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ng-assisted study of the formation
of oxygen vacancies in anatase titanium dioxide†
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Defect engineering of semiconductor photocatalysts is critical in reducing the reaction barriers. The

generation of surface oxygen vacancies allows substantial tuning of the electronic structure of anatase

titanium dioxide (TiO2), but disclosing the vacancy formation at the atomic level remains complex or

time-consuming. Herein, we combine density functional theory calculations with machine learning to

identify the main factors affecting the formation of oxygen defects and accelerate the prediction of

vacancy formation. The results show that the first two-layer oxygen atoms on the typical surfaces of

TiO2, including (100), (110), and (211) facets, are more likely to be activated when the gas is more

reduced, the pressure is higher, and the reduction temperature is increased. Through machine learning,

we can conveniently predict the formation of oxygen defects with high accuracy. Furthermore, we

present an equation with acceptable accuracy for quantitatively describing the formation of oxygen

vacancies in different chemical environments. Our work provides a fast and efficient strategy for

characterizing the surface structure with atomic defects.
Introduction

Anatase titanium dioxide (TiO2) is a semiconductor material
that is versatile, low-cost, stable, and non-toxic.1,2 Since its
discovery as a photocatalyst for water splitting,3 there has been
a strong interest in the photocatalytic application. However, its
ability to capture light is hampered by the large band gap, which
greatly limits the efficiency of solar energy conversion.4–8 Much
effort has been made to improve the performance of TiO2,
including defect engineering,9,10 surface modication,11

precious metal deposition12,13 and doping.14,15 Among these
strategies, manipulating oxygen vacancies has drawn wide-
spread attention and plays an important role in regulating the
electronic properties of TiO2-based photocatalysts.16–18 Mean-
while, the preparation of TiO2 with different oxygen vacancy
concentrations is a cheap and effective strategy that can control
the absorbance and photocatalytic performance. For example,
the oxygen vacancy can substantially lower the barrier for
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photocatalytic CO2 reduction via the fast-hydrogenation
pathway.19 The optimal concentration ratio of single-electron-
trapped oxygen vacancies to surface oxygen vacancies leads to
the best activity in photocatalytic hydrogen production.20

Nonetheless, the basic factors that inuence the oxygen
vacancies' formation of TiO2 remain unclear, which requires
a fundamental understanding of the oxygen vacancies at
varying concentrations under experimental conditions.

Currently, the identication of crystal structures with vacan-
cies under given pressure (p) and temperature (T) is one of the
most challenging problems in establishing structure–property
relationships. Accurate rst-principles computational tech-
niques, such as density-functional theory (DFT), have facilitated
the understanding of the structure and composition of a defec-
tive surface from the atomic level, such as vacancy formation
energy (Ef)-based surface phase diagram.21 However, the higher
computational cost and poor scalability limit their effectiveness
inmaterials exploration.22 In recent years, machine learning (ML)
has emerged as an effective way to screen materials.23–29 For
example, Fung et al. used the ML approach to automatically
derive key features from the electronic density of states (DOS) to
predict adsorption energies with high accuracy, which provides
physical insights into the response of adsorption energies to
external perturbations of electronic structure.30 Zhong et al. used
DFT to simulate optimal active sites to provide more training
data for machine learning models; an automated framework was
generated to systematically search for surfaces and adsorption
sites with near-optimal CO adsorption energies.31 In view of the
advantages of theML approach, we are curious about whether we
© 2024 The Author(s). Published by the Royal Society of Chemistry
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can use this approach to study factors affecting the formation of
oxygen vacancies of TiO2.

In this work, using DFT calculations andML, we evaluated the
formation of oxygen vacancies on three typical surfaces of TiO2

under H2, CO, and NO atmospheres. Our working ow contains
the following ve distinct stages: database construction, forma-
tion energy analysis, feature engineering, model selection and
prediction, and equation tting (Scheme 1). We rst studied the
oxygen vacancies' formation in the top two layers through high-
throughput calculations (136 cases in total). These results were
then related to reaction atmosphere, temperature, and pressure,
resulting in 4080 formation energy data sets. The important
factors affecting the formation of oxygen vacancies are further
obtained by the machine learning analysis, and they are used as
features to construct the model to predict the Ef of a given
defective surface. Finally, by tting the features, we proposed an
equation for predicting the Ef values with acceptable accuracy.
Computational methods
DFT calculations

All DFT calculations were performed using the VASP code.32 The
exchange–correlation interactions were described by the Per-
dew–Burke–Ernzerhof (PBE) functional,33 the projector
augmented wave (PAW)34 pseudo-potentials were applied to
treat the core-electron interactions. Electronic energies were
computed with the tolerance of 5 × 10−5, and total forces were
converged to less than 0.05 eV Å−1. A Gamma k-point was used
to sample the Brillouin zone with an energy cut-off of 420 eV.
Scheme 1 The ML workflow. The optimized geometry of TiO2(100) after
gray box denotes the database construction. The green boxes show the
represents the feature engineering stage. The blue part represents the e

© 2024 The Author(s). Published by the Royal Society of Chemistry
The lattice parameters of TiO2 were calculated to be a= b= 3.71
Å and c = 9.54 Å, in agreement with previous experimental
values.35 For the (100), (110), and (211) slabs, we constructed a 3
× 2, 4 × 4, and 2× 4 supercell containing 12, 32, and 24 surface
O atoms per layer to simulate the periodic TiO2 surface.

A vacuum region of 20 Å was adopted to separate adjacent
slabs. The bottom two layers were xed, and the other layers
were relaxed during the geometry optimization. The Ef on the
rst two layers of TiO2 were elucidated by high-throughput DFT
calculations.

The surface energy (g) is calculated as follows:

g ¼ 1

2A
ðEslab �NEbulkÞ (1)

where Eslab represents the total energy of different crystallographic
models, Ebulk is the energy of a single atom or a unit in the bulk
phase, A represents the surface area of different surfaces, N
represents the number of individual atoms or units.

The energy of formation of oxygen vacancies (Ef) on TiO2 is
calculated as:

Ef ¼ 1

n
ðGOv � GTiO2

Þ þ mOðT ; pÞ (2)

The terms GOv and GTiO2
are the free energy of TiO2 with and

without oxygen vacancies. The n is the oxygen-deciency
number, and mO(T, p) is the oxygen chemical potential at
a specic p and T.

The chemical potential of species A in the gas phase with
respect to vacuum at a specic temperature and pressure is
represented by:21
removing the O atoms from the first two layers is shown in purple. The
model selection and prediction phases of this work. The yellow box

quation fitting process.

RSC Adv., 2024, 14, 33198–33205 | 33199



Fig. 1 The optimized structures of (a) (100), (b) (110) and (c) (211)
surfaces of TiO2. Gray and red spheres represent Ti andO, respectively.
The yellow dashed lines marked the locations where the O atoms will
be removed.
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mAðT ; PÞ ¼ EA þ EZPE þ DHA
0�T � TSA

T þ kBT ln
pA

p0
(3)

where EA is the internal energy of A, DHA
0–T is the enthalpy

change from 0 K to a certain T, TSA
T is the entropy, and p0 is

taken as 1 bar.
The removal of surface oxygen atoms under H2 atmosphere

conditions (H2 + O / H2O) is accomplished by reducing the
surface oxygen atoms to water. The mO(T, p) is calculated as:

mO(T, p) = mH2O
(T, p) − mH2

(T, p) (4)

The removal of surface oxygen atoms under CO atmospheric
conditions (CO + O / CO2) is accomplished by reducing the
surface oxygen atoms to carbon dioxide. The mO(T, p) is calcu-
lated as:

mO(T, p) = mCO2
(T, p) − mCO(T, p) (5)

The removal of surface oxygen atoms under NO atmosphere
conditions (NO + O / NO2) is accomplished by reducing the
surface oxygen atoms to nitrogen dioxide. The mO(T, p) is
calculated as:

mO(T, p) = mNO2
(T, p) − mNO(T, p) (6)

Machine learning methods

The ve common algorithms in the Scikit-learn module36 we
used are K-nearest neighbors (KNN), linear support vector
regression (Linear SVR), multilayer perceptron (MLP), gradient
boosting regression (GBR) and random forest regression (RFR).

In the above algorithms, KNN works by selecting K nearest
neighbors for prediction based on Euclidean distance or
Manhattan distance. In the case of regression, predictions are
made by averaging the nearest target values.37 Additionally,
KNN models built using this algorithm are straightforward to
interpret and are well-suited for datasets with a limited number
of features and samples.

Linear SVR is a regression algorithm based on Support
Vector Machines,38 which ts the data by nding a hyperplane
in the high-dimensional space so that the distance from all data
points to that hyperplane is as small as possible.39 Compared to
other algorithms, the SVRmodel developed using this approach
demonstrates superior performance on high-dimensional
datasets with numerous features and samples.

MLP, also known as a neural network, consists of an input
layer, one or more hidden layers, and an output layer.40 Neurons
are the basic units of a neural network and can be used to
receive input signals and produce outputs. Weights are used to
determine the strength of connections between neurons.41 Aer
calculating the weighted sum of each hidden unit, the model
applies a nonlinear function to the result, so neural networks
can learn more complex functions than linear models.

RFR is a ML algorithm based on decision trees. It predicts
the output values by constructing several different decision
trees and taking the average of these values as the nal
33200 | RSC Adv., 2024, 14, 33198–33205
prediction. This prediction way is able to reduce overtting and
maintain the predictive performance of the tree.42,43

Although both GBR and RFR are commonly used integrated
learning algorithms, there are some differences between GBR
and RFR. Each tree constructed by GBR tries to correct the
errors of the previous tree, which enables GBR to convert weak
learners into strong learners.44–47 In addition, the current
learners are trained on the previous learner, which makes the
GBR algorithm robust.48

Our ML model was trained based on the rst layer and 5% of
the second layer of oxygen-vacancy data. We used the untrained
data obtained from the second O atomic layer in TiO2 as the test
set to analyze the predictive ability of the model. To avoid the
overtting of the model, the performance of the machine
learning model can be evaluated using the root mean square
error (RMSE). We used the Pearson correlation coefficient to
investigate the relevance of features and the coefficient of
determination to characterize the accuracy of the model.
Results and discussion

Fig. 1 shows the geometric structures of three typical TiO2 fac-
ets, (100), (110) and (211). Previous studies have found that the
outer oxygen atoms of TiO2 can be readily removed during the
catalytic process, and this removal of oxygen can also occur in
the near-surface region of the TiO2 as the temperature
increases.49–51 In this regard, we investigated the defective TiO2

facets with different oxygen concentrations in the data
construction stage, with focusing on the upper two layers as
a demonstration. This step produced 136 cases, which were
characterized by high-throughput computation.

High-pressure and high-temperature annealing can facilitate
the generation of oxygen vacancies.52 It is notable that CO2 and
nitrate reduction occur in an H2-rich atmosphere, producing
reducing gases such as CO and NO, which would accelerate
surface O depletion on TiO2 surfaces. Therefore, to guide the
design of catalysts, it is necessary to determine the surface
structure of TiO2 under reaction conditions and to study the
relationship between activity and structure. To this end, based
on eqn (2), we explored the formation of oxygen vacancies at
temperatures of 298 K and 500 K, different pressure ratios (1, 10,
15, 20, and 30), as well as different atmospheres (H2, CO, and
NO). The rst two layers of oxygen vacancies, of which (100),
© 2024 The Author(s). Published by the Royal Society of Chemistry
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(110), and (211) facets account for 720, 1920, and 1440 data sets,
respectively.

Fig. 2 displays the formation energies of oxygen vacancies on
the TiO2(100) surface calculated at 298 K and 500 K for CO, H2,
and NO atmospheres. Please note that the pressure ratios of
reductant to reduction products were 1 : 1, 10 : 1, 15 : 1, 20 : 1,
and 30 : 1, and the differences in pressure and reduction
atmospheres were reected in differences in chemical poten-
tials. The corresponding results of TiO2(110) and TiO2(211) are
shown in Fig. S1–S4.† At 298 K, the formation of oxygen
vacancies on relatively stable (100) and (110) surfaces is unfa-
vorable regardless of the different atmospheres (Fig. 2a–c and
S1†), and only a small number of oxygen atom vacancies on
TiO2(211) are thermodynamically feasible (Fig. S2†). These
results imply that the formation of oxygen vacancies is generally
difficult, which is in agreement with the observed high stability
of TiO2

When the temperature is increased to 500 K, the values of Ef
of the TiO2(100) surface become more negative (especially
under CO and H2 atmospheres) (Fig. 2d–f). The similar situa-
tion can be observed in TiO2(110) and TiO2(211) (Fig. S3 and
S4†). Therefore, oxygen vacancies are more likely to be formed
at elevated temperatures, rationalizing previous experimental
observations. Among the three reducing atmospheres, the CO
atmosphere can best promote the formation of oxygen defects,
followed by the H2 atmosphere. In addition, NO gas cannot
easily reduce surface oxygen, and TiO2 maintains its structural
integrity in the presence of NO.

Choosing the right features can promote the model's
prediction of the Ef of oxygen vacancy. The number of oxygen
vacancies (n), the pressure ratio of the reducing agent to
reducing product (p), the temperature (T), the surface energy
Fig. 2 The formation energy of topmost O atoms on TiO2 surfaces with
red to blue lines are marked in the number of the O atoms.

© 2024 The Author(s). Published by the Royal Society of Chemistry
(g), the chemical potentials of reduction products (m1) and the
reducing gases (m2), and the oxygen chemical potential (m3) are
considered as the factors affecting the Ef of oxygen vacancy.
According to the analysis of the importance of the features,
chemical potential, temperature, and the number of oxygen
defects are all important factors affecting vacancy formation
(Fig. 3a). Therefore, we use these factors as input parameters for
training the ML model. Fig. 3b shows the Pearson correlation
coefficient matrix, and the distribution of the six features has
obvious differences in dimension and range, indicating that the
relationship between these features and O vacancy formation
energy is complex. The low correlation between the features
indicates that the features are independent of each other and
that a single feature does not accurately describe the formation
pattern. Therefore, several key factors were chosen as the input
parameters in the subsequent ML study.

An appropriate selection of algorithms is a critical part of
designing an appropriate catalyst. Our ML models were trained
based on the rst layer of Ef data and 5% of the second layer of
data (training set). The remaining 95% of the data from the
second layer (test set) was then used to analyze the predictive
ability of the model. Since some algorithms are very sensitive to
data scaling, it is common practice to tune the features to make
the algorithms more suitable for these data. Therefore, we
performed data scaling and then constructed models using
each of the ve ML algorithms. To evaluate the learning
performance of the ve ML models, we compare the error
between the actual and predicted values using RMSE as the key
criterion (Fig. 3c). We found that the RFR and GBR models
exhibit extremely high accuracy with lower errors of RMSE
0.015 eV and 0.016 eV, respectively (Fig. 3d). The actual values of
the Ef based on DFT calculations are in high agreement with the
CO, H2, and NO as reducing agents at (a–c) 298 K and (d–f) 500 K. The

RSC Adv., 2024, 14, 33198–33205 | 33201



Fig. 3 (a) Feature importance for the GBRmodel. (b) Heat map of the Pearson correlation coefficient matrix among the selected features. (c) The
evaluated learning performance of five ML models. (d) The compassion between the DFT-calculated and GBR-predicted values for the Ef of
TiO2(100), TiO2(110), and TiO2(211) surfaces.

RSC Advances Paper
ML predictions, which indicates that the hidden information in
the raw data can be precisely extracted. In contrast, the three
algorithms (i.e., KNN, SVR and MLP) have relatively high RMSE
values (Fig. S5†); the signicant difference between the predic-
tions of Ef by DFT andML suggests the lack of learning ability of
the three models for TiO2.

The above results clearly show that the GBR model is best
suited for the TiO2 dataset. However, the RMSE of the RFR
model is similar to that of the GBR model, so we predicted the
formation energy of the second layer of oxygen vacancies using
each of the two models and compared the model predictions
with the Ef calculated based on DFT. Fig. 4 and S7† show the
performance metrics of the GBR and RFR models for the test
sets on the (100), (110), and (211) surfaces, respectively. The RFR
model shows a slightly higher error value than the GBR model
(RMSE = 0.098 eV) with an overall RMSE of 0.100 eV. In the
process of constructing the model, we also employed classic
linear such as ordinary least squares (OLS) and ridge regression
for predictive purposes. Nevertheless, we encountered an
abnormally negative R2 value for the linear model (Fig. S6†),
suggesting that the relationship between the target energy and
the features is not merely linear. GBR is an ensemble learning
33202 | RSC Adv., 2024, 14, 33198–33205
technique that sequentially enhances model performance by
constructing a series of weak learners, typically in the form of
decision trees. It works byminimizing the error of the preceding
model at each step, thereby iteratively rening the prediction
accuracy.53,54 GBR outperforms KNN, SVR, MLP, and RFR in
forecasting the formation energy of oxygen defects. This supe-
rior performance can be attributed to several factors: (i) differ-
ences in model principles. KNN predicts based on the distances
between samples, primarily relying on information from local
neighbors.55 KNN is sensitive to the local structure of data and
may not perform well in complex high-dimensional data or in
the presence of signicant noise. SVR uses the idea of support
vector machines to maximize the number of samples within the
regression error range by nding a hyperplane.56 While SVR
excels at handling linear and a few nonlinear problems, it may
not be as efficient as GBR when dealing with highly complex
nonlinear data. MLP, a neural network, models complex
nonlinear relationships through its neural connections.57,58

Although MLP is capable of handling complex data, it is highly
sensitive to hyperparameter tuning (such as the number of
layers, nodes, and activation functions), which may necessitate
more time for tuning and training, particularly with small and
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 4 Comparison between the Ef of the second O layer predicted by the ML based on the GBR model and the results calculated by DFT for (a)
TiO2(211), (b) TiO2(110), and (c) TiO2(100) surfaces. The purple, yellow, red, blue, and green dots represent the partial pressure ratio of 1, 10, 15, 20,
and 30, respectively.
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medium-sized datasets. RFR is an ensemble learning algorithm
that is based on decision trees.59,60 RFR is effective in handling
nonlinear relationships; however, its predictions for each tree
are independent and do not gradually correct errors like GBR
can, which may result in some inaccuracies in certain cases. (ii)
Capture complex data structures. GBR typically excels at
capturing complex nonlinear relationships compared to KNN,
SVR, MLP, and RFR,61 largely due to its use of a sequential,
iterative approach involving multiple trees to more deeply
conform to the data's subtle patterns. Other models might not
effectively grasp these nuances, particularly when dealing with
highly nonlinear data. (iii) Overtting control. GBR effectively
manages overtting by adjusting the depth of the trees, the
learning rate, and the number of weak learners, thereby typi-
cally achieving a good balance between bias and variance.53 SVR
and MLP might overly depend on parameter tuning.62 KNN can
be prone to overtting local noise. While RFR has some capa-
bility to control overtting, it lacks the mechanism of progres-
sively reducing errors that GBR employs.63 Therefore, the GBR
model's advantage oen lies in its prociency at dealing with
complex nonlinear data, its capacity for incremental error
correction, and its ability to maintain a balance between bias
and variance. It is particularly well-suited for datasets charac-
terized by complex relationships, nonlinear structures, and
Fig. 5 The plot of the Ef based on the DFT calculations and the results
predicted by the equation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
noise, which could explain its superior performance compared
to other models in our study. Briey, the training model shows
the best model generalization performance and the lowest
RMSE for our constructed GBR model (0.114 eV for TiO2(100)
surface, 0.082 eV for TiO2(110) surface, and 0.109 eV for
TiO2(211) surface), which ts well with the Ef values based on
the DFT calculations. Please note that these data are scattered
because of the effect of temperature. In addition, we examine
the scalability of the GBR regression model by comparing the
RMSE of 0.015 eV for the training set with the overall RMSE of
0.098 eV for the test set. The small difference between the RMSE
of the training and test sets suggests that the overtting is
negligible. Hence, the ML using the GBR model is expected to
be extended to the study of the N-layer structure of TiO2. The
ability to directly detect the process of oxygen vacancy change is
essential for realizing its further applications in related elds
(Fig. 5).

We constructed eqn (7) using six distinct sets of features based
on the feature importance ranking derived from the GBR model.
The results of the SISSO algorithm indicate that the nal eqn (7)
can be utilized with only four features, n, p, g, and m3, that is, the
lowest error value is obtained (Table S1†). To further explain why
this occurs, a Pearson correlation analysis was conducted on the
original seven features as well as the prediction targets. The
results show that m1, m2, T, and m3 have high correlations (0.62,
0.25, 0.63), which may lead to feature redundancy. In contrast,
the correlation between m3 and the prediction target is as high as
0.89. Such a result suggests that m1, m2, and Tmay be eliminable,
which is consistent with the results obtained by SISSO. Finally,
the equation can be expressed as:

Ef ¼ ð0:943ðpþ nÞ � 0:640ðp� gÞÞ
�m3

n

�
� 0:301

p� m3

n� g
þ 9:154

(7)
Conclusions

In summary, we reported a joint study of DFT calculations and
ML for the rapid prediction of the surface oxygen vacancy
RSC Adv., 2024, 14, 33198–33205 | 33203
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formation on TiO2(100), (110) and (211) surfaces. The surface
oxygen vacancies are sensitive to temperature and reducing gas,
and the degree of reduction of oxygen atoms on different crystal
surfaces varies under the same conditions. The extremely low
error values indicate that the ML based on the GBR model can
learn the hidden information behind the formation of TiO2

oxygen vacancies very skillfully. In addition, we proposed an
equation for predicting the Ef with acceptable accuracy. Our
work provides a fast and efficient analytical solution for rela-
tively accurate prediction of oxygen vacancy formation in TiO2

under experimental conditions and facilitates the optimization
of defect engineering in catalyst design.
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