fertilization.12

Of note, we found that activated 
PLB is released into the extracellular 
f luid,12 suggesting involvement of pro-
teolytic cleavage. A study with human 
epidermis reported that PLB underwent 
limited proteolysis in response to exog-
enous trypsin or autolysis, producing a 
soluble 97 kDa fragment and a 140 kDa 
membrane-bound fragment,13 consistent 
with tryptic treatment of recombinant 
PLB.13 Unlike these studies, our results 
showed that sperm PLB can be proteo-
lytically cleaved into 27 kDa and 50 kDa 
soluble fragments. This disparity might 
result from the difference in experi-
mental conditions (artificial proteolysis 
vs. physiological response), or that PLB 
might differ in susceptibility to proteoly-
sis between tissues or species. Autolysis of 
rat intestinal tissues produced 90 and 130 
kDa PLB fragments,11 whereas only a 140 
kDa fragment was produced in guinea 
pig.14 Interestingly, a recent study with a 
pathogenic fungus showed that N-linked 
glycosylation of PLB is important for 
its stability and protection from prote-
olysis.15 Using software-based prediction, 
comparison of N-linked glycosylation 

sites among guinea pig, rat, and mouse 
PLB revealed that the number and loca-
tion of potential glycosylation sites dif-
fered among these species (data not 
shown). Therefore, it is possible that the 
status of N-linked glycosylation might 
contribute to the cleavage pattern of PLB 
by limiting the accessibility of proteases 
to a given proteolytic site.

It was a long-standing view that 
capacitated sperm undergo AE when they 
bind to the ZP, in a process historically 
called the “acrosome reaction.” However, 
this dogma has been strongly challenged 
in recent years. Studies using sperm 
expressing EGFP in the acrosome first 
suggested that membrane fusion resulted 
in a highly regulated form of exocytosis 
as opposed to a quick, binary transition 
from “intact” to “reacted”16. This same 
group recently reported evidence for the 
transient exposure of acrosomal matrix 
proteins in guinea pig sperm during 
capacitation,17 suggesting the occurrence 
of multiple membrane fusion events dur-
ing the course of capacitation. At the 
same time, another group demonstrated 
that sperm began AE before they encoun-
tered the ZP during the process of in vitro 
fertilization.18 Together, these findings 
suggest that the induction of AE begins 

much earlier, as the sperm communi-
cate with one or more stimuli within the 
female reproductive tract.

Our data suggest a possible mechanism 
for how this communication is trans-
duced into a change in sperm function, 
through stimulation of AE. For example, 
incubation of sperm with either medium 
from capacitated sperm or with active 
fragments of recombinant PLB resulted 
in AE,12 suggesting a role for PLB in 
stimulating membrane fusions. There is 
still much more to learn about the mech-
anisms leading to exocytosis, including 
whether it represents a “kiss and run” 
mechanism in which fusion pores are 
formed and rapidly closed without fur-
ther dilatation,19,20 or whether individual 
fusion events simply sum and merge into 
each other. In any case, the accumulated 
results of recent studies lead us to realize 
that acrosome exocytosis and fertilization 
involve not just communication between 
egg and sperm, but between sperm and 
other factors in the female reproductive 
tract and PLB plays an important role in 
this molecular conversation.
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