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Bacterial pathogen identification, which is critical for human health, has historically
relied on culturing organisms from clinical specimens. More recently, the application of
machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen
identification. However, relying solely on genetic information to identify emerging or
new pathogens is fundamentally constrained, especially if novel virulence factors exist.
In addition, even WGSs with ML pipelines are unable to discern phenotypes associated
with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using
phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without
using any sequence-based analysis. This approach successfully classified potential patho-
genetic threat associated with previously machine-observed and unobserved bacteria
with 99% and 85% accuracy, respectively. This work establishes a phenotype-based
pipeline for potential pathogenic threat assessment, which we term PathEngine, and
offers strategies for the identification of bacterial pathogens.
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How is bacterial pathogenic potential predicted? Classical characterization of patho-
genic potential used Koch’s postulates (1). Recently, however, machine learning (ML)
analysis of whole-genome sequences (WGSs) from bacteria has been used to predict
pathogenic potential. For example, PaPrBaG is an ML approach for detecting novel
pathogens from next-generation sequencing (NGS) data (2). This approach predicts
pathogenicity by training ML models on a large number of simulated reads from
pathogens and nonpathogens (2). Other approaches using ML models derived from
sequencing data have also been described (e.g., Institute for Machine Learning and
Analytics, DeePaC, and PathoFact) (3–5). A key feature of these recent ML methods is
that pathogenic potential is predicted based solely on WGS reads without any other
biological context. Although these methods are powerful, they have the potential to
falsely characterize pathogens that have cryptic genetic variation, which is often
observed in different strains of the same species. For example, genetic comparison of
virulence genes between hyperinvasive and apathogenic Neisseria meningitidis provided
no answers for the differences in pathogenicity; however, transcriptomic data suggested
that virulence was linked to buffered expression of cryptic genetic loci (6, 7). Another
report found a similar pattern where expression patterns rather than genome sequences
determined antimicrobial resistance profiles to 12 different drugs in a collection of
strains of Acinetobacter baumannii (8). ML models trained with genome sequence data
alone are also susceptible to reporting false-positives where nonpathogenic features are
mislabeled as virulence determinants (9). To overcome these limitations, some have
emphasized the pressing need to enhance our knowledge of phenotypic characteristics,
such as severity of infection and virulence phenotypes in infection models, at the same
rate as that of bacterial genomes that are coming online (9).
With these ideas in mind, we pursued the development of an alternative strategy

using an ML pipeline termed PathEngine that assessed data from classic pathogenic
phenotypes. PathEngine is a general approach that uses an ensemble ML model across
these assays to provide robust and accurate potential pathogenic threat assessment of
phylogenetically diverse bacteria. In addition, after demonstrating that PathEngine
worked using well-characterized hallmarks of pathogenic potential, we explored
whether other assays not classically associated with virulence could also be used. Here,
we describe this strategy to assess pathogenic potential of bacteria using four pheno-
typic assays. We used a diverse set of bacterial pathogens and nonpathogens, totaling a
mere 40 bacterial strains belonging to 16 genera and 29 species, for training and testing
each model, which was significantly more economical than reports for similar tasks in
previous WGS-based approaches (Fig. 1A) (2, 3).
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To make this strategy work with such a limited number of
strains, we made each assay multimodal. This provided a large
training set for improving the effectiveness of ML models in
assessing the potential pathogenic threat. Therefore, we devel-
oped assays based on hallmarks of pathogenesis that generated
graded readouts of bacterial pathogenicity with many data
points (Fig. 1B). These phenotypes included classic virulence
mechanisms such as bacterial adherence to host cells and toxic-
ity to host cells. In addition, we used antibiotic resistance (AR),
which is not a classic virulence mechanism, to show the power
of our ML pipeline using phenotypic data. We also demonstrated

that an assay that features bacteria-induced expression of host
innate immune genes could be used for potential pathogenic
threat assessment using PathEngine. For multimodal data-driven
approaches to provide unbiased findings, the analysis of large data-
sets (e.g., >10,000 data points) is required, and in some of our
assays more than 1 million data points were analyzed. However,
we overcame limitations of the small dataset sizes generated in
some assays such as AR (<1,000 data points) by using ensemble
data points in all assays instead of plus or minus strain-level analy-
ses. This approach enabled successful training of ML models
despite limited bacterial strains. Based on this work, an ensemble

A B

C

D

Fig. 1. Framework for generation of an ML platform that enables bacterial threat assessment. (A) Bacterial strains used in this work are phylogenetically
divergent. (B) An overall framework in a time frame for threat assessment. (C) Overview of architecture of ML workflow includes data requirements and
processing, model selection, and threat assessment. Unknown and known bacterial pathogens used in the threat assessment by the indicated ML models.
(D) Overview of computational architecture of the four different ML models used in this work. MOI, multiplicity of infection. Fluor, fluorescence.
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method was applied to aggregate the model’s predictions across
observations and assays to output a pathogenic score per organism
(Fig. 1C). The ensemble method combined weak predictions
from the observations into a strong classifier, a well-studied tech-
nique in the ML community (10). In addition, the ensemble
approach allowed the assays to complement each other to make
accurate predictions. To guarantee robustness to the model in
deployed scenarios, we evaluated it with two tests: Test 1 (T1)
quantified the model’s ability to predict pathogenic potential of
untested observations from previously tested bacteria, while Test 2
(T2) quantified the model’s ability to predict pathogenic potential
of previously untested bacteria.

Results

Bacterial Adherence to Host Cells. Bacterial colonization is an
essential first step in the virulence programs for most human
pathogens, and the ability to adhere to host cells avoids the
mechanical clearance mechanisms of the body (11). Adherence to
host cells is therefore one example of a potential pathogenic phe-
notype. Classic examples of well-characterized adherence pheno-
types include the interactions between A549 pneumocytes and
Pseudomonas aeruginosa or Staphylococcus aureus, both lung patho-
gens of patients with cystic fibrosis (12–16). To obtain multi-
modal model data from bacterial adherence assays that can be
used in ML algorithms, an automated image-based bacterial
adherence assay was used. We incubated A549 cells with fluores-
cently tagged Gram-negative bacterial strains P. aeruginosa
(PAO1) (as a positive control) and its attachment-deficient mutant
PAO1ΔpilA, as well as Escherichia coli DH5α (negative controls).
As expected, image analysis revealed that bacterial adherence to
host cells by control strains differed significantly from the dose-
dependent adherence of the wild-type organism (Fig. 2 A and B).
Similar results were observed when corresponding Gram-positive
bacterial strains of S. aureus, together with its mutant ΔsaeR and
Bacillus subtilis, were used in these assays (SI Appendix, Fig. S1 A
and B). Importantly, findings garnered from experiments per-
formed using fluorescence microscopy–based approaches were vali-
dated using colony-forming unit (CFU) assays that enumerated
bacterial adherence to host cells (SI Appendix, Fig. S1C). After
establishing the control parameter benchmarks, a diverse set of
pathogenic and nonpathogenic bacterial strains from National
Institute of Standards and Technology (NIST) collections were
also tested and used to train ML models (Fig. 1A and SI
Appendix, Fig. S2).
Based on the results from adherence assays performed with

control strains and the NIST collection, we trained four ML
models [i.e., Gradient Boosted Trees (GBT) (17), Logistic
Regression (LR) (18), Random Forests (RFs) (19), and Gauss-
ian Naïve Bayes (GNB) (20)] to assess threat based on pheno-
typic measurements from the imaging studies (Fig. 1D). For
this training exercise, every training point for the assay included
five features: 1 to 3) the average/minimum/maximum number
of adherent bacteria per host cell, 4) the total number of host
cells present in the image, and 5) the size of the host nucleus as
a proxy to measure the size of the host cell. The models were
then trained to make a prediction of pathogenic potential per
image. The results indicated that RF was the best performing
T1 model, with an average balanced accuracy of 65% ± 4%
(Fig. 2C). RF was also the best performing T2 model with an
average balanced accuracy of 56% ± 6% (Fig. 2D). Additional
host cell lines were also investigated to explore if the predictions
were biased toward respiratory pathogen by A549 cells. Our
hypothesis was that using the diverse set of pathogens in the

training model would remove any bias. Human umbilical vein
endothelial cells (HUVECs) and a human hepatocyte carci-
noma cell line (HepG2) were tested in the same bacterial
adherence assays, and similar results were observed, confirming
our hypothesis. For T1, the balanced accuracy was 64% for
HUVECs and 63% for HepG2 (SI Appendix, Fig. S3 A and
C). For T2, the balanced accuracy was 57% for HUVECs and
56% for HepG2 (SI Appendix, Fig. S3 B and D). This demon-
strates that although different pathogens target different host
cell types, there is no one-size-fits-all cell line that best captures
adherence phenotype. Consequently, the models predictions
did not change when a diverse group of bacteria was used.
However, using only one assay is problematic because although
Salmonella enterica is a pathogen, it was not resolved as such
using adherence alone (21). We were not surprised by the poor
performance of ML models based on adherence phenotypes
alone given the limited nature of the datasets employed. We
expected, however, that combining several assays would yield
improved accuracy.

Bacterial Toxicity to Host Cells. Cytotoxicity through invasion
or production of toxins is another hallmark of bacterial patho-
genesis as exemplified by Enterohemorrhagic Escherichia coli
(EHEC)-producing Shiga-like toxin bacteria, which have been
extensively characterized (22, 23). We developed a multimodal
toxicity assay using time as a measured dimension. THP-1 cells,
a human monocytic cell line that can be differentiated in vitro
to macrophages, were used as toxicity with Shiga toxins, and
other modes of cytotoxicity exemplified by Salmonella spp. are
well documented (24, 25). Diverse bacteria from our test panel
(SI Appendix, Table S1) at different time points were tested to
assess the effects of damage to the cell membrane and/or cell
death by pathogens. Cell death was measured using automated
imaging to monitor the uptake of propidium iodide (PI) by
cells over time (26, 27) (Fig. 3 A and B and SI Appendix, Fig.
S1D). To validate the automated imaging findings, cell viability
was measured by flow cytometry (SI Appendix, Fig. S1E). Bac-
teria that express Shiga-like toxin, a classic A-B toxin that indu-
ces programmed cell death of host cells (23, 28, 29), were used
as positive controls in these experiments (Fig. 3 A and B). Anal-
ysis of the data using ML models revealed that the best per-
forming T1 and T2 models were GBT and RF, with balanced
accuracies of 77% ± 1% (Fig. 3C) and 68% ± 10% (Fig. 3D),
respectively. These results suggested that host cell toxicity
induced by bacteria provided a promising additional assay for
potential pathogenic prediction by ML models.

Bacterial AR. Although this phenotype is not a classical patho-
genic trait, it is correlated with virulence and therefore was
included in our assays (30, 31). The ability to query this assay
using the diverse set of strains in both the pathogen and nonpath-
ogen categories and our ML pipelines should have been able to
resolve its predictive capacity. To test whether the feature of AR
could be used in the ML models, we first performed standard
Kirby-Bauer Disk Diffusion assays to estimate AR (32). Six differ-
ent antibiotics, kanamycin, ampicillin, chloramphenicol, tetracy-
cline, polymyxin B, and ceftazidime, were selected to cover diverse
mechanisms of action. Consistent with previous reports (33, 34),
we found that the strains known to express AR determinants (e.g.,
beta-lactamases), displayed AR in these assays (Table 1 and SI
Appendix, Table S2). Encouraged by these findings, we used the
assay to measure resistance levels of strains in the test panel and
then applied the results to train the four ML models. We found
that the GBT model, which sequentially learns the best decision
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tree that separates pathogens from nonpathogens, outperformed
all other models, achieving T1 performance of 82% ± 3% bal-
anced accuracy (Fig. 4A). The best performing T2 model was the
RF model, with an average balanced accuracy of 64% ± 6% (Fig.
4B). To evaluate whether using more clinically relevant antibiotics
would affect the model’s predictive power, we tested a separate set
of six clinically relevant antibiotics including azithromycin, cipro-
floxacin, doxycycline, imipenem, meropenem, and rifampin. We
found that the best T1 performance was 85% ± 1% (SI
Appendix, Fig. S4A) and the best T2 performance was 65% ±
16% (SI Appendix, Fig. S4B), The results from two antibiotic sets
demonstrated that AR provided an important bullet in differenti-
ating pathogens and nonpathogens and that the performance of
more clinically relevant antibiotics did not significantly differ from
that of others (Fig. 4 A and B and SI Appendix, Fig. S4 A and B).

Bacteria-Induced Innate Immune Activation. Molecular path-
ways that detect pathogens based on pathogen-associated
molecular patterns are commonly found in immune cells such
as macrophages. These innate immune cells recognize bacteria
based on conserved cellular structures found on both pathogen
and nonpathogen. We decided to incorporate a cell type for
this assay using the commercially available nuclear factor κB
(NF-κB)/Jurkat/green fluorescent protein (GFP) transcriptional
reporter cell line (Systems Biosciences). Our original hypothesis
was that these cells would not be useful for determining patho-
genic potential because the NF-κB pathway would be univer-
sally activated by bacteria. However, we were curious to see if

determining fluorescent intensity of the reporter in individual
cells and using time as a factor to create multimodal data might
allow our ML pipeline to make accurate predictions. We found
that the reporter cells showed differential GFP expression when
incubated with pathogenic and nonpathogenic bacteria, such as
S. enterica and E. coli DH5α (Fig. 4C). Similar results were also
obtained using fluorescence microscopy imaging (SI Appendix,
Fig. S1F). To assess the utility of monitoring innate immune
signaling for potential pathogenic threat assessment, bacterial
strains from NIST collections were tested (SI Appendix, Fig.
S5) and evaluated using ML models. We found that RF and
LR were the best performing T1 and T2 models, with maximal
average balanced accuracy of 64% ± 0.4% and 63% ± 7%
(Fig. 4 D and E), respectively. Collectively, these data suggested
that host cell immune activation provided an appropriate fea-
ture for evaluating a potential threat predicted by ML.

To interrogate the hypothesis that integrating individual ML
phenotype models into an ensembled ML model would
enhance threat assessment, we therefore developed an ensemble
ML model, PathEngine, that combined predictions from
weakly supervised models (35) to generate predictions at both
an assay level, where we computed the pathogenic potential of
a microbe per assay, and across assays, from which a prediction
of pathogenic potential of each microbe could be determined.
After aggregating the observations across each strain, we
obtained an improved accuracy. For T1, the AR, host cell tox-
icity, adherence assays, and host immune activation achieved
accuracies of 95%, 91%, 77%, and 70%, respectively (Fig. 5A

A

C D

B

Fig. 2. Bacterial adherence performance in evaluating bacterial threat assessment using the ML model. (A) Representative images of adherence assays for
P. aeruginosa and E. coli as positive and negative controls. The adherent bacteria and their corresponding target host cells were counted and marked with
outlines. Host cells (blue) were stained by DAPI, and bacteria (green) were GFP-tagged. (Scale bar: 50 μm.) (B) Average adherent bacterial counts per A549
cell under various MOIs. Data represent the means ± SDs from three independent experiments. At each MOI, n ≥ 15. Significant difference in adherent bac-
teria at MOIs of 50 and 100 was observed (****: P value < 0.0001). (C and D) Performance of the four ML models in Test 1 (C) or Test 2 (D) for adherence
assay. All models were characterized to determine the percentage of data required to plateau in performance. Each machine learning algorithm was run 20
times, with the error bars showing the 95% confidence interval from the accuracy scores in each run. The accuracy referred to the percentage of strains
assigned correctly by the models.
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and SI Appendix, Figs. S3E and S4C). The final prediction by
integrating all four assays in T1 achieved an accuracy of 99%
(Table 2). For T2, AR, host cell toxicity, adherence assays, and
immune activation achieved accuracies of 77%, 76%, 60%,
and 66%, respectively (Fig. 5B and SI Appendix, Figs. S3F and
S4C). The final prediction by integrating all four assays in T2
achieved an accuracy of 85% (Table 2). We also tested different
combinations of the four assays and obtained accuracies of
91% ∼98% for T1 and 76% ∼85% for T2 (Table 2). Compar-
ative analysis showed much higher efficacy of threat assessment
using integrated assays in PathEngine compared to that of indi-
vidual assays (Fig. 5 C and D).

Discussion

The results from this study show that the development of a
multiplexed bacterial phenotyping system using standard labo-
ratory equipment enables assessment of potential bacterial path-
ogenic threat levels using ML algorithms termed PathEngine.
Notably, PathEngine identified the pathogenic potential of
Corynebacterium aurimucosum (NIST0013), a microbe that
classically had been considered a contaminant of clinical micro-
biological samples but now is appreciated as a possible source
of clinically significant bacteremia (36). This demonstrates the
power of using PathEngine to assess pathogenic potential and

validates our original hypothesis that ML using phenotypic
data could assess threat.

PathEngine advances the capability of phenotype-based path-
ogenicity assessment in multiple aspects. First, the ensemble
ML framework quantified the importance of each assay shown
in Fig. 5 C and D and Table 2. In this work, bacterial toxicity
and AR were the two most powerful assays with the most bal-
anced accuracy in predictions of potential bacterial pathogenic-
ity. The ability of PathEngine to resolve these nuances in assays
suggests that any set of assays could be used, moreover that
PathEngine would predict the one that delivers the highest
accuracy. Therefore, developing or testing other assays will
eventually yield the best sources of data. Second, the weight
assignment of each assay is a difficult parameter to tune in ML
models. PathEngine automatically weighted weak assays less
and strong assays more through the probable outputs from ML
models (as shown in Eqs. 1 and 2). Third, the ML models can
be trained beforehand and then deployed to predict new patho-
gens. The process can be completely automated, whereas tradi-
tional phenotypic assessment is analyzed manually.

Despite these advantages, we note that PathEngine does not
provide detailed insights on the virulent mechanism of pathogenic
infections, as the current main aim is the detection of pathogenic
potential of uncharacterized bacteria. Nonetheless, it is possible to
enhance this framework by increasing assay diversity. For example,

A

C

B

D

Fig. 3. Bacteria-induced host cell toxicity performance in threat assessment by ML models. (A) Representative images of toxicity assay for THP1 cells
induced by bacteria or Shiga toxin at 18 h post infection/incubation (h.p.i.). Total cells (blue) were counted by Hoechst staining and dead cells (red) by PI
staining. Cells were automatically counted and marked with outlines. (Scale bar: 50 μm.) (B) Time course of THP1 cell death coincubated with B. subtilis or
Shiga toxin producing E. coli (EcpJES 101) at an MOI of 1 for 18 h.p.i. Data represent the mean ± SD from three independent experiments, each experimental
data point n ≥ 9. Significant difference in adherent bacteria at MOIs of 50 and 100 was observed (** P value < 0.001, **** P value < 0.0001). (C and D) Per-
formance of the four indicated ML models in Test 1 (C) or Test 2 (D) for toxicity assay. All models were characterized to determine the percentage of data
required to plateau in performance. Each machine learning algorithm was run 20 times, with the error bars showing the 95% confidence interval from the
accuracy scores in each run. The accuracy referred to the percentage of strains assigned correctly by the models.
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additional reporters from different immune signaling pathways
would provide insights into the mechanism of host immune
response activation to diverse pathogens. Furthermore, PathEn-
gine’s ensemble model can readily handle the additional informa-
tion collected by the assays.
Previous studies of sequencing-based ML methods to predict

bacterial pathogenicity have been reported; for example, PaPr-
BaG reported an accuracy of 88%, which is similar to the accu-
racy reported here, and DeePac reported an accuracy of 98%
(2, 3). However, PaPrBaG and DeePac, both sequence-based
methods for pathogenicity prediction, require data from a cor-
pus of 2,836 and 2,878 bacterial strains (2, 3). In addition,
both of these sequence-based methods simulate sequence reads
to train their ML models. In contrast, PathEngine, which
accounts for biological context, achieved comparable patho-
genic predictions using data on only four assays from 40
strains, an order of magnitude fewer strains than sequence-
based approaches (SI Appendix, Table S3). We therefore expect
that the described technology will significantly improve as the
size of the training corpus increases. Moreover, the proposed
strategy could be very helpful for the early prediction of future
epidemics caused by unknown or novel pathogens, especially
when combined with NGS-based pathogenicity prediction
algorithms. The method established in this study can be
applied for other types of biology discovery in which small phe-
notypic data are available and sequencing data are not required.

Materials and Methods

Bacterial Culture Conditions. All the bacterial strains used in this work are
listed in SI Appendix, Table S4. Each bacterial strain was grown per appropriate

conditions as stated. All of the strains were selected based on the aims to pro-
vide a diverse set of BSL-2 bacterial pathogens with respect to Gram stain, source
of the strains, route of infection, host tissue tropism, and virulence factors. Viru-
lence factors of particular interest included toxins, adhesins, and antimicrobial
resistance. To enhance the ML predictive power, primary pathogens and opportu-
nistic pathogens, as well as nonpathogens, are included.

Cell Cultures. A549 cell line (American Type Culture Collection, CCL 185) was
maintained in F-12K medium supplemented with 10% fetal bovine serum (FBS)
and incubated in 37 °C, 5% CO2. The cells were fed every 3 to 4 d and passaged
at 85 to 95% confluency using 0.25% Trypsin-0.53 mM ethylenediaminetetra-
acetic acid. The cells were then seeded in the vessels using a subcultivation ratio
of 1:3 to 1:8. THP1 cells were grown and maintained in RPMI-1640 with gluta-
mine, supplemented with 10% FBS, 1x Hepes, pH 7.0, and 1 mM sodium pyru-
vate and incubated in 37 °C, 5% CO2. The THP1 cells were split every 2 to 3 d
when concentration was proximate to 1 × 106/mL NF-κB/Jurkat/GFP reporter
cell line (System Biosciences, Cat No. TR850A-1) and were grown and main-
tained in RPMI-1640 medium, 10% FBS, and 2 mM L-glutamine and incubated
at 37 °C in 5% CO2. The cells were split every 2 to 3 d to maintain the density
0.5 to 1 × 106/mL.

Bacterial Adherence Assay. A549 cells (1 × 104 cell/well) were seeded onto
96-well plates (Corning, 3882) a day prior to the adherence assays. To determine
the kinetics of bacterial association, bacteria were cultured to optical density
(OD)600 of 0.4, then harvested by centrifugation and washed three times using
1x phosphate-buffered saline (PBS; pH 7.4). All bacteria were either GFP tagged
or stained by BactoView Red (Biotium 40101). Each bacterial CFU was calculated
in advance for estimating the concentration. A549 cells were overlaid with bacte-
rial suspensions with a multiplicity of infection (MOI) of 0, 1, 10, 50, and 100.
Each condition had been performed in triple wells in three biological experimen-
tal replicates. The bacteria were spun down at 1,000 rpm for 10 min and incu-
bated at 37 °C, 5% CO2 for 1 h. Cells were washed five times using warmed 1x
PBS, then fixed for 15 min with 4% formaldehyde at room temperature. The

Table 1. Kirby-Bauer Disk Diffusion susceptibility testing of a collection of pathogenic and nonpathogenic bacterial
strains

Zone diameter (mm) Kanamycin Ampicillin Tetracycline Chloramphenicol Polymyxin B Ceftazidime

PAO1ΔpilA 28.3 ± 0.5 6.0 ± 0 6.0 ± 0 6.0 ± 0 18.0 ± 0 27.7 ± 0.5
S R R R S S

Bm16MΔvjbR 56.7 ± 1.7 31.0 ± 0.8 53.0 ± 0.8 39.7 ± 0.8 14.0 ± 0.8 22.3 ± 0.9
S S S S S S

Pseudomonas fluorescens 34.7 ± 0.5 6.0 ± 0 23.0 ± 0 15.0 ± 0 6.0 ± 0 26.0 ± 0.8
S R S I R S

EHEC-T 34.0 ± 0.5 22.3 ± 0.5 25.0 ± 0 27.0 ± 0 18.3 ± 0.5 31.3 ± 0.9
S S S S S S

EHEC-NT 34.0 ± 0.5 23.0 ± 0 27.0 ± 0 29.3 ± 0 18.0 ± 0.8 31.7 ± 0.5
S S S S S S

SaJE2 31.7 ± 0.5 24.7 ± 0.5 28.3 ± 0.5 23.7 ± 0.5 12.0 ± 0 15.0 ± 0
S R S S S S

SaJE2ΔsaeR 32.7 ± 0.5 26.0 ± 0.8 28.3 ± 0.5 21.3 ± 0.5 11.0 ± 0 14.3 ± 0.5
S R S S I S

PA-14 30.3 ± 0.5 6.0 ± 0 10.7 ± 0.5 8.7 ± 0.9 18.7 ± 0.5 32.3 ± 0.5
S R R R S S

B. subtilis 42.3 ± 0.5 31.0 ± 0.8 20.3 ± 0.5 26.7 ± 0.9 15.7 ± 0.5 20.3 ± 1.2
S S S S S S

S. enterica 34.0 ± 0.5 26.0 ± 0 25.7 ± 0.5 28.7 ± 0.5 17.7 ± 0.5 29.0 ± 0.8
S S S S S S

EcpJES101 41.7 ± 0 8.0 ± 0 29.0 ± 0 30.0 ± 0.8 19.0 ± 0 35.0 ± 0
S R S S S S

EcDH5α 42.7 ± 0.8 29.0 ± 0.8 6.0 ± 0 6.0 ± 0 20.3 ± 0 39.7 ± 0.5
S S R R S S

PAO1 27.0 ± 0 6.0 ± 0 10.7 ± 0.5 6.0 ± 0 18.0 ± 0 30.7 ± 0.5
S R R R S S

Notes: S, susceptible; R, resistant; I, intermediate refer to the Zone Diameter Interpretive Chart; BD BBL, Sensi-Disk Antimicrobial Susceptibility Test Disk. Data represent the mean ± SD
from three independent experiments, each experimental data point n ≥ 3.
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host cells were stained with 50 ng/mL DAPI in the last step. The images were
captured and analyzed using BioTek Cytation 5.

Host Cell Toxicity Assay. Bacteria were grown overnight and harvested by
centrifugation. The bacterial pellet was resuspended in RPMI media without phe-
nol red (Agilent Technologies, Cat. No. 103336–100). THP1 cells (5 × 105 cells/
well) were seeded onto 96-well plates. Cells were first stained by PI (0.5 μg/mL)
(Thermo Fisher Scientific, Cat. No. P3566) and Hoechst (10 μg/mL) (Invitrogen,
Cat. No. H3569). Shiga toxin (25 ng/mL) and each bacterium (MOI of 1) were
then coincubated with host cells at 37 °C. Images were automatically captured

every hour in a total 18-h period. Flow cytometry (BD LSR Fortessa X-20 with
405-, 488-, 561-, and 649-nm lasers) was used to measure the dead cells at PE
(phycoerythrin)-Texas Red channel (561-nm laser with bandwidth 610/20 filter).
Three technical replicates of each condition in each experiment were performed.
The counts of dead cells and total cells were analyzed using BioTek Cytation 5.

Immune Activation Assay. All bacterial cultures were centrifuged at 10,000
rpm for 2 min, and the bacterial pellet was resuspended in 1 mL RPMI media.
Bacterial concentration was estimated by measuring OD600. One million Jurkat
reporter cells were incubated with bacteria at an MOI of 1 or 10 for 0.5, 1, 2, 3,

A

C

D E

B

Fig. 4. ARs detection and immune activation in the ML models for bacterial threat assessment. (A and B) Performance of the four ML models in Test 1 (A)
or Test 2 (B) for bacterial AR assays. (C) Representative flow cytometry plots of GFP reporter activation induced by S. enterica and E. coli and the quantifica-
tion of activated NF-κB/Jurkat/GFP T lymphocyte reporter cells at various hours post infection (h.p.i) at an MOI of 1. GFP signal was measured using BD For-
tessa X-20 (FITC: 488-nm laser with bandwidth filter 525/50) at various h.p.i. (D and E) Performance of the four indicated ML models in Test 1 (B) or Test 2 (C)
for immune activation assay. All models were characterized to determine the percentage of data required to plateau in performance. Each machine learning
algorithm was run 20 times, with the error bars showing the 95% confidence interval from the accuracy scores in each run. The accuracy referred to the per-
centage of strains assigned correctly by the models.
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4, and 5 h. Cells were then stained using LIVE/DEAD Fixable Dead Cell Stain Kit
(Invitrogen, Cat. No. L34960) for flow cytometry detection. The cells were eventu-
ally fixed using 4% formaldehyde and washed by PBS supplemented with 1%
bovine serum albumin (BSA) to preserve samples for flow cytometry measure-
ment. NF-κB/GFP reporter–activated cells were detected using fluorescein iso-
thiocyanate (FITC) (488-nm laser with bandwidth filter 525/50), while live/dead
cells were detected using PE-Texas Red channels (561-nm laser with bandwidth
610/20 filter).

AR Assay. Six antibiotics were tested, including kanamycin 10 μg (BD, No.
316424), ampicillin 10 μg (BD, No. 231264), tetracycline 30 μg (BD, No.
231344), chloramphenicol 30 μg (BD, No. 231274), polymyxin B 300 units (BD,
No. 231324), and ceftazidime 30 μg (BD, No. 231633) using Kirby-Bauer Disk
Diffusion susceptibility testing methods accepted by CLSI (Clinical and Laboratory
Standards Institute) in the Texas A&M Veterinary Medical Laboratory. All bacteria
were initially grown on Brain Heart Infusion (BHI) agar plates (Hardy Diagnostics,
A20). Single colonies were inoculated to BHI broth and grown to achieve turbid-
ity of 0.5 McFarland standard. Organisms that did not require blood for growth

were tested using plain Mueller-Hinton agar, and fastidious organisms that
required blood were tested using Mueller-Hinton agar with 5% blood. Sterile
cotton swabs were used to inoculate bacteria onto agar plates. Appropriate agar
plates were used for different organisms. The entire plate surface was covered by
the bacterial inocula. Plates were air-dried for 15 min at room temperature, and
then antibiotic discs were stamped onto the agar surface. All plates were incu-
bated at 37 °C overnight, and the diameters of the zones of inhibition were mea-
sured after overnight incubation using calipers and interpreted as susceptible,
intermediate, or resistant to each antimicrobial drug according to CLSI recom-
mendations (34, 37). All experiments had three independent biologi-
cal replicates.

Generation of ML Models and Performance of the ML. Four ML models,
including the GBT, LR, RF, and GNB, were selected to generate ML. An LR is a
generalized linear model whose parameters learn a hyperplane that separates
the classes (pathogen/nonpathogen) based on the sum of the inputs and param-
eters. The GNB learns latent variables, while RFs and GBT learn decision trees
that best inform the separation between pathogen and nonpathogens and are

A

C

D

B

Fig. 5. The ensemble ML model of PathEngine improves the accuracy of threat assessment. (A and B) Aggregated performance for all four phenotypic
assays, bacterial adherence, host immune activation, AR, and bacterial toxicity in PathEngine prediction for Test 1 (A) and in Test 2 (B). Each machine learning
algorithm was run 20 times, with the error bars showing the 95% confidence interval from the accuracy scores in each run. (C and D) The observations from
each strain and each phenotypic assay were aggregated to make one prediction per strain in the PathEngine ensemble model. The accuracy was estimated
by comparing the actual threat status and the predicted threat status for each strain. Bacterial pathogenic potential was quantified by individual assays and
the ensemble assay in Test 1 (C) and Test 2 (D). Pathogenic scores obtained from ML predictions for each assay between 0 (blue) and 1 (red). 0 represents a
strong nonpathogen, and 1 represents a strong pathogen. The ensemble probabilities show when the pathogenic scores from all four assays are ensembled
together. Ensemble predictions convert the ensemble probabilities to 0 or 1 with a cutoff at 0.5 for comparing to the pathogenicity label in the last column.
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thus more complex than the LR model. We noted that the metric of evaluation
used in these studies was balanced accuracy, which ensured that predictions of
the majority class were penalized. The framework was evaluated with two types
of tests:

1. Test 1: The ability of the ML models to predict pathogenic potential from
microbes in its corpus.

2. Test 2: The ability of the ML models to predict pathogenic potential for
microbes not in its corpus.

In T1, independent runs of each assay for an organism were held out to form
the test corpus with no overlap of the data points in the train and test sets, while
in T2, all assays from a set of organisms were held out to form the test corpus
with no overlap of strains in the train and test sets. Both of these tests were nec-
essary, as each test measures an aspect of deployment of this framework in a
real-world setting. Both tests swept the size of a training corpus by using 20 to
80% of the observations (Test 1) or strains (Test 2) for training and the rest for
testing (Fig. 1C) to provide insights into how many individual observations or
bacterial strains needed to be evaluated in phenotypic tests before each model’s
performance statistically plateaued. The predictions per observation were then
statistically aggregated to make a prediction per microbe per phenotypic assay,
and finally, a prediction per microbe across all phenotypic assays.

The predictions per assay were evaluated for their ability to predict pathogenic
potential of each observation. An example of an observation for the host cell
immune activation assay was each measured cellular event that passed gating.
We called these predictions observation-level predictions. These observation-level
predictions needed to be aggregated to provide a score for the pathogenic poten-
tial for each microbe. This framework could be thought of as combining well-
known ML frameworks: 1) self-supervised learning and 2) weakly supervised
learning. In self-supervised learning, a pretext task was used to train a model on
a related but independent objective, and that model was then used to make pre-
dictions for the true objective. In this case, the true objective was the prediction of
pathogenic potential of each microbe, while the related independent objective
was a prediction for each observation. In weakly supervised learning, the data’s
features and associated labels were inexact; namely, each observation was given
a coarse-grained label. As an example, for the toxicity assay, a pathogen may not
have exhibited pathogenic properties in the earlier hours of a time course of anal-
ysis, yet our framework still labeled those time points as associated with a patho-
genic phenotype. Concepts from these two learning frameworks were combined
to generate predictions at both an assay level, where we would compute the path-
ogenic potential of a microbe per assay, or across assays, from which a prediction
of pathogenic potential of each microbe could be reached. In both cases, we used
a weighted average of the predictions of each event (the pretext task), where the
weights were the confidence in the prediction of the ML model per observation.

Mathematically, this was described per assay Eq. 1 and across assays Eq. 2:

pm,a ¼ 1
N
∑N

i¼0wm,a,i � Pm,a,i [1]

pm ¼ 1
N
∑A

a¼0wm,a � Pm,a [2]

where pm (pm,a) is the pathogenic potential of microbe m (in assay a); wm,a
(wm,a,i) is the model’s confidence in its prediction of microbe m in assay a
(ith observation); and Pm,a (Pm,a,i) is a 1 if the model’s prediction of microbe m in
assay a (ith observation) is a pathogen and 0 if not; N is the total number of
observations; and A is the total number of assays. This formula provided an
extensible framework to both allow each assay to make its own unique set of
observations, as well as to account for additional assays as they became avail-
able. A threshold could be set on the threat assessment based on the calculated
pathogenic potential . In this work, we selected the best performing model from
each assay to use in these aggregations. Eq. 1 provided the additional opportu-
nity to determine the ability of any particular assay to predict pathogenic
potential.

All ML models were developed with Python 3.7 using the Pandas and Scikit-
learn libraries, with all plots visualized using seaborn. The phenotype assays
were parsed and integrated using proprietary software called the Active Discov-
ery Engine. The software platform uses a set of user-defined rules to automati-
cally extract metadata from the data sources to integrate with the experimental
data to generate a wrangled data frame for ML. Finally, models were compared
using an open source Python-based test harness that evaluates the performance
of ML models (38).

Statistical Analysis. The mean and SD were calculated from triplicates of each
data point of all four assays, adherence, toxicity, immune activation, and AR.
Two-way analyses of variance (ANOVAs) were performed to test for significant var-
iation between data points across treatments for three independent experiments.
Tukey’s multiple comparisons test was used for pairwise comparisons of the sig-
nificance of each data point between treatments. Two-way ANOVAs and Tukey’s
multiple comparisons test were performed using Prism 8 version 8.4.2.

Data Availability. Raw data, ML algorithms, and analysis of biological assays
data have been deposited in GitHub (https://github.com/netrias/PathEngine/
tree/master/data_files and https://github.com/netrias/PathEngine).
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Table 2. Aggregated accuracy, precision, recall, and F1
scores for each strain by aggregating across assays for
Test 1 and Test 2

Accuracy Precision Recall F1

Test 1
All four assays 99.0 99.0 99.0 99.0
Adherence + Toxicity + AR 98.0 98.0 98.0 98.0
Adherence + AR 97.0 96.0 100.0 98.0
Adherence + Toxicity 91.0 91.0 96.0 94.0
Toxicity + AR 98.0 98.0 100.0 99.0
Test 2
All four assays 85.0 91.0 87.0 89.0
Adherence + Toxicity + AR 85.0 88.0 91.0 89.0
Adherence + AR 80.0 84.0 89.0 86.0
Adherence + Toxicity 76.0 79.0 90.0 84.0
Toxicity + AR 83.0 90.0 86.0 88.0

Notes: The four assays include bacterial adherence, bacterial toxicity, AR, and host cell
immune activation. accuracy, the ratio of correct predictions to all predictions; precision,
the ratio of correctly predicted pathogens to the total predicted pathogens; recall, the
ratio of correctly predicted pathogens to the total pathogens present; F1, the weighted
average of precision and recall.
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