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Abstract: In previous studies, we reported quantitative trait loci (QTL) associated with the heading,
flowering, and maturity time in four hard red spring wheat recombinant inbred line (RIL) popu-
lations but the results are scattered in population-specific genetic maps, which is challenging to
exploit efficiently in breeding. Here, we mapped and characterized QTL associated with these three
earliness traits using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0
physical map. Our data consisted of (i) 6526 single nucleotide polymorphisms (SNPs) and two traits
evaluated at five conventionally managed environments in the ‘Cutler’ × ‘AC Barrie’ population;
(ii) 3158 SNPs and two traits evaluated across three organic and seven conventional managements
in the ‘Attila’ × ‘CDC Go’ population; (iii) 5731 SilicoDArT and SNP markers and the three traits
evaluated at four conventional and organic management systems in the ‘Peace’ × ‘Carberry’ pop-
ulation; and (iv) 1058 SNPs and two traits evaluated across two conventionally and organically
managed environments in the ‘Peace’ × ‘CDC Stanley’ population. Using composite interval map-
ping, the phenotypic data across all environments, and the IWGSC RefSeq v2.0 physical maps, we
identified a total of 44 QTL associated with days to heading (11), flowering (10), and maturity (23).
Fifteen of the 44 QTL were common to both conventional and organic management systems, and
the remaining QTL were specific to either the conventional (21) or organic (8) management systems.
Some QTL harbor known genes, including the Vrn-A1, Vrn-B1, Rht-A1, and Rht-B1 that regulate
photoperiodism, flowering time, and plant height in wheat, which lays a solid basis for cloning and
further characterization.

Keywords: DArTseq; nitrogen use efficiency; mapping; organic agriculture; physical map; SNP
array; wheat
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1. Introduction

The application of nitrogen (N), phosphorus (P), and potassium (K) nutrients through
the application of chemical fertilizers have become a standard conventional practice for in-
creasing yield and yield components. However, excess use of chemical fertilizers under the
conventional management system (high-N) not only increases the costs of crop production
but also reduces nitrogen use efficiency (NUE) and causes environmental damage, which is
shifting the wheat (Triticum aestivum L.) breeding programs towards low input agricultural
practices [1]. Organic production (low-N) is a low input agricultural practice that relies
on crop rotation, mixed cropping, biological pest control, and fertilizers of organic origin,
such as compost, manure, and green manure [2]. Although organic production has been an
effective approach to achieve agricultural sustainability in the long term and its demand
has increased in the last decade for different reasons [3–5], most current cultivars have
shown poor performance and 5–31% lower grain yield as compared to the conventional
management system [6]. Hence, there is a need to identify and/or develop genotypes
with higher input use efficiency that produce high yield under optimal-N without yield
penalty under low-N, and also discover genes and QTL associated with high-N and low-N
management systems.

The wheat breeding group at the University of Alberta has been conducting exten-
sive research in the Canada Western Red Spring (CWRS) wheat class, including (i) de-
veloping several improved cultivars [7–10], (ii) evaluating the phenotypic performance
of diverse cultivars under conventional and/or organic managements [11–16], (iii) un-
derstanding the genetics of earliness that serves as baseline data for developing early
maturing cultivars to avoid frost damage [17–20], and (iv) mapping genes and QTL as-
sociated with diverse traits using biparental populations [19,21–27] and a genomewide
association mapping panel [28,29]. The development of early-maturing CWRS cultivars
is of paramount importance in the northern breeding programs to provide farmers not
only an option of growing the crop with minimal loss due to frost but also help to escape
from the late incidence of diseases, heat, and drought as compared with their late-maturing
counterparts. One of our aims was understanding the genetics of earliness under organic
and conventional management systems, which is the basis for developing early maturing
cultivars. In one of our studies, we evaluated the ‘Cutler’ × ‘AC Barrie’ recombinant
inbred line (RIL) population across five conventionally managed field conditions and
two greenhouse experiments and genotyped with 488 simple sequence repeat (SSR) and
diversity arrays (DArT) markers. Using the phenotype data across all environments and a
genetic linkage map, we uncovered two QTL on chromosome 1B and 5B associated with
both flowering and maturity [19]. In a follow-up study, we reanalyzed the phenotype data
of the ‘Cutler’ × ‘AC Barrie’ RIL population with a linkage map of 1809 SNPs selected
out of the wheat 90K iSelect array and two functional markers (Ppd-D1 and Rht-D1). That
study uncovered 19 QTL associated with four traits, including six QTL for flowering and
five QTL for maturity [23].

In another study, we evaluated the ‘Attila’ × ‘CDC Go’ RIL population at three
conventionally and organically managed environments and genotyped the population
with Diversity Arrays Technology (DArT) and the Rht-B1 gene-specific functional markers.
Using the phenotypic data across three environments and a linkage map of 580 markers, we
uncovered three and five QTL associated with five agronomic traits under conventional and
organic management systems, respectively [27]. For flowering and maturity, we only found
environment (trial) specific QTL. To investigate if an increase in marker density improves
QTL detection, we reanalyzed the same phenotype data of the eight traits averaged over
the three organically managed environments and linkage maps of 1200 informative SNPs
selected out of the wheat 90K iSelect array and three functional markers (Ppd-D1, Vrn-A1,
and Rht-B1). Our analyses identified 16 QTL distributed across ten chromosomes [24]
of which three were associated with flowering (1) and maturity (2). In conventional
management, we evaluated the ‘Attila’ × ‘CDC GO’ RIL population for seven years and
conducted QTL analysis using a linkage map of the 1203 markers. That study uncovered
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14 QTL associated with eight traits, of which the three QTL for flowering and maturity
remained the same as those identified in the organic management system [25].

Recently, we evaluated a RIL population derived from ‘Peace’ × ‘Carberry’ under
two conventional and organic managements (2016–2017) and genotyped with DArT-based
genotyping by sequencing (DArTseq) technology. Using the phenotype data of two en-
vironments per management, we found 53 QTL associated with nine agronomic traits,
of which nine QTL were for heading (3) and maturity (6). Fourteen of the 53 QTL were
common in both conventional and organic management systems [21]. We also mapped
QTL associated with ten agronomic and end-use quality traits in ‘Peace’ × ‘CDC Stanley’
RIL population evaluated for two years (2016–2017) under conventional and organic man-
agement systems. Using phenotypic data across two environments per management and
the IWGSC RefSeq v2.0 physical map position of 1058 informative SNPs selected out of
the wheat 90K iSelect array, we uncovered a total of 27 QTL associated with nine traits,
including QTL for heading (2) and maturity (4) [30]. Although we reported several QTL
associated with the heading, flowering, and maturity time in the four mapping populations
and two management systems, direct comparisons of the QTL results across independent
studies was challenging due to the use of population-specific genetic maps, which form
the basis of the present study.

Meta-QTL analysis [31] has been widely used for combining data from independent
QTL mapping studies, identify the occurrence of QTL hotspots in a consensus genetic link-
age map, and narrowing the QTL genetic confidence intervals [32–37]. QTL meta-analysis
has been performed in wheat for several traits, including heading and maturity [36,38,39].
Some of the challenges in the use of both population-specific and consensus genetic maps
for QTL detection in polyploid species, such as wheat, include (1) difficulty in establishing
linkage groups and determining correct markers orders, (2) an increase in the number
of linkage groups as compared with the number of chromosomes, which could be 2–
3-fold [38], (3) collinearity among multiple markers due to relatively small population
sizes that result to very small inter-marker interval (<1 cM) between multiple adjacent
markers, and (4) the lack of consistent relationship between genetic and physical maps,
which makes direct comparisons of QTL discovery results across multiple populations
unreliable [39]. Although some studies have published physical maps of QTL associated
with diverse traits [39–44], the method has not yet been widely used due to a lack of
reliable physical maps. Recently, the International Wheat Genome Sequencing Consortium
(IWGSC) has released the latest version of the bread wheat reference genome sequence
(RefSeq v2.0) and physical map (http://wheat-urgi.versailles.inra.fr/; accessed on 22 April
2021). A simple online tool that helps breeders to map the chromosomal location and
position of the wheat 90K iSelect array and genotyping by sequencing markers onto the
flow-sorted Chinese Spring (CS) survey sequences have also been made available to the
public (https://download.txgen.tamu.edu/shichen/mapper_v2.html; accessed on 22 April
2021). The objectives of the present study were, therefore, to (1) map and characterize QTL
associated with heading, flowering and maturity time in four RIL populations using the
IWGSC RefSeq v2.0 physical maps, and (2) assess the consistency of QTL identified in the
conventional and organic management systems.

2. Results
2.1. Phenotype and Genotype Data

Our study was based on a total of 698 RILs from four biparental populations, which
were evaluated under conventional and organic management systems and genotyped
either with the wheat 90K iSelect SNP array or the DArTseq technology (Table 1). In both
conventional and organic management systems, the seven parents used in developing
the four RIL mapping populations on average differed by 4–5 days in heading, 7–8 days
in flowering, and 8–9 days in maturity. In three of our mapping populations, (i) ‘CDC
Go’ headed/flowered and matured 3–4 days earlier than ‘Attila’ both under conventional
and organic management systems: (ii) ‘Cutler’ headed/flowered and matured three days

http://wheat-urgi.versailles.inra.fr/
https://download.txgen.tamu.edu/shichen/mapper_v2.html
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earlier than ‘AC Barrie’ under conventional management; and (iii) ‘Peace’ headed/flowed
a day and matured three days earlier than ‘CDC Stanley’ under both management systems.
On the other hand, ‘Carberry’ headed/flowered 3–4 days earlier but matured 2–3 days
later than ‘Peace’ in both management systems.

The detailed phenotypic performance for the ‘Attila’ × ‘CDC Go’ (hereinafter abbre-
viated as ACG) [24,25], the ‘Cutler’ × ‘AC Barrie’ (hereinafter abbreviated as CAB) [23],
and ‘Peace’ × ‘CDC Stanley’ (hereinafter abbreviated as PCS) [30] RIL populations have
been described in our previous studies. Figure 1 shows the frequency distribution of the
three traits, and Table 2 provides a summary of the descriptive statistics and broad-sense
heritability under conventional and/or organic management systems. Among the four
RIL populations, the means of days to heading, flowering, and maturity ranged from 49 to
52 days, from 52 to 57 days, and from 88 to 98 days, respectively. Broad-sense heritability
under conventional and organic management systems varied from 0.40 to 0.77 (Table 2).
There was a highly significant (p < 0. 01) positive correlation between the organic and
conventional management systems with regression coefficients varying from 0.71 to 0.86
(Figure 2).
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Figure 1. Frequency distribution of the least-squares means of days to heading, flowering, and maturity in four Canada
Western Red Spring (CWRS) recombinant inbred line (RIL) mapping populations evaluated under conventional (Con) and
organic (Org) management systems. The y-axes are days to heading (d), flowering (d), and maturity (d). Population code
is as follows: ‘Cutler’ × ‘AC Barrie’ (CAB), ‘Attila’ × ‘CDC Go’ (ACG), ‘Peace’ × ‘Carberry ‘(PAC), and ‘Peace‘ × ‘CDC
Stanley’ (PCS).
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Table 1. Summary of the four recombinant inbred line (RIL) populations used in the present study.

Population Code Initial Cross Population Size Phenotyping Genotyping * References

CAB ‘Cutler’ × ‘AC Barrie’ 158
Evaluated five times in 2007–2008 and

2010–2012 under the conventional
management system.

Genotyped with the wheat 90K Illumina
iSelect SNP array and two functional

markers (Ppd-D1 and Rht-D1).
[23]

ACG ‘Attila’ × ‘CDC Go’ 167
Evaluated three times (2008–2010) under

organic and seven times (2008–2014) under
conventional management system.

Genotyped with the wheat 90K Illumina
iSelect SNP array and three functional
markers (Ppd-D1, Vrn-A1 and Rht-B1).

[24,25]

PAC ‘Peace’ × ‘Carberry’ 208
Evaluated four times from 2016 to 2020

under organic and conventional
management systems.

Genotyped with 36,226 markers (22,741
SilicoDArT and 13,885 SNPs) using

DArTseq-based genotyping by
sequencing method and three functional
markers (Vrn-B3, Rht-B1, and Glu-A3).

[21,26]

PCS ‘Peace’ × ‘CDC Stanley’ 165 Evaluated twice (2016–2017) under organic
and conventional management systems.

Genotyped with the wheat 90K Illumina
iSelect SNP array and three SSR markers

(DuPw004, barc170, and wmc650).
[30]

* The wheat 90K Illumina iSelect SNP array consisted of a total of 81,587 SNPs. See Table S1 for details of the SNPs used for QTL mapping.

Table 2. Descriptive statistics and broad-sense heritability for heading, flowering, and maturity time in each of the four recombinant inbred line populations under conventional and
organic management systems.

Trait Management 1
‘Cutler’ × ‘AC Barrie’ ‘Attila’ × ‘CDC Go’ ‘Peace’ × ‘Carberry’ ‘Peace’ × ‘CDC Stanley’

Mean Range H 2 Mean Range H 2 Mean Range H 2 Mean Range H 2

Heading (days) Con 51.4 46.7–57.4 0.72 51.7 47.3–56.8 0.64
Org 51.2 46.3–58.6 0.77 48.9 46.0–54.0 0.70

Flowering (days) Con 52.0 48.3–55.7 0.43 53.3 48.4–60.1 0.73 57.3 52.4–64 0.75
Org 53.8 48.5–61.1 0.72 57.0 52.1–63.4 0.71

Maturity (days) Con 96.7 91.6–103.7 0.50 97.9 92.8–105.1 0.45 95.2 90.4–102.9 0.53 92.2 87.5–98.5 0.62
Org 91.3 84.9–101 0.44 93.1 88.6–99.6 0.40 88.2 85.3–94.8 0.53

1 Con: Conventional; Org: Organic management. 2 Broad-sense heritability.
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Figure 2. Scatter plots of the least squares means phenotype data under conventional (Con) and organic (Org) management
systems. The ‘Cutler’ × ‘AC Barrie” population was evaluated only under a conventional management system and
not included here. For each of the other three populations, the fitted lines and regression coefficients (R2) between the
conventional and organic management systems are shown. Population codes—CAB: ‘Cutler’ × ‘AC Barrie’; ACG: ‘Attila’
× ‘CDC Go’; PAC: ‘Peace’ × ‘Carberry’; and PCS: ‘Peace’ × ‘CDC Stanley’.

Of the wheat 90K iSelect array used for genotyping the RIL populations in the ACG,
CAB, and PCS populations, we constructed three independent genetic maps that consisted
of 3158, 6526, and 1058 markers, respectively. The genetic map of the PAC population con-
sisted of 5731 DArTseq markers, which included 3840 SilicoDArT and 1891 SNPs (Table 3
and Table S1). The genetic map lengths in the ACG, CAB, PAC, and PCS populations
were 1734, 3596, 25508, and 4922 cM, respectively. The corresponding IWGSC RefSeq v2.0
physical map length in the ACG, CAB, PAC, and PCS populations were 11859, 13788, 13740,
and 13881 Mb, respectively. Overall, a total of 15183 markers were used in the genetic and
physical maps of the four populations, of which 1204 and 43 markers were common in two
and three of the four populations, respectively (Table S1). Pearson correlation coefficients
between the genetic and physical maps varied from 0.39 in the PAC to 0.60 in the CAB
population (Figure S1), suggesting a low to moderate agreement between genetic and
physical maps that ultimately affects QTL detection.
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Table 3. Summary of the number of markers, genetic and physical maps in each of the four mapping populations. The physical map is based on the International Wheat Genome
Sequencing Consortium (IWGSC) RefSeq v2.0.

Chrom

‘Cutler’ × ‘AC Barrie’ ‘Attila’ × ‘CDC Go’ ‘Peace’ × ‘Carberry’ ‘Peace’ × ‘CDC Stanley’

No. of
Markers

Genetic
Map

Length
(cM)

Physical
Map

Length
(bp)

No. of
Markers

Genetic
Map

Length
(cM)

Physical
Map

Length
(bp)

No. of
Markers

Genetic
Map

Length
(cM)

Physical
Map

Length
(bp)

No. of
Markers

Genetic
Map

Length
(cM)

Physical
Map Length

(bp)

1A 302 129 596,457,062 273 78 595,208,262 371 535 595,860,808 59 147 593,443,946
1B 237 244 698,233,083 54 25 698,181,188 457 1485 692,480,911 111 538 683,188,703
1D 134 34 353,726,668 32 6 410,643,066 77 158 451,725,315 33 164 479,789,480
2A 353 321 787,699,648 255 115 786,363,784 269 1591 759,862,164 81 230 770,603,608
2B 869 567 795,242,489 391 163 665,646,566 347 181 450,448,794 119 371 812,709,904
2D 93 35 598,126,556 30 40 555,087,626 129 4234 654,057,050 29 143 645,341,017
3A 378 249 752,968,879 173 121 737,952,205 380 265 753,051,285 16 234 745,304,963
3B 444 268 851,724,030 80 224 851,724,030 241 5223 848,161,565 12 122 847,814,062
3D 25 28 579,990,391 - - - 119 176 617,655,900 9 31 606,042,121
4A 424 180 725,639,518 194 62 681,910,513 222 1845 751,532,475 45 158 722,926,434
4B 320 85 669,758,748 44 42 655,593,292 210 125 672,766,284 38 195 644,427,716
4D 35 31 482,822,161 - - - 45 63 513,418,898 15 88 456,267,708
5A 415 132 710,849,404 124 106 667,797,441 223 414 705,303,717 64 454 684,682,180
5B 957 626 714,558,337 269 292 697,707,787 579 523 713,404,985 147 172 714,258,884
5D 16 4 557,692,932 38 3 569,677,699 160 4049 568,959,847 15 407 568,666,242
6A 374 94 601,826,399 169 59 498,653,429 275 395 622,068,866 58 140 619,171,526
6B 187 66 730,597,670 525 151 719,416,487 423 1002 731,066,251 42 60 729,835,185
6D 32 16 494,665,522 38 7 7,562,690 130 177 492,458,353 15 317 494,670,623
7A 559 166 744,464,513 252 130 744,464,355 602 1999 743,593,777 86 351 733,173,741
7B 338 290 763,315,508 200 92 739,367,419 334 496 759,405,691 57 531 722,136,838
7D 34 33 577,952,590 17 18 575,785,725 138 573 642,704,389 7 69 606,914,235

Total 6526 3596 13,788,312,108 3158 1734 11,858,743,564 5731 25,508 13,739,987,325 1058 4922 13,881,369,116
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2.2. Physical Map of QTL

Using the least-squares means phenotype data and the IWGSC RefSeq v2.0 physical
maps, we uncovered 36 QTL under the conventional management and 23 QTL under
the organic management system (Table S2). When the results from the two management
systems were combined, we found a total of 44 QTL in the ACG (3), PCS (8), CAB (10), and
PC (23). Fifteen of the 44 QTL were common to both conventional and organic management
systems, with the remaining QTL being specific to either the conventional (21) or organic
(8) management systems (Table 4 and Table S2). All QTL were population specific (i.e.,
none of the QTL was detected in more than one population). For heading, we found a total
of 11 QTL across seven chromosomes, which includes 8 QTL in the PAC and 3 QTL in the
PCS populations. The 11 QTL for heading were mapped at 325.9–336.3 Mb on chromosome
1D (QHd.dms-1D), 55.8–62.7 Mb on 2B (QHd.dms-2B), at 45.2–49.0 Mb on 3B (QHd.dms-
3B), at 17.7–17.8 Mb on 4A (QHd.dms-4A), both at 60.3–76.7 Mb (QHd.dms-5A.1) and at
620.5–621.3 Mb (QHd.dms-5A.2) on 5A, at 349.8–354.8 Mb (QHd.dms-5B.1), 396.8–400.7 Mb
(QHd.dms-5B.2), 574.5–577.0 Mb (QHd.dms-5B.3) and 639.0–653.9 Mb (QHd.dms-5B.4)
on 5B, and at 73.3–84 Mb on 7D (QHd.dms-7D). The QTL physical positions provided
here, and subsequent sections are confidence intervals based on the left and right flanking
markers instead of the exact position generated by the software. Each QTL individually
explained from 1.8 to 19.3% and together accounted for 7.7–16.9% and 52.3–59.4% of the
phenotypic variance for heading in the PCS and PAC populations, respectively (Table S2).
Five of the heading QTL (QHd.dms-2B, QHd.dms-5A.1, QHd.dms-5B.3, QHd.dms-5B.4,
and QHd.dms-7D) were common in both organic and conventional management systems
(Figure 3).

For flowering (anthesis), we found a total of ten QTL across seven chromosomes in
the ACG (1 QTL), CAB (3), and PAC (6) populations (Figure 3, Table 4). The ten flowering
QTL were mapped at 37.5–37.9 Mb (QFlt.dms-2A.1) and 700.6–700.9 Mb (QFlt.dms-2A.2)
on chromosome 2A, at 55.8–62.7 Mb on 2B (QFlt.dms-2B), at 432.4–432.8 Mb (QFlt.dms-3B),
at 582.8–583.0 Mb (QFlt.dms-5A.1) and 587.3–587.4 (QFlt.dms-5A.2) on 5A, at 333.3–349.8
Mb (QFlt.dms-5B.1) and 574.5–577.0 Mb (QFlt.dms-5B.2) on 5B, at 24.2–25.4 Mb on 7A
(QFlt.dms-7A), and at 73.3–84.0 Mb on 7D (QFlt.dms-7D). Four of the flowering QTL
(QFlt.dms-2B, QFlt.dms-5A.2, QFlt.dms-5B.2, and QFlt.dms-7D) were identified in both
organic and conventional management systems. Each QTL individually explained from
2.0% to 20.8% and together accounted for 19.2%–37.8% of the phenotypic variance per
population per management (Table S2).

The twenty-three QTL for maturity were located across ten chromosomes (Figure 3,
Table 4), which were identified in the ACG (2), PCS (5), CAB (7), and PAC (9) populations.
They were mapped at 35.6–39.8 Mb (QMat.dms-1A.1), 399.4–426.6 Mb (QMat.dms-1A.2)
and 443.1–462.8 Mb (QMat.dms-1A.3) on chromosome 1A; at 392.0–406.6 Mb (QMat.dms-
3A.1) and 513.9–553.1 Mb (QMat.dms-3A.2) on 3A; at 45.2–49.0 Mb (QMat.dms-3B.1) and
821.1–835.0 Mb (QMat.dms-3B.2) on 3B; at 16.1–17.7 Mb (QMat.dms-4A.1), 65.5–68.5 Mb
(QMat.dms-4A.2) and 580.4–582.7 Mb (QMat.dms-4A.3) on 4A; at 30.5–32.0 Mb (QMat.dms-
4B.1) and 569.2–599.6 Mb (QMat.dms-4B.2) on 4B; at 21.0–33.0 Mb on 4D (QMat.dms-
4D); at 569.9–570.1 Mb (QMat.dms-5A.1), 587.3–587.4 Mb (QMat.dms-5A.2), 619.7–620.2
Mb (QMat.dms-5A.3), and 689.1–692.6 Mb (QMat.dms-5A.4) on 5A; at 559.9–560.8 Mb
(QMat.dms-5B.1) and 574.5–577.0 Mb (QMat.dms-5B.2) on 5B; at 96.8–110.0 Mb (QMat.dms-
7A.1), 133.5–134.2 Mb (QMat.dms-7A.2), and 680.7–717.9 Mb (QMat.dms-7A.3) on 7A,
and at 73.3–84.0 Mb on 7D (QMat.dms-7D) (Table 4 and Table S2). Six of the maturity
QTL (QMat.dms-4B.1, QMat.dms-5A.2, Qmat.dms-5A.3, QMat.dms-5A.4, QMat.dms-7A.2,
and QMat.dms-7D) were detected in both organic and conventional management systems.
Each maturity QTL individually explained from 1.7% to 16.7% and together accounted for
4.0%–33.4% of the phenotypic variance per population per management (Table S2).
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Table 4. Summary of quantitative trait loci (QTL) associated with the heading, flowering, and maturity dates in four recombinant inbred lines (RIL) populations evaluated under
conventional and/or organic management systems. Both chromosomes and physical map positions are based on the International Wheat Genome Sequencing Consortium (IWGSC)
RefSeq v2.0.

Trait QTL Name Population 1 Management 2 Chromosome QTL Location 3 Confidence
Interval (Mb)

R2 (%):
Conventional R2 (%): Organic

Heading QHd.dms-1D PAC Org 1D 1D:325876831-336302522 10.4 2.8
Heading QHd.dms-2B PAC Con & Org 2B 2B:55797422-62651542 6.9 11.5 5.6
Heading QHd.dms-3B PCS Org 3B 3B:45204750-49026001 3.8 5.8
Heading QHd.dms-4A PCS Con 4A 4A:17686877-17787027 0.1 8.8
Heading QHd.dms-5A.1 PAC Con & Org 5A 5A:60279363-76684980 16.4 9.6 3.7
Heading QHd.dms-5A.2 PAC Org 5A 5A:620541477-621338663 0.8 5.9
Heading QHd.dms-5B.1 PAC Org 5B 5B:349752769-354808447 5.1 4.1
Heading QHd.dms-5B.2 PAC Con 5B 5B:396826652-400681156 3.9 5.6
Heading QHd.dms-5B.3 PAC Con & Org 5B 5B:574535307-577015908 2.5 16.2 19.3
Heading QHd.dms-5B.4 PCS Con & Org 5B 5B:639044446-653916583 14.9 8.1 1.8
Heading QHd.dms-7D PAC Con & Org 7D 7D:73333549-83998578 10.7 16.6 10.9

Flowering QFlt.dms-2A.1 PAC Con 2A 2A:37479415-37904660 0.4 2.0
Flowering QFlt.dms-2A.2 PAC Org 2A 2A:700598519-700903870 0.3 2.3
Flowering QFlt.dms-2B PAC Con & Org 2B 2B:55797422-62651542 6.9 5.7 2.9
Flowering QFlt.dms-3B CAB Con 3B 3B:432437212-432750764 0.3 7.9
Flowering QFlt.dms-5A.1 CAB Con 5A 5A:582841379-583000992 0.2 8.2
Flowering QFlt.dms-5A.2 ACG Con & Org 5A 5A:587346439-587412126 0.1 19.2 20.8
Flowering QFlt.dms-5B.1 PAC Con 5B 5B:333880729-349752769 15.9 9.0
Flowering QFlt.dms-5B.2 PAC Con & Org 5B 5B:574535307-577015908 2.5 8.4 13.6
Flowering QFlt.dms-7A CAB Con 7A 7A:24248719-25391676 1.1 8.6
Flowering QFlt.dms-7D PAC Con & Org 7D 7D:73333549-83998578 10.7 12.6 12.4
Maturity QMat.dms-1A.1 CAB Con 1A 1A:35556032-39776886 4.2 3.7
Maturity QMat.dms-1A.2 CAB Con 1A 1A:399444508-426644827 27.2 3.7
Maturity QMat.dms-1A.3 CAB Con 1A 1A:443059667-462755618 19.7 3.7
Maturity QMat.dms-3A.1 PAC Con 3A 3A:392012081-406623288 14.6 2.9
Maturity QMat.dms-3A.2 PAC Org 3A 3A:513855127-553098513 39.2 3.6
Maturity QMat.dms-3B.1 PCS Org 3B 3B:45204750-49026001 3.8 2.1
Maturity QMat.dms-3B.2 CAB Con 3B 3B:821149227-835005886 13.9 3.3
Maturity QMat.dms-4A.1 PCS Con 4A 4A:16086950-17686877 1.6 2.9
Maturity QMat.dms-4A.2 CAB Con 4A 4A:65464862-68459336 3.0 1.7
Maturity QMat.dms-4A.3 PAC Con 4A 4A:580400959-582726391 2.3 2.5
Maturity QMat.dms-4B.1 PAC Con & Org 4B 4B:30510315-31959109 1.4 5.5 4.0
Maturity QMat.dms-4B.2 ACG Con 4B 4B:569184188-599613837 30.4 11.0
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Table 4. Cont.

Trait QTL Name Population 1 Management 2 Chromosome QTL Location 3 Confidence
Interval (Mb)

R2 (%):
Conventional R2 (%): Organic

Maturity QMat.dms-4D CAB Con 4D 4D:21025268-32965037 11.9 3.9
Maturity QMat.dms-5A.1 CAB Con 5A 5A:569871147-570121744 0.3 2.0
Maturity QMat.dms-5A.2 ACG Con & Org 5A 5A:587346439-587412126 0.1 3.7 16.7
Maturity QMat.dms-5A.3 PAC Con & Org 5A 5A:619697105-620189324 0.5 2.5 1.8
Maturity QMat.dms-5A.4 PAC Con & Org 5A 5A:689113847-692552481 3.4 3.7 3.0
Maturity QMat.dms-5B.1 PAC Con 5B 5B:559880753-560779737 0.9 4.5
Maturity QMat.dms-5B.2 PAC Org 5B 5B:574535307-577015908 2.5 3.7
Maturity QMat.dms-7A.1 PCS Con 7A 7A:96812406-110000000 13.2 7.1
Maturity QMat.dms-7A.2 PCS Con & Org 7A 7A:133489405-134226943 0.7 7.1 2.0
Maturity QMat.dms-7A.3 PCS Con 7A 7A:680676790-717910027 37.2 5.3
Maturity QMat.dms-7D PAC Con & Org 7D 7D:73333549-83998578 10.7 11.4 14.0

1 CAB: ‘Cutler’ × ‘AC Barrie’; ACG: ‘Attila’ × ‘CDC Go’; PAC: ‘Peace’ × ‘Carberry’; PCS: ‘Peace’ × ‘CDC Stanley’. 2 Con: Conventional; Org: Organic management. 3 QTL location starts with chromosome and
the QTL confidence interval in base pairs.
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Figure 3. Physical map of quantitative trait loci (QTL) associated with days to heading, flowering, and maturity in four RIL populations
evaluated under conventional and organic management systems: ‘Cutler’ × ‘AC Barrie’ (green), ‘Attila’ × ‘CDC Go’ (pink); ‘Peace’ ×
‘Carberry’ (black), and ‘Peace’ × ‘CDC Stanley’ (red). The IWGSC RefSeq v2.0 physical map position (Mb) is shown on the left side of
the chromosomes, with each horizontal line representing a marker. QTL are shown on the right side of each chromosome, with bars
indicating their interval between the two flanking markers. QTL associated with conventional and organic managements are in italic
and underlined, respectively. Details of the physical map and QTL information are given in Tables S1 and S2, respectively.

2.3. Coincident QTL

Overall, we found eight genomic regions on chromosomes 2B, 3B, 4A, 5A, 5B, and 7D
harboring QTL clusters for 2–3 traits within each population (Figure 3, Table 4, and Table
S2). One of the coincident QTL spans 6.9 Mb between 55.8 and 62.7 Mb on chromosome
2B, which is associated with heading (QHd.dms-2B) and flowering (QFlt.dms-2B) in the
PAC population in both conventional and organic management systems. The second
and third coincident QTL were associated with days to heading and maturity in the PCS
population both on chromosomes 3B (45.2–49.0 Mb) and 4A (16.1–17.8 Mb). The fourth
and fifth coincident QTL were associated with days to heading, flowering, and maturity in
the PAC population evaluated in both management systems; these QTL, and they were
mapped on chromosomes 5B (574.5–577.0 Mb), and 7D (73.3–84.0 Mb). The remaining
three coincidental QTL were located on chromosome 5A that were associated with days to
heading and maturity in the PAC population (619.7–621.3 Mb), flowering and maturity in
the ACG population (587.3–587.4 Mb), and on chromosome 5B for heading and flowering in
the PAC population (333.8–354.8 Mb). The long arms of chromosomes 5A and 5B consisted
of QTL clusters from three (PAC, ACG, and CAB) and two (PAC and PCS) populations,
respectively (Figure 3).

3. Discussion
3.1. QTL Based on Genetic and Physical Maps

In our previous study [23], QTL mapping conducted in the ‘Cutler’ and ‘AC Barrie’
population using genetic maps of 1811 markers and flowering and maturity data under
field conditions converted into growing degree days (GDD) identified six QTL for flow-
ering (2D, 3B, 4A, 5A, 6B and 7A) and five QTL for maturity (2D, 4A, 4D and 7A), which
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individually explained between 6.5 and 25.4% of the phenotypic variance under a con-
ventional management system. However, we found out that the chromosomal location
of flanking SNP markers of four of the QTL reported in our previous study differed from
the physical map. When analyses were done using days to flowering and maturity time
without conversion to GDD, we found four QTL for flowering on 2D, 3B, 6B, and 7A, and
four QTL for maturity on 2D, 4A, 4D, and 7A (Table S3). In the present study conducted
using the IWGSC RefSeq v2.0 physical map and days to flowering and maturity data,
we identified 3 QTL for flowering on chromosomes 3B, 5A, and 7A, and seven QTL for
maturity on 1A, 3B, 4A, 4D, and 5A (Figure 3, Table S2). Although chromosomes 7A for
days to flowering and 4A, 4D, and 5A for days to maturity were common in both our
previous and the present studies, their positions are different. The left and right flanking
markers identified in our previous study were physically far apart, including some on
different arms of the same chromosome. QTL mapping conducted in the ‘Attila’ × ‘CDC
Go’ RIL population using genetic maps of 1203 markers identified a coincident genomic
region associated with both flowering and maturity under both management systems on
chromosome 5A and another region on 4B associated with maturity under both manage-
ment systems [24,25]. Each of these two genomic regions accounted for 5.9%–17.2% of the
phenotypic variance per trait per management system (Table S3). QTL mapping conducted
using the IWGSC RefSeq v2.0 physical map in this study identified both genomic regions,
each individually explaining 3.7%–20.8% of the phenotypic variances for flowering and
maturity across all environments (Table S2).

Using the phenotype data of ‘Peace’ and ‘Carberry’ RIL populations evaluated for
two years under conventional and organic management systems and linkage map of
4439 markers generated via DArTseq technology, we previously [21] uncovered three QTL
on chromosomes 1A, 5B, and 7D for heading and six QTL on 3A, 4A, 4B, 4D, 5B and 7D for
maturity (Table S3). In the present study conducted using the IWGSC RefSeq v2.0 and four
years phenotype, we identified eight QTL for heading and nine QTL for maturity (Figure 3,
Table 4). Seven of the nine QTL (all except 1A for heading and 4D for maturity) reported
in our previous study were identified in the present study. Moreover, we uncovered
new QTL on chromosomes 1D and 2B for heading and chromosome 5A for both heading
and maturity. It should, however, be noted that the phenotype data used in the present
study had four environments (2016–2020) instead of the two years (2016–2017) used in
our previous study. In the ‘Peace’ and ‘CDC Stanley” RIL population, QTL analyses in the
previous [30] and present study were done using the IWGSC RefSeq v2.0 physical maps, so
all QTL identified in our previous study were also identified in the present study. Because
of additional data cleaning, however, two new QTL were uncovered in the present study
on 4A (17.6–17.7 Mb) for heading and on 7A (96.8–110.0 Mb) for maturity. Because of the
overlap in the IWGSC RefSeq v2.0 physical confidence interval among some of the QTL
and/or presence of eight coincident genomic regions associated with two to three traits,
the 44 QTL (Figure 3) identified in the present study fell into 31 genomic regions (Table S4).
Nearly a third of the QTL were located on homoeologous Group 5 chromosomes (15 QTL),
followed by Groups 3, 4, and 7 (seven QTL each), Group 2 (five QTL), and Group 1 (four
QTL). Hanocq et al. [36] summarized 177 QTL reported across 13 independent studies
on the D. Somers wheat consensus map [45]. After projecting 84 of the 177 initial QTL
on the consensus map, the authors reported 30 genomic regions involved in the control
of earliness (heading and flowering) and its three components (photoperiod sensitivity,
vernalization requirement, and intrinsic earliness). Their meta-analysis demonstrated that
the genetic control of earliness and its components involves not only the major Ppd and
Vrn genes on homoeologous Groups 2 and 5 chromosomes, respectively, but also other
genomic regions in Groups 4 and 7, which is evident in the current study.

Heading and flowering are important adaptative traits that determine the adapta-
tion of wheat to diverse eco-geographical regions and are critical for yield potential and
stability [46–48]. We uncovered genomic regions associated with heading on seven chro-
mosomes (1D, 2B, 3B, 4A, 5A, 5B, and 7D) and for flowering on seven chromosomes (2A,
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2B, 3B, 5A, 5B, 7A, and 7D) of which four genomic regions (55.8–62.7 Mb on 2B, 333.3–354.8
and 574.5–577.0 Mb on 5B, 73.3–84.0 Mb on 7D) were common for both traits (Table 4
and Table S2). Using three RIL mapping populations evaluated across four environments,
Zhao et al. [48] reported a total of 25 QTL associated with heading (15) and flowering (10)
across 17 chromosomes, which individually explained from 4.3 to 32.5% of the phenotypic
variance. The authors reported QTL for heading on fifteen chromosomes, including 1D, 2B,
3B, 4A, 5A, and 5B. They also reported flowering QTL on ten chromosomes, including 2B
and 5B.

Four of the thirty-one genomic regions identified in the present study were mapped on
chromosome 5A (Figure 3, Table S4), which were associated with heading (60.3–76.7 Mb),
maturity (689.1–692.6 Mb), both flowering and maturity (569.8–587.5 Mb), and both head-
ing and maturity (619.7–621.3 Mb). Each region consisted of 17–208 protein-coding
candidate genes, including the Vrn-A1 (TraesCS5A02G391700) gene at 587.4 Mb (5A:
587411454–587423416) and a flowering-promoting factor-1 gene (TraesCS5A02G530200) at
5A: 689155443–689156097 (https://plants.ensembl.org/index.html; accessed on 22 April
2021). Chromosome 5B consisted of four genomic regions associated with both heading
and flowering (333.8–354.8 Mb), heading (396.8–400.7 and 639.0–653.9 Mb), and all three
traits (559.8–577.0 Mb). The 639.0–653.9 Mb interval consisted of 165 candidate genes,
including TraesCS5B02G481200 at 653.8 Mb (5B:653794081–653798305 bp), which plays
an important role in regulating flowering, photoperiodism, and mRNA splicing. The
559.8–577.0 Mb interval associated with a heading, flowering, and maturity consists of a
total of 174 protein-coding candidate genes, including the Vrn-B1 (TraesCS5B02G396600) at
573.8 Mb (5B:573802883–573816070).

The genetic control of earliness in wheat is controlled primarily by the photoperiod
response (Ppd), vernalization requirement (Vrn), and ‘earliness per se’ (Eps) genes. Eps
genes act independently of the Vrn and Ppd genes [47,49]. Photoperiod insensitivity is
controlled primarily by the dominant alleles at Ppd-A1, Ppd-B1, and Ppd-D1 that are located
on chromosomes 2A, 2B, and 2D, respectively [50–53]. Spring wheat introgression lines
lacking Ppd-B1 flowered 10–15 days later than controls under long days as compared to
1–5 days for lines that did not have the Ppd-A1 allele; loss of Ppd-D1 alleles did not affect
flowering time [54]. On homologous Group 2 chromosomes, we found two regions on 2A
(32.4–37.9 and 700.6–700.9 Mb) for flowering and one region on 2B (55.8–62.7 Mb) for both
heading and flowering (Figure 3). The two genomic regions for flowering on chromosome
2A consisted of three candidate genes, while the single genomic region on chromosome
2B consisted of 60 candidate genes. Although we are not sure about the exact physical
positions of Ppd-A1 and Ppd-B1 due to conflicting positions of the SSR markers linked to
both genes, the genomic regions that we identified on both 2A and 2B may contain the two
photoperiod response genes.

The three genomic regions uncovered on 4A were associated with heading and matu-
rity (16.0–17.7 Mb) and maturity (both at 65.4–68.5 Mb and 580.0–582.7 Mb). Each genomic
region on chromosome 4A consisted of 31–35 protein-coding candidate genes, including
the Rht-A1 gene (TraesCS4A02G271000) at 582.5 Mb (4A:582477351–582479578). The two ge-
nomic regions that we identified on 4B (30.5–32.0 and 569.2–599.6 Mb) were associated with
maturity, which consisted of 11 and 225 protein-coding candidate genes, respectively, in-
cluding the Rht-B1 (TraesCS4B02G043100) at 4B:30861268–30863723, TraesCS4B02G308800
(4B:599399570–599399905) and TraesCS4B02G308700 (4B:599356666–599356977); both Traes
CS4B02G308800 and TraesCS4B02G308700 are flower promoting factors. Some of the dwarf-
ing genes, such as Rht-B1, Rht5, Rht8, and Rht12 have been reported in slightly delaying
heading, flowering, and/or maturity time in wheat [55–57]. The single genomic region on
4D (21.0–33.0 Mb) was associated with maturity, which harbors clusters of 123 candidate
genes of unknown function.

On chromosome 7A, we found one genomic region associated with flowering (24.2–
25.4 Mb) and three genomic regions associated with maturity (at 96.8–110.0, 133.4–134.2,
and 680.6–717.9 Mb). These regions harbor between 10 and 473 genes, including the

https://plants.ensembl.org/index.html
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TraesCS7A02G146100 (7A:97873101–97873865) that plays a role in the signaling pathway.
On chromosome 7D, we identified a single genomic region between 73.3 and 84.0 Mb
associated with a heading, flowering, and maturity. This region consisted of 138 candidate
genes, including TraesCS7D02G123900 (7D:77241990–77242100), which is Photosystem
II reaction center protein I. Both chromosomes 1A and 3A consisted of three (35.5–39.8,
399.4–426.6, and 443.0–462.8 Mb) and two (392.0–427.8 and 513.8–553.1 Mb) genomic
regions, respectively, which all were associated with maturity. Each genomic region on
chromosome 1A and 3A harbors clusters of protein-coding candidate genes ranging from
47 to 205 (Table S4), but their function has not yet been established. The interval from
325.8 to 336.3 Mb on chromosome 1D was associated with heading, which consists of
87 candidate genes of unknown function. On chromosome 3B, we found three genomic
regions associated with heading and maturity (45.2–49.0 Mb), flowering (432.4–432.8 Mb),
and maturity (821.1–835.0 Mb). The intervals 45.2–49.0 and 821.1–835.0 Mb contained 36
and 123 candidate genes, respectively, whereas the other interval associated with flowering
harbors no candidate gene.

3.2. Effects of Genetic Background and Management

All QTL identified in the present study were population (cross) specific. The closest
QTL detected in this study were QFlt.dms-5A.1 in the CAB population and both QFlt.dms-
5A.2 and QMat.dms-5A.2 in the ACG population (Figure 3), but there is a ~4.6 Mb interval
between them. Although identification of QTL conserved across multiple genetic back-
grounds is one of the prerequisites for marker-assisted selection, most QTL reported in
the literature are population (genetic background) specific [37,58–62], which restricts their
application for predicting phenotypic performance across diverse genetic backgrounds.
Brasier et al. [62] evaluated two biparental winter wheat mapping populations derived
from a cross between two high NUE parents and a shared common low NUE parent for
11 traits. Using genetic maps of 3147 and 3918 markers, the authors uncovered a total
of 130 QTL, of which 10 QTL were common between the two populations. Symonds
et al. [60] detected nine QTL associated with trichome density in four RIL populations
of Arabidopsis thaliana (two of their populations shared a common parent), of which only
two QTL were detected in all four populations; the other 7 QTL were population specific.
In rice, Yao et al. [58] evaluated three biparental populations with a common parent and
uncovered 28 QTL associated with African rice gall midge resistance, but there was only a
single QTL common in two of the three populations. In soybean, Kang et al. [61] used two
mapping populations with a common parent and uncovered eight QTL associated with
pod dehiscence, but only one QTL was common between the two populations. Semagn
et al. [37] used 18 bi-parental maize populations and identified a total of 183 QTL associ-
ated with grain yield (101) and anthesis silking interval (82) under drought and irrigated
conditions. However, only a few QTL were detected across 2–6 populations and/or the
two water regimes.

Identification of consistent QTL in both conventional (high-N) and organic (low-N)
management systems would be highly useful for improving spring wheat through marker-
assisted selection. However, our results demonstrated that ~34% of the 44 QTL uncovered
in the present study were common between the organic and conventional management
systems, with the remaining being specific to the conventional (48%) or organic (18%)
management systems (Figure 3, Table 4). QTL detected in both management systems
would be ideal for developing improved wheat germplasm using marker-assisted breeding
irrespective of management system, while those QTL detected in the conventional (high-N)
or organic (low-N) managements should be considered in their respective managements.
Several studies have reported similar results in diverse crops, including wheat [62–66],
rice [67,68], barley [69], sorghum [70], and potato [71]. Using a doubled haploid winter
wheat mapping population evaluated at two N fertilizer treatments under field conditions,
An et al. [64] detected a total of 17 QTL associated with different traits under low-N (9) and
high-N (8), but none were detected in both N treatments. Laperche et al. [66] evaluated
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grain protein, grain yield, and their components in a DH winter wheat population under
high-N and low-N, which detected a total of 67 QTL under high-N and 51 QTL under
low-N, of which 13 QTL were detected at both N levels. Yue et al. [68] evaluated a rice
RIL mapping population under normal-N and low-N levels and detected a total of 52 QTL
associated with four yield-related traits. Eleven of the 52 QTL were detected under the two
N levels and the remaining 30 QTL were detected either in the normal-N (17) or low-N (13).

Using a RIL sorghum mapping population evaluated under normal-N and low-N
fertilizer conditions, Gelli et al. [70] detected a total of 38 QTL associated with 11 agronomic
traits, of which four QTL were common between the two N management systems, and
the remaining were specific either to the low-N (16) or normal-N (14). RNA sequencing
analyses on sorghum seedling root tissues revealed 726 differentially expressed gene tran-
scripts related to nitrogen uptake and metabolism between parents, of which 108 were
mapped close to the QTL regions. Expression analysis of N metabolism-related genes
reveals differences in the performance of two barley cultivars that were adapted to low-
N and high-N levels [69]. The authors reported that some N metabolism-related genes
were only induced in shoots of low-N tolerant varieties [69,71]. Leaf and root transcrip-
tomic profiles analyses in potato cultivars have also revealed differentially expressed N
metabolism-related genes [71], which may be one possible reason for the mapping of
multiple management-specific QTL in our study.

4. Materials and Methods
4.1. Phenotyping and Genotyping

The present study was conducted on four RIL populations derived from crosses
involving ‘Cutler’ [72], ‘AC Barrie’ [73], ‘Peace’ [74], ‘Carberry’ [75], ‘Attila’ [76], ‘CDC
Stanley’ (https://www.inspection.gc.ca/english/plaveg/pbrpov/cropreport/whe/app0
0007708e.shtml; accessed on 22 April 2021), and ‘CDC Go’ (https://www.grainscanada.gc.
ca/en/grain-quality/variety-lists/2020/2020-19.html; accessed on 22 April 2021). ‘Attila’
was bred by the International Maize and Wheat Improvement Center [76] and the other
six parents were spring wheat cultivars bred in Canada. These parents have different
combinations of alleles at the Vrn1 and Ppd-D1 genes [77,78]. ‘AC Barrie’, ‘CDC Go’, and
‘Carberry’ have the photoperiod sensitive Ppd-D1b alleles, while ‘Cutler’ and ‘CDC Stanley’
has the photoperiod insensitive Ppd-D1a allele [77].

As summarized in Table 1, we evaluated a total of 698 RILs representing the CAB (158),
PCS (165 RILs), ACG (167), and PAC (208) populations. The 158 RILs derived from the CAB
population and the two parents were evaluated at five environments under conventionally
managed field conditions [19,23]. ‘AC Barrie’ [73] is a late-maturing cultivar compared to
‘Cutler’ [72] and carries the dominant Vrn-A1a, Vrn-B1 and Vrn-D1 vernalization alleles [77].
‘Cutler’ has the dominant Vrn-A1a and the recessive vrn-B1 and vrn-D1 vernalization
alleles. The 167 RILs from the ACG population and their parents were phenotyped at
three organically managed [24,27], and seven conventionally managed [25] field conditions.
‘Attila’ is an early maturing cultivar as compared to ‘CDC Go’. The 208 RILs from the
PAC populations and their parents were evaluated at four conventionally and organically
managed field conditions in 2016–2020 as described in our recent study [21]. ‘Peace’ [74]
is adapted to the shorter-season wheat-growing regions of the Canadian prairies and
carries the dominant Vrn-A1a allele and the recessive vrn-B1 and vrn-D1 alleles [78], while
‘Carberry’ [75] carries the Vrn-A1a, and Rht-B1b alleles [77]. The 165 RILs from the PCS
population and their parents were evaluated at two conventionally and organically man-
aged fields in 2016–2017 [30]. ‘CDC Stanley’ is a medium maturing cultivar (https://www.
inspection.gc.ca/english/plaveg/pbrpov/cropreport/whe/app00007708e.shtml; accessed
on 22 April 2021).

The conventional and organic evaluation sites are located at the University of Alberta
South Campus (53◦19′ N, 113◦35′ W), Edmonton, Canada, and were about 500 m apart.
Trials were laid out in randomized incomplete block design, with two replications. Trials in
the conventional management were planted earlier, broadcast-fertilized with 70 kg ha−1 of
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46–0–0 (N–P2O5–K2O) in early spring, and band-fertilized during seeding with 36 kg ha−1

of 11–52–0 (N–P2O5–K2O). Weeds were controlled in conventional trials using registered
herbicides following local recommendations and label directions. The trials under organic
management were planted later to facilitate early season land operations (tillage) and did
not receive any of the chemical inputs. The four-year crop rotation in the organic land was
wheat, rye (Secale L.) plow-down, field pea (Pisum sativum), and canola (Brassica napus L.),
whereas conventional land followed a three-year rotation of wheat, field pea, and canola.

The methodologies for DNA extraction and genotyping have been described in our
previous studies in the CAB [23], ACG [24], PAC [26], and PCS [30] populations. DNA
samples from the ACG, CAB, and PCS populations were genotyped at the University of
Saskatchewan Wheat Genomics lab, Saskatoon, Canada, with the wheat 90K iSelect array
that consisted of 81,587 SNPs [79], while the PAC population was genotyped with the
DArTseq™ technology by DArT Pty Ltd., Canberra, Australia [80,81]. In addition, we also
screened the two parents of each population if they were polymorphic for a few functional
markers linked to photoperiod response (Ppd-B1 and Ppd-D1) [82], vernalization response
(Vrn-A1 and Vrn-B1) [51], and height reducing Rht-B1 [83] genes at the Agricultural Ge-
nomics and Proteomics Lab, University of Alberta, Edmonton, Canada, as described in
our previous studies [21,23,53]. In cases where the two parents of each population showed
polymorphism for the functional markers, we genotyped the RILs with the markers and
used them for mapping.

4.2. Statistical Analysis

Least-squares means of each phenotypic trait and broad-sense heritability were
computed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) as described in
our recent study [21]. Pearson correlations, regression (R2) coefficients, and different
types of graphs were generated using both Minitab v14 (https://www.minitab.com; ac-
cessed on 22 April 2021) and JMP v7 (www.jmp.com; accessed on 22 April 2021) sta-
tistical software. For the PAC population, we received a total of 36,626 markers from
DArT Pty Ltd., Canberra, Australia (https://www.diversityarrays.com; accessed on 22
April 2021), which consisted of 22,741 SilicoDArT markers (present vs. absent variation)
and 13,885 SNPs along with 69 bp sequence based on the Chinese Spring (CS) refer-
ence sequence. Nearly 42% of the markers (11,704 SilicoDArT and 3557 SNPs) were
polymorphic between the two parents. Marker sequences obtained from DArT Pty
Ltd. were used for BLAST searches against the Chinese spring genome, the Interna-
tional Wheat Genome Sequence Consortium (IWGSC) RefSeq v1.0 [84] and RefSeq v2.0,
which are available at http://download.txgen.tamu.edu/shichen/mapper_v2.html and
http://wheat-urgi.versailles.inra.fr/; (accessed on 22 April 2021) The top hits with the
highest alignment length, highest similarity (>95%), and/or expected value of 1 × 10−20

were used for physical mapping as described elsewhere [42]. Nearly 58% of the poly-
morphic markers (8,780 of the 15,261 markers) with physical information were selected
for linkage analysis using MapDisto for Windows v2.1.7.10 [85]. After excluding all
markers that showed segregation distortion at p < 0.01, a missing data of >20%, and
those that were either unlinked or formed a linkage group with <5 markers, we retained
7066 markers for final map construction. Linkage groups were assigned to individual
wheat chromosomes following the IWGSC RefSeq v2.0. Markers that were either assigned
to a chromosome different from expected based on IWGSC RefSeq v2.0, had incorrect
locus order, and/or that significantly affected the map length were further removed from
the datasets. Final genetic linkage maps were constructed using the IWGSC RefSeq v2.0
marker order in MapDisto. Linkage analyses and genetic mapping in the other three
populations (ACG, CAB, and PCS) genotyped with the wheat 90K iSelect array were
done as described above. The only difference with the PAC population was the source
of the sequence information for the wheat 90K iSelect array, which was retrieved from
http://download.txgen.tamu.edu/shichen/flanking_v2.html (accessed on 22 April 2021).
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Inclusive composite interval mapping (ICIM) was done on the least-squares means
using QTL IciMapping version 4.2.53 [86] as described in our previous studies using the
IWGSC RefSeq 2.0 physical maps with the following parameters: a minimum logarithm
of the odds (LOD) scores of 3.0, a mean replacement for missing phenotypic data, an
additive model to determine the effect of individual QTL, and a walking step of 100 kb.
QTL scanning was performed independently on each population using population-specific
physical maps, while QTL results were presented on to the integrated physical map of
all four populations. QTL names were assigned by following the International Rules of
Genetic Nomenclature (http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm; accessed
on 22 April 2021), which comprised of trait acronym, lab designation (dms = Dean Michael
Spaner), and chromosome number. A physical QTL map of each chromosome was gener-
ated using MapChart v2.1 [87]. The start positions of the left and right flanking markers of
each QTL (confidence interval) were used to search for candidate genes at the Ensemble
Plants using Triticum aestivum genome (https://plants.ensembl.org/index.html; accessed
on 22 April 2021). To minimize the length of the manuscript. However, the results from the
Candidate genes search were used only in the discussion section.

5. Conclusions

Using the IWGSC RefSeq 2.0 physical map and phenotype data of four RIL mapping
populations evaluated under conventional and organic management systems, we mapped
and characterized a total of 44 QTL associated with a heading (11), flowering (10), and
maturity (23) dates in hard red spring wheat. Fifteen of the 44 QTL were common in the two
management systems, which would be ideal for developing improved wheat germplasm
using marker-assisted breeding irrespective of management conditions. Those QTL de-
tected under conventional (high-N) and organic (low-N) management would be useful for
MAS in each management specific conditions. Each QTL individually explained from 1.7 to
20.8% and together accounted for 14.7%–59.4% and 4.0%–52.3% of the phenotypic variance
under conventional and organic management systems, respectively. Because of the overlap
in the physical confidence interval of some of the QTL and/or presence of eight coincident
QTL associated with 2–3 traits, however, there are only 31 genomic regions associated with
the three earliness traits. Some of the genomic regions harbor known genes, including the
vernalization response Vrn-A1 on chromosome 5A and Vrn-B1 on 5B, as well as the height
reducing Rht-A1 on 4A and Rht-B1 on 4B; these genes regulate photoperiodism, flowering
time, and plant height in wheat. As far as we are aware, this is the first comprehensive
physical map of genomic regions associated with the heading, flowering, and maturity
in hard red spring wheat populations that would provide valuable information to wheat
researchers and opens the opportunity for direct comparisons of QTL discovery studies
across independent studies and possibly map-based cloning of a few regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10050853/s1, Figure S1. Scatter plot of IWGSC RefSeq v2.0 physical map against
genetic map in each of the four mapping populations used in the present study. Table S1. Genetic
and physical maps of 16,504 markers used in the four recombinant inbred line populations. Table S2.
Summary of Quantitative trait loci (QTL) associated with days to heading, flowering, and maturity
identified using least-squares means phenotype across all environments per management and the
IWGSC RefSeq v2.0 physical maps in four recombinant inbred lines populations evaluated under
conventional and organic management systems. Table S3. Summary of quantitative trait loci (QTL)
associated with the heading, flowering, and maturity dates identified in our previous studies using
least squares means phenotype across all environments per management and linkage maps of the
four recombinant inbred lines populations evaluated under conventional and organic management
systems. Table S4. Summary of the 31 genomic regions associated with the heading, flowering, and
maturity, and the number of candidate genes that fell within each region.
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ACG ‘Attila’ × ‘CDC Go’
Bp base pair
cM CentiMorgan
CAB ‘Cutler’ × ‘AC Barrie’
CS Chinese Spring
CWRS Canada Western Red Spring
DArT Diversity arrays Technology
DArTseq Diversity Array-based genotyping by sequencing
ICIM Inclusive composite interval mapping
IWGSC International Wheat Genome Sequencing Consortium
LOD The logarithm of the odds
Mb Mega base pair
NUE Nitrogen Use Efficiency
PAC ‘Peace’ × ‘Carberry’
PCS ‘Peace’ × ‘CDC Stanley’
QTL Quantitative trait loci
RefSeq Reference sequence
RIL Recombinant inbred line
SNP Single nucleotide polymorphism
SSR Simple sequence repeat
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