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Abstract: The current trend in antimicrobial-agent development focuses on the use of natural com-
pounds that limit the toxicity of conventional drugs and provide a potential solution to the an-
timicrobial resistance crisis. Curcumin represents a natural bioactive compound with well-known
antimicrobial, anticancer, and antioxidant properties. However, its hydrophobicity considerably
limits the possibility of body administration. Therefore, dextran-coated iron oxide nanoparticles
can be used as efficient drug-delivery supports that could overcome this limitation. The iron oxide
nanoparticles were synthesized through the microwave-assisted hydrothermal method by varying the
treatment parameters (pressure and reaction time). The nanoparticles were subsequently coated with
dextran and used for the loading of curcumin (in various concentrations). The drug-delivery systems
were characterized through X-ray diffraction (XRD) coupled with Rietveld refinement, transmis-
sion electron microscopy (TEM), high-resolution TEM (HR-TEM), selected area electron diffraction
(SAED), dynamic light scattering (DLS) and zeta potential, thermogravimetry and differential scan-
ning calorimetry (TG-DSC), vibrating sample magnetometry (VSM), and UV-Vis spectrophotometry,
as well as regarding their antimicrobial efficiency and biocompatibility using the appropriate assays.
The results demonstrate a promising antimicrobial efficiency, as well as an increased possibility of con-
trolling the properties of the resulted nanosystems. Thus, the present study represents an important
step forward toward the development of highly efficient antimicrobial drug-delivery systems.

Keywords: iron oxide nanoparticles; microwave-assisted hydrothermal method; dextran; curcumin;
antimicrobial therapy

1. Introduction

Microbial pathogen infections represent a continuously growing problem with severe
worldwide implications, as they affect millions of lives daily and represent a major death
cause in both adults and children [1,2]. Although antibiotics significantly reduced mortality
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rates associated with infections, their overuse has resulted in the emergence of the antimi-
crobial resistance crisis [3–5]. Current strategies focus on the use of alternative antimicrobial
agents and substances to counteract the negative effects of antimicrobial resistance.

There has been an increasing amount of scientific interest in the application of natural
bioactive substances that exhibit antimicrobial properties. Medicinal plant extracts can
inhibit the growth of bacteria, viruses, fungi, and protozoa, with a significant clinical
value in the fight against antibiotic-resistant species [6–9]. Curcumin, also known as
diferuloylmethane, is the flavonoid compound of turmeric with confirmed antimicrobial,
anticarcinogenic, antioxidant, and anti-inflammatory properties [10–16]. Pharmacologically,
curcumin is a lipophilic diketone that is poorly absorbed [17,18]. Therefore, its direct
administration inside the organism is challenging and consequently requires suitable
pharmaceutic formulations.

In this context, iron oxide nanoparticles represent a promising option for the devel-
opment of drug-delivery systems for the controlled release of natural substances. Besides
providing suitable nanostructured support for the efficient loading of curcumin, iron oxide
nanoparticles have often demonstrated intrinsic antimicrobial properties [19–22]. In this
manner, by combining iron oxide nanoparticles and curcumin, a synergistic antimicrobial
therapy could be achieved [23]. While iron oxide nanoparticles are usually synthesized
through the coprecipitation method, the properties of the so-obtained nanoparticles are
poor in terms of crystallinity and stability. Moreover, the coprecipitation method does
not allow the control of nanoparticle size and size distribution [24]. Thus, the microwave-
assisted hydrothermal method has emerged as a promising technique that could potentially
overcome the associated issues [25].

In order to increase the biocompatibility and stability of the iron oxide nanocarriers,
as well as the curcumin loading capacity, an organic coating can be applied. Dextran is
a natural biodegradable exopolysaccharide consisting of glucose subunits that is biosyn-
thesized by the nonpathogenic Leuconostoc mesenteroides bacterium [26,27]. Dextran is
generally known for its anti-inflammatory and antithrombotic properties, and the func-
tional hydroxyl groups within its structure provide a facile means for conjugations with
other substances [28].

In this study, novel iron oxide nanocarriers were developed by varying the synthesis
parameters (i.e., pressure, reaction time) of the microwave-assisted hydrothermal method,
followed by their coating with a dextran layer, in order to stabilize and increase the
efficiency of curcumin loading, added in different concentrations.

2. Materials and Methods
2.1. Materials

Ferrous sulfate heptahydrate (FeSO4·7H2O), ferric chloride hexahydrate (FeCl3·6H2O),
ammonium hydroxide 25% (NH4OH), ethanol, and curcumin were purchased from Sigma-
Aldrich Merck (Darmstadt, Germany). Dextran (M~500,000 g/mol) and phosphate buffer
saline (PBS) were purchased from Carl Roth (Karlsruhe, Baden-Württemberg, Germany).
All chemicals were of analytical purity and used with no further purification.

The antimicrobial assays were performed using three microbial strains (Escherichia coli
ATCC 25922, Staphylococcus aureus ATCC 25923, and Candida albicans ATCC 10231) obtained
from the collection of the microbiology laboratory within the Faculty of Biology, University
of Bucharest.

HT-29 human epithelial cells (colon adenocarcinoma, well-differentiated) (ATCC,
Merck, Romania) were selected as the model for cytotoxicity assessments.

2.2. Methods
2.2.1. Synthesis of Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin

The synthesis of the drug-delivery systems involved three distinct steps. Initially,
the iron oxide nanoparticles were obtained through the microwave-assisted hydrothermal
method, similar to one of our previous studies [29]. Briefly, FeSO4·7H2O and FeCl3·6H2O
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were dissolved in ultrapure water (1:2 molar ratio), and the solution was dripped into
an alkaline solution of NH4OH using a peristaltic pump. The obtained black precipitate
was transferred into a polytetrafluoroethylene (Teflon) vial and further introduced into the
Milestone Synthwave equipment for microwave-assisted hydrothermal treatments. Four
different parameter regimes were applied (as depicted in Table 1), thus resulting in four
types of iron oxide nanoparticle supports. The nanoparticles were allowed to naturally
cool to room temperature, decanted with a NdFeB magnet, and washed with ultrapure
water until a neutral pH.

Table 1. The microwave-assisted hydrothermal treatment parameters used for the synthesis of the
iron oxide nanoparticle supports.

Sample Code Pressure [bar] Temperature [◦C] Treatment Time [min] Stirring [%]

10-60-30 10 60 30

10
10-60-60 10 60 60
80-60-30 80 60 30
80-60-60 80 60 60

Subsequently, the iron oxide nanoparticles were redispersed in ultrapure water, fol-
lowed by the addition of 10 wt% dextran. The obtained mixture was kept under continuous
magnetic stirring for 12 h at room temperature. The coated nanoparticles were magnetically
separated and dried overnight at 40 ◦C.

The final stage consisted of the milling of the nanoparticles in a ceramic mortar using
ethanol to prevent oxidation and their redispersion in 50 mL ethanol, where 1, 5, and
10 wt% of curcumin was dissolved. The mixtures were magnetically stirred for 12 h at
room temperature. The nanoparticles were collected via centrifugation at 6000 rpm for
10 min and dried overnight at 40 ◦C, while the supernatant was kept for further analyses.

2.2.2. Physicochemical Characterization of Dextran-Coated Iron Oxide Nanoparticles
Loaded with Curcumin
X-ray Diffraction (XRD) Coupled with Rietveld Refinement

A PANalytical Empyrean diffractometer (PANalytical, Almelo, The Netherlands)
equipped with CuKα radiation of λ = 1.541874 Å, a hybrid monochromator 2 × Ge (220) for
Cu, and a parallel-plate collimator on the PIXcel3D detector was used for the XRD analysis.
Scanning was performed within the 2 θ angle range between 10 and 80◦, with an incidence
angle of 0.5◦, step size of 0.0256◦, and time for each step of 1 s. The Rietveld refinement
was performed using the HighScore Plus software (version 3.0, PANalytical, Almelo, The
Netherlands) for assessing the nanoparticle crystallinity and crystallite size.

Transmission Electron Microscopy (TEM). High-Resolution TEM (HR-TEM). Selected Area
Electron Diffraction (SAED)

A small sample amount was dispersed into deionized water, and 10 µL of the sus-
pension was placed on a 400-mesh lacey carbon-coated copper grid at room temperature.
The samples were analyzed using a high-resolution 80–200 TITAN THEMIS transmission
microscope (purchased from FEI, Hillsboro, OR, USA) equipped with an Image Corrector
and EDXS detector in the column. The microscope is operated at a 200 kV voltage in
transmission mode. Particle-size distribution was assessed by creating histograms corre-
sponding to the TEM images using the ImageJ software (University of Wisconsin, Madison,
WI, USA).

Fourier Transform Infrared (FT-IR) Spectroscopy

A Thermo iN10-MX Fourier transform (FT)-IR microscope (Thermo Fischer Scientific,
Waltham, MA, USA) with a liquid nitrogen-cooled mercury cadmium telluride detector
was used for obtaining the IR spectra. The measurement was performed in reflection
mode in the range of 4000–400 cm−1 and at a resolution of 4 cm−1. 64 scans were co-
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added and converted to absorbance using the OmnicPicta software (Thermo Scientific) for
each sample.

Dynamic Light Scattering (DLS) Zeta Potential

For determining the hydrodynamic diameter and the surface charge of the nanostruc-
tured systems, the samples were dispersed in deionized water (~6.9 pH) at a concentration
of 0.3 mg/mL. For each sample, five acquisitions were measured using the DLS technique
(DelsaMax Pro, Backman Coulter, Brea, CA, USA).

Thermogravimetry and Differential Scanning Calorimetry (TG-DSC)

The thermogravimetric analysis was performed using the STA TG/DSC Netzsch
Jupiter 449 F3 equipment (Selb, Germany). The samples were placed in an alumina crucible
and subjected to the thermal treatment with a temperature range between 20 and 900 ◦C
(heating rate of 10 K/min) in a dynamic air atmosphere of 50 mL/min.

Vibrating Sample Magnetometry (VSM)

The magnetic properties of the dextran-coated iron oxide nanoparticles were deter-
mined at room temperature (25 ◦C) through VSM analysis (VSM, VersaLabTM 3T, Cryogen-
free Vibrating Sample Magnetometer, Westerville, OH, USA). The magnetic field applied
ranged between −10 and +10 kOe two times, with a step rate of 10 Oe/s.

UV-Vis Spectrophotometry

The UV-Vis spectrophotometry measurements were performed using a Thermo Evo-
lution 600 double-beam UV-Vis spectrophotometer (Thermo Fischer Scientific, Waltham,
MA, USA). Initially, the quantity of the unloaded curcumin within the supernatant was
determined by UV-Vis spectrophotometry at a fixed wavelength (λ = 428 nm) using a
standard cuvette with an optical path of 1 cm. In this manner, the drug loading efficiency
was calculated using the following equation:

drug loading efficiency (%) =
the total amount of drug − free amount of drug

the total amount of drug
× 100 (1)

Finally, the curcumin release was investigated in a PBS:ethanol = 3:2 (v/v) solution at
a pH of 8.11. For each sample, 100 mg of the nanoparticles were introduced into a filter bag
enclosure and placed into 25 mL of the solution, under continuous stirring at 37 ◦C. The
measurements were performed in a continuous flow regime using a Hellma™ Quartz UV
flow cell (100 µL volume, 3 mm path length), for assessing the initial short-term release
(4 h), followed by measurements at established timepoints for assessing the long-term
release (8 h, 12 h, 24 h, 48 h, and 7 days). The obtained results were further used for
estimating the release of curcumin using the following equation:

curcumin release (%) =
the amount of released curcumin

the total amount of loaded curcumin
× 100 (2)

Antimicrobial-Activity Assay

The protocols were performed according to previous antimicrobial studies [30,31]. The
antimicrobial effect was assessed for the pristine iron oxide controls, dextran-coated, and
curcumin-loaded dextran-coated iron oxide nanoparticles.

UV-sterilized nanoparticles and control powders were diluted in sterile distilled wa-
ter/DMSO to obtain a stock solution of 1 mg/mL concentration. Qualitative antimicrobial
evaluation was performed by an adapted diffusion test from the Clinical & Laboratory
Standards Institute Guidelines. Briefly, Petri dishes containing Mueller–Hinton medium
(or Sabouraud Dextrose Agar for the yeast, Candida albicans) were swab-inoculated with a
microbial suspension of 1–3 × 108 CFU/mL (CFU—colony-forming units), corresponding
to 0.5 MacFarland density standard. Stock solutions of the obtained nanoparticles and
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controls were added dropwise (10 µL) on the swab-inoculated plates. The Petri dishes were
incubated for 24 h at 37 ◦C. Subsequently, the inhibition zone diameter was measured, with
results expressed in mm.

For assessing the minimum inhibitory concentration (MIC), a microdilution technique
in 96-well plates was performed. Serial binary dilutions (from 2 mg/mL to 0.0625 mg/mL)
were obtained for each of the tested nanoparticles and controls in nutritive broth and a bac-
terial inocula of ~106 CFU/mL was utilized. The cultures were incubated for 24 h at 37 ◦C.
The minimum inhibitory concentration (MIC) was quantitatively determined by measuring
the Optical Density (OD 620 nm) of the obtained cultures with a spectrophotometer and by
naked-eye analysis.

The efficiency of biofilm inhibition was assessed by a crystal violet-adapted protocol
performed in microvolumes, in 96-well plates. Serial binary dilutions (from 2 mg/mL
to 0.0625 mg/mL) were obtained for each of the tested nanoparticles and controls in
nutritive broth and a bacterial inocula of ~106 CFU/mL was utilized. The plates were
incubated for 24 h at 37 ◦C, washed with sterile physiological water, and fixated with
cold methanol for 5 min. The dried plates were stained with 1% crystal violet solution
for 20 min, and after washing the excess with tap water, the stain within the biofilm was
solubilized with a 33% solution of acetic acid. The biofilm inhibitory concentration (BIC)
was quantitatively determined by measuring the absorbance (at 492 nm) of the obtained
cultures with a spectrophotometer.

Biocompatibility Assay

The MTT assay was used for measuring the cellular metabolic activity and as an
indicator of cell viability, proliferation, and cytotoxicity. All samples were dissolved in
DMSO (Dimethyl sulfoxide 99%, Merck, Romania) and analyzed at a 10 mg/mL concentra-
tion. Control samples represented by iron oxide nanoparticles without the dextran coating
were tested at the same concentrations as the samples. A negative control containing cells
treated with DMSO was also included. HT-29 cells were cultivated in RPMI-1640 culture
medium (Sigma-Aldrich, St. Louis, MO, USA) and supplemented with 2 mM Glutamine
(Sigma-Aldrich), 10% heat-inactivated Fetal Bovine Serum (FBS) (Sigma-Aldrich), and 1%
Pen/Strep (penicillin/streptomycin solution, 50 µg/mL, Sigma-Aldrich) for 24 and 48 h
at 37 ◦C, 95% humidity with 5% CO2. After the 24 and 48 h time points, the cells were
washed with PBS, harvested using trypsin (Sigma-Aldrich), and counted using Trypan
Blue (Sigma-Aldrich) and a hemocytometer. The seeding density for the MTT assays was
optimized at 5 × 105.

Cells seeded at 5 × 105 density in a clear 96-well cell-culture plate were treated with
the 5% curcumin samples and the controls and incubated for 24 and 48 h at 37 ◦C, 95%
humidity with 5% CO2. After 24 and 48 h of exposure, the cells were treated with MTT
solvent (Roche, Basel, Switzerland) for 15 min at room temperature. The absorbance was
measured using a spectrophotometric microplate reader (ELISA reader) at OD = 570 nm.

Statistical Analysis

All biological experiments were performed in triplicate. Data are represented as
mean ± standard deviation (S.D.). The statistical analysis was performed using the Graph-
Pad Prism 9 software (San Diego, CA, USA). Data were compared using one-way analysis
of variance (ANOVA), followed by a two-tails t-test with Bonferroni post hoc correction.
The level of significance was set to p < 0.05/n.

3. Results

The iron oxide nanoparticles, which act as the main supports of the present drug-
delivery systems, were synthesized through the microwave-assisted hydrothermal method
by varying the reaction parameters (i.e., pressure—10 and 80 bar, reaction time—30 and
60 min) at the temperature of 60 ◦C. In this manner, four different types of nanocarriers
were obtained and used for the subsequent experimental steps.
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Therefore, the first step in the characterization flow was to determine the influence of
the synthesis parameters on the mineral phase formation, crystallinity, and crystallite size
of the obtained nanoparticles. In this context, Figure 1 depicts the diffractograms acquired
for the four types of iron oxide nanocarriers used in the development of drug-delivery
systems. On one hand, the diffractograms show the formation of a single crystalline phase
for the samples 10-60-30 and 10-60-60 (synthesized at lower-pressure conditions), which
is demonstrated through the diffraction peaks specific for magnetite (Fe3O4) in the Fd-3
m cubic crystal system and the associated Miller indices (JCPDS 00-019-0629 [32]). On
the other hand, the diffractograms show the formation of two crystalline phases for the
80-60-30 and 80-60-60 samples (synthesized at higher-pressure conditions). Specifically,
besides the diffraction peaks characteristic of magnetite, there is one diffraction peak at
the 2θ angle of 33◦ that was attributed to goethite (FeO(OH)) in the Pbnm orthorhombic
crystal system (JCPDS 00-029-0713 [33]), which is known to occur at high pressure and
temperature conditions [19,25].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

All biological experiments were performed in triplicate. Data are represented as 
mean ± standard deviation (S.D.). The statistical analysis was performed using the 
GraphPad Prism 9 software (San Diego, CA, USA). Data were compared using one-way 
analysis of variance (ANOVA), followed by a two-tails t-test with Bonferroni post hoc 
correction. The level of significance was set to p < 0.05/n. 

3. Results 
The iron oxide nanoparticles, which act as the main supports of the present drug-

delivery systems, were synthesized through the microwave-assisted hydrothermal 
method by varying the reaction parameters (i.e., pressure—10 and 80 bar, reaction time—
30 and 60 min) at the temperature of 60 °C. In this manner, four different types of nanocar-
riers were obtained and used for the subsequent experimental steps. 

Therefore, the first step in the characterization flow was to determine the influence 
of the synthesis parameters on the mineral phase formation, crystallinity, and crystallite 
size of the obtained nanoparticles. In this context, Figure 1 depicts the diffractograms ac-
quired for the four types of iron oxide nanocarriers used in the development of drug-
delivery systems. On one hand, the diffractograms show the formation of a single crystal-
line phase for the samples 10-60-30 and 10-60-60 (synthesized at lower-pressure condi-
tions), which is demonstrated through the diffraction peaks specific for magnetite (Fe3O4) 
in the Fd-3 m cubic crystal system and the associated Miller indices (JCPDS 00-019-0629 
[32]). On the other hand, the diffractograms show the formation of two crystalline phases 
for the 80-60-30 and 80-60-60 samples (synthesized at higher-pressure conditions). Specif-
ically, besides the diffraction peaks characteristic of magnetite, there is one diffraction 
peak at the 2θ angle of 33° that was attributed to goethite (FeO(OH)) in the Pbnm ortho-
rhombic crystal system (JCPDS 00-029-0713 [33]), which is known to occur at high pres-
sure and temperature conditions [19,25]. 

 
Figure 1. The diffractograms of the four iron oxide nanoparticle samples (10-60-30, 10-60-60, 80-60-
30, and 80-60-60) and the Miller indices associated with each diffraction peak (●—Fe3O4, ■—
FeO(OH)). 

Using the acquired X-ray diffractograms, the results were subjected to Rietveld re-
finement in order to assess the proportion of each crystalline phase, the crystallite size, 
and the crystallinity of the nanocarriers (Table 2). The results confirm the formation of the 
goethite phase at higher-pressure conditions, with a much higher proportion formed in 
the 80-60-30 sample (also shown in the diffractograms through a higher intensity for the 

Figure 1. The diffractograms of the four iron oxide nanoparticle samples (10-60-30, 10-60-60, 80-60-30,
and 80-60-60) and the Miller indices associated with each diffraction peak (•—Fe3O4, �—FeO(OH)).

Using the acquired X-ray diffractograms, the results were subjected to Rietveld re-
finement in order to assess the proportion of each crystalline phase, the crystallite size,
and the crystallinity of the nanocarriers (Table 2). The results confirm the formation of the
goethite phase at higher-pressure conditions, with a much higher proportion formed in
the 80-60-30 sample (also shown in the diffractograms through a higher intensity for the
corresponding peak). It can also be seen that higher-pressure conditions together with long
reaction times lead to a significant increase in the average crystallite size, especially for the
goethite phase, due to the crystal growth process. Consequently, longer reaction times lead
to a considerable decrease in nanoparticle crystallinity.

Furthermore, the Miller indices determined by measuring the SAED rings (Figure 2)
match the ones from the diffractograms corresponding to the magnetite phase. However,
the patterns reveal more diffused diffraction rings for the 80-60-30 sample, which are
generally associated with nanoparticles with decreased crystallinity. Thus, considering the
results from both XRD and SAED, it could be stated that the presence of the goethite phase
increases the overall crystallinity of the samples.
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Table 2. The proportions of the crystalline phases, the average crystallite size, and the crystallinity of
the iron oxide nanocarriers.

Sample Crystalline Phase
Proportions [%]

Average Crystallite
Size ± SD [nm] Crystallinity [%]

10-60-30 magnetite–100 9.42 ± 0.22 20.56

10-60-60 magnetite–100 9.04 ± 0.23 18.55

80-60-30 magnetite–66.60
goethite–33.40

9.04 ± 0.68
2.09 ± 0.19 27.99

80-60-60 magnetite–94.10
goethite–5.90

11.16 ± 0.42
415.93 ± 1115.23 18.23
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TEM analysis was further used for assessing the shape and size of the iron ox-
ide nanocarriers. As can be seen from the TEM and HR-TEM images (Figure 3), the
nanoparticles exhibit a quasispherical shape. Additionally, the HR-TEM images reveal
a monocrystalline nature of the nanoparticles. The images were subsequently used
for estimating the size of the nanocarriers, by measuring 150 nanoparticles in the Im-
ageJ software. The so-obtained results were applied for creating the size distributions
which were further fitted in the Origin software using the available Gaussian curve fit
(Figure 4). Considering the center (xc value) of the Gaussian fits, the average nanoparti-
cle size is as follows: 10-60-30—13.20 nm, 10-60-60—13.32 nm, 80-60-30—15.45 nm, and
80-60-60—14.03 nm. While there are no significant differences between samples obtained
at different reaction times, it can be seen that high-pressure conditions represent the key
factor to determine the formation of nanoparticles with broad size distributions.

Furthermore, FT-IR spectroscopy was utilized for confirming the dextran coating of the
iron oxide nanoparticles and the subsequent curcumin loading at different concentrations.
In this regard, Figure 5 depicts the FT-IR spectra registered for all 20 samples (pristine,
dextran-coated, and curcumin-loaded iron oxide nanoparticles), as well as for dextran and
curcumin for comparison. The absorption band at 541 cm−1 is characteristic of the Fe-O
bond, thus confirming the formation of the iron oxide nanoparticles. The marked circle
represents the wavenumber area characteristic for the dextran coating, while the marked
rectangle is associated with the curcumin loading, where the intensity of the absorption
bands is proportional to the curcumin concentration. Table 3 summarizes the wavenumber
for each of the identified absorption bands and the associated bonds. Thus, it can be seen
that the identified bonds correspond to the bonds present within the molecular structures
of dextran and curcumin.
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The DLS and zeta potential measurements were performed for all 20 samples (pristine,
dextran-coated, and curcumin-loaded iron oxide nanoparticles) (Figure 6). It can be ob-
served that the general tendency involves the increase in the hydrodynamic diameter and
the decrease in the zeta potential values with the addition of dextran followed by curcumin
at increasing concentrations. Thus, it can be assumed that the polymer coating and the
biosubstance loading lead to a significant reduction in the charge present on the surface
of the drug-delivery systems and consequently the interactions with the solvent (water in
this case).
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Table 3. The absorption bands identified within the FT-IR spectra and the associated bonds.

Type of Bond Wavenumber (cm−1)

Fe-O 541
C-O stretching (primary alcohol) 1078, 1146
C-O stretching (alkyl aryl ether) 1276

C=C stretching (alkene) 1583
O-H (phenol) 1427
C-H bending 1495
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The TG-DSC analysis was used for estimating the efficiency of dextran coating
(Figure 7, Table 4). Both pristine and dextran-coated iron oxide nanoparticles present three
mass-loss steps. In the temperature interval of 25–135 ◦C, all samples present a mass loss
of ~1%, accompanied by an endothermic peak with a minimum of ~70 ◦C. This process is
attributed to the water molecules weakly bonded to the surface of the nanoparticles, which
are the first to be eliminated. Subsequently, the temperature interval of 135–400 ◦C leads
to the oxidation of magnetite to maghemite (Fe2+ to Fe3+), together with the degradation
of the organic molecules and the elimination of strongly bonded –OH moieties from the
nanoparticle surface [34,35]. The predominant effect is exothermic, which appears as a
broad, combined effect, with the maximum at ~200 ◦C. The DSC exothermic peak at ~515 ◦C
is attributed to the specific phase transition from maghemite to hematite, which commonly
occurs after 500 ◦C [29,36].
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Table 4. The mass losses registered and the associated thermal effects according to the TG-DSC
curves.

Sample
Mass Loss (%)

Dextran-Loaded (%)
Thermal Effects (◦C)

25–135 ◦C 135–400 ◦C Residual Endothermic Exothermic—
Maghemite

Exothermic—
Hematite

10_60_30 0.85 1.58 96.84 - 66.5 143.6 532.4
10_60_30@DEX 1.20 5.66 92.46 4.52 67.2 209.9 524.5

10_60_60 1.34 1.70 96.16 - 71.4 142.8 520.1
10_60_60@DEX 1.19 5.77 92.41 3.90 70.3 212.2 521.8

80_60_30 1.31 2.06 96.10 - 70.2 146.0 538.7
80_60_30@DEX 1.22 5.78 92.17 4.09 68.1 213.1 512.8

80_60_60 1.01 2.03 96.28 - 69.9 147.9 508.9
80_60_60@DEX 0.99 4.70 93.87 2.50 70.1 209.4 515.0

The magnetic properties of the pristine, dextran-coated, and curcumin-loaded iron
oxide nanoparticles were determined through the VSM analysis (Figure 8). The results
demonstrate the superparamagnetic behavior of the nanoparticles through the S-shaped
hysteresis curve with a zero width, as resulted from applying a magnetic field from 10 to
−10 kOe. While the saturation magnetization values for the pristine iron oxide nanoparti-
cles range between 50 to 60 emu/g, the addition of the dextran coating seems to increase
the saturation magnetization to ~70 emu/g. Furthermore, the curcumin loading does not
modify the magnetization of the nanoparticles at any concentrations, thus proving the po-
tential of these drug-delivery systems to be used for the external magnetic field-controlled
release of bioactive substances.
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Figure 8. Field-dependent magnetization measurements for the dextran-coated iron oxide nanoparti-
cles loaded with curcumin.

The curcumin loading efficiency and the release studies were assessed through UV-Vis
spectrophotometry. It can be observed that there are no major differences between the
nanocarriers, as the loading efficiency is similar for most of the systems loaded with the
same amount of curcumin (Table 5). However, a considerable decrease in the loading
efficiency can be observed for the samples 80-60-30 and 80-60-60 with 10% curcumin, which
could be explained by a lower surface area that is saturated at 5% curcumin. Therefore,
the 5% curcumin samples were further selected for investigating the release behavior
(Figures 9 and 10). The 4 h short-term study shows that samples obtained at high-pressure
conditions are characterized by a considerably slower release of curcumin, by half, as
compared to the lower-pressure counterparts. Moreover, the samples subjected to longer
reaction treatments exhibit a slightly faster release, which could also be associated with
the increased dimensions of the nanocarriers. The 72 days long-term study shows similar
percentages of ~30% of released curcumin for all samples. However, considering that the
loading efficiency for the samples obtained at lower-pressure conditions is slightly higher,
it is safe to conclude that the amount of released curcumin for these samples is higher
(Figure 10). Furthermore, it can be seen that the samples reach a sustained release at the
24 h/48 h time intervals.

Table 5. The amount of added curcumin and the loading efficiency for the dextran-coated iron oxide
nanocarriers.

Sample Amount of Loaded Curcumin (mg) Loading Efficiency (%) Curcumin Released after 7 Days (%)

10-60-30
1% 5.5 55 -
5% 12.5 25 27.02
10% 60.0 60 -

10-60-60
1% 4.0 40 -
5% 11.5 23 36.77
10% 30.0 30 -

80-60-30
1% 6.0 60 -
5% 7.5 15 30.08
10% 15.0 15 -

80-60-60
1% 3.5 35 -
5% 8.0 16 29.24
10% 15.0 15 -
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Figure 10. Release profiles with selected timepoints for the dextran-coated iron oxide nanocarriers
loaded with 5% curcumin.

The antimicrobial efficiency of the curcumin-loaded drug-delivery systems is illus-
trated in Table 6 and Figures 11 and 12, through the inhibition zone, MIC, and BIC values.
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The overall results demonstrate the capacity of the nanosystems to inhibit the growth of
both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa)
bacteria, as well as the yeast Candida albicans.

Table 6. The inhibition zone for each pristine iron oxide and dextran-coated iron oxide nanocarriers
loaded with curcumin.

Sample
Inhibition Zone (mm)

Staphylococcus
aureus

Pseudomonas
aeruginosa Candida albicans

DMSO 1 1 1
10-60-30 6 5 6

10-60-30@DEX 3 5 5
10-60-30@DEX@CUR_1% 6 7 6
10-60-30@DEX@CUR_5% 7 7 7
10-60-30@DEX@CUR_10% 7 7 7

10-60-60 6 5 6
10-60-60@DEX 6 6 6

10-60-60@DEX@CUR_1% 5 5 7
10-60-60@DEX@CUR_5% 6 6 5
10-60-60@DEX@CUR_10% 7 7 8

80-60-30 6 6 6
80-60-30@DEX 6 5 6

80-60-30@DEX@CUR_1% 5 7 6
80-60-30@DEX@CUR_5% 6 6 7
80-60-30@DEX@CUR_10% 8 7 8

80-60-60 7 5 6
80-60-60@DEX 6 6 6

80-60-60@DEX@CUR_1% 8 7 7
80-60-60@DEX@CUR_5% 7 6 6
80-60-60@DEX@CUR_10% 8 7 8

Results show that the pristine iron oxide nanoparticles have a similar capacity for
inhibiting the growth of the microbial strains. However, the dextran coatings do not en-
hance the antimicrobial efficiency of the iron oxide nanocarriers, in most cases ensuring a
microbial proliferative environment. The presence of curcumin within the nanosystems
further increases their antimicrobial activity, especially in the case of 10% curcumin loading
(Table 6). There are no significant differences between the microbial strains, thus demon-
strating the potential of these drug-delivery systems to be used for preventing a wide
variety of microbial species.

The MIC evaluation shows similar results as the inhibition zone, with no statistically
significant differences between the pristine and dextran-coated iron oxide nanoparticles
and enhanced antimicrobial activity for the curcumin-loaded samples. For all types of
nanocarriers, it is easily seen that the 10% curcumin-loaded systems present MIC values
statistically lower compared to the negative control (Figure 11). Thus, it can be stated that in
the case of planktonic growth, the antimicrobial effects are mostly due to the presence of the
antimicrobial substance, and not a synergistic effect with the nanoparticles. Furthermore,
these results support the idea that the designed dextran-coated iron oxide nanosystems
could be an efficient carrier for natural antimicrobial agents, such as curcumin.

We further evaluated the antimicrobial efficiency of the designed nanosystems in
biofilm cultures, since it is widely accepted that bacteria in biofilms are more resistant
to antimicrobial agents as compared to planktonic cultures. Antibiofilm results were
consistent with the data obtained in planktonic cultures. Specifically, the potential of
biofilm inhibition was highest for the 10% curcumin-loaded samples (up to four folds),
with no statistically significant difference between the pristine, dextran-coated, and 1%
curcumin-loaded samples in most cases (Figure 12).
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Citotoxicity tests revealed that the designed nanocarriers show no or limited interfer-
ence with eukaryotic-cultured cells. Specifically, the results obtained on HT-29 intestinal
cells indicate a high percentage of viability (Figure 13), especially for the 48 h time point
of exposure to the tested nanosystems. As for the 24 h mark, viability was over 75% for
the curcumin-loaded samples and over 60% for the dextran-coated controls. This could be
explained by the initial shock that cells tend to suffer after a novel compound is introduced
into the culture media. However, for the 48 h mark, the viability rates were over 89% for the
curcumin-loaded samples and over 70% for the dextran-coated controls, with a significant
increase in viability observed, especially for curcumin-loaded samples.
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Figure 14. Graphic representation of MTT OD values at 24 h and 48 h of exposure to dextran-coated 
iron oxide nanocarriers as controls and dextran-coated iron oxide nanocarriers loaded with 5% cur-
cumin (p = 0.034). 

Figure 13. Viability rates of HT-29 cells after 24 h and 48 h of exposure to dextran-coated iron
oxide nanocarriers as controls and dextran-coated iron oxide nanocarriers loaded with 5% curcumin
(p = 0.03).
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Viability results obtained for the controls indicate a high level of positive impact in bio-
compatibility provided by the dextran coating of the nanoparticles (over 15% improvement
of cellular survival rate). The ODs obtained by the MTT assay are in correlation, indicating
a normal metabolic cell function, with minimal cytotoxicity present at 48 h of incubation
with the curcumin-loaded samples (Figure 14).
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incubation with the curcumin-loaded samples (Figure 14). 
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Figure 14. Graphic representation of MTT OD values at 24 h and 48 h of exposure to dextran-coated
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curcumin (p = 0.034).

4. Discussion

The present study aimed to develop efficient and biocompatible nanostructured drug-
delivery systems with potential applicability within antimicrobial therapies. The experi-
mental design consisted of three main steps, namely the microwave-assisted hydrothermal
synthesis of iron oxide nanocarriers with varying synthesis parameters; the coating of the
nanocarriers with a widely used biocompatible polymer, i.e., dextran; and the loading of
curcumin, a natural bioactive substance with well-known anticarcinogenic, antioxidant,
and antimicrobial properties, at three different concentrations.

The microwave-assisted hydrothermal method is a widely used technique for the
synthesis of numerous nanoparticles, such as hydroxyapatite [37–39], zinc oxide [40–42],
and copper oxide [43,44], as it allows for the control of the nanoparticle morphology, size,
and porosity. While recent years have witnessed an increased interest in applying this
method in developing iron oxide nanoparticles [29,45–47], its utilization is still limited,
with most studies focusing on more readily available methods (i.e., coprecipitation). As
it was indicated by the XRD and SAED results, the microwave-assisted hydrothermal
method ensured the synthesis of highly crystalline iron oxide nanoparticles consisting
of one or two mineral phases. Furthermore, the TEM and DLS analyses demonstrated
the possibility of modulating their size and size distribution by varying the synthesis
parameters, which could further aid the control of the release profiles. Generally, the
application of nanoparticles with larger sizes is often regarded as a safer approach, as their
agglomeration and accumulation are prevented [48]. Additionally, larger nanoparticles
are also able to avoid rapid body clearance [49]. However, iron oxide nanoparticles are
synthesized with sizes lower than ~10 nm, as increasing the nanoparticle size is a relatively
difficult process [50]. In this regard, our results proved the possibility of obtaining iron
oxide nanoparticles with larger sizes, thus proving the capacity of the microwave-assisted
hydrothermal method to provide a facile and efficient means of overcoming the previously
mentioned issues.
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Furthermore, dextran was added as a coating for the iron oxide nanocarriers to en-
hance their stability and biocompatibility, prevent nanoparticle agglomeration, and limit
cytotoxicity. Dextran is a highly biocompatible and nontoxic polysaccharide with antioxi-
dant, anti-inflammatory, and antithrombotic properties that is widely used in numerous
pharmaceutical and biomedical applications [51]. Thus, its potential is demonstrated
through the great number of studies available in the literature that apply dextran as a
coating for iron oxide nanoparticles for drug-delivery and diagnostics applications [52–56].
In contrast to other reports [57], another important aspect proven through this study by the
VSM analysis is the capacity of the dextran coating to enhance the magnetic properties of
the iron oxide nanocarriers. This effect could be explained through the reduction in the
surface disorder generally responsible for significant changes in the magnetic properties
of nanoparticles by the organic coating, which bonds with the surface cations and aligns
the nanoparticle spins [58]. Moreover, the saturation values of the present nanostructures
are similar to those obtained for superparamagnetic iron oxide nanoparticles, namely
close to 60 emu/g [59]. Thus, their suitability for further hyperthermia-based drug-release
applications was demonstrated.

Finally, the biosubstance chosen for this study was curcumin, the biphenolic bioac-
tive compound of the Curcuma longa plant [60]. In the biomedical area, curcumin has
been widely used as an antioxidant, anti-inflammatory, anticancer, antiapoptotic, and
neuroprotective agent [61–63]. In the present study, curcumin was investigated for its
antimicrobial properties against Gram-positive, Gram-negative, and fungal strains [64,65].
While previously published papers have demonstrated a considerably greater sensitivity
for Gram-positive than Gram-negative bacteria [66], our results indicated similar antimi-
crobial efficiency towards all the tested strains, thus proving the potential of the current
drug-delivery systems to be used for a wide spectrum of microbial species.

From another point of view, the available literature demonstrated the sustained re-
lease of curcumin for long periods of over 15 days [67], which is mainly caused by its
increased hydrophobicity that prevents drug release [68,69]. In this manner, curcumin-
loaded nanomaterials should be designed for applications that require long-term release,
such as implant coatings, which could represent a future direction of the present study.
Additionally, release studies should also investigate the curcumin release from our dextran-
coated iron oxide nanocarriers in different pH media, which could help direct the area of
the organism for which they are most suitable.

5. Conclusions

The present study demonstrated the potential of the microwave-assisted hydrothermal
method for developing iron oxide nanostructures with varying and controllable properties,
especially in terms of mineral phase composition and nanoparticle crystallinity, size, and
size distribution. Subsequently, the dextran coating considerably enhanced the stability,
magnetic behavior, and biocompatibility of the inorganic nanoparticles. The loading with
curcumin showed the potential of the drug-delivery systems in preventing microbial infec-
tions and biofilm formation. Thus, besides their direct administration, these nanosystems
could also be applied as coatings for various implantable devices, such as bone implants,
catheters, meshes, and wound dressings, which could benefit a broader segment of patients
with infection risks. In this context, future research directions should focus on the next
stage of nanostructured antimicrobial-agent applicability.
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