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A number of recent efforts have used large-scale, biologically realistic, neural models to

help understand the neural basis for the patterns of activity observed in both resting

state and task-related functional neural imaging data. An example of the former is

The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural

modeling in a whole brain framework. TVB provides a set of structural connectomes of

the human cerebral cortex, a collection of neural processing units for each connectome

node, and various forward models that can convert simulated neural activity into a

variety of functional brain imaging signals. In this paper, we demonstrate how to embed

a previously or newly constructed task-based large-scale neural model into the TVB

platform. We tested our method on a previously constructed large-scale neural model

(LSNM) of visual object processing that consisted of interconnected neural populations

that represent, primary and secondary visual, inferotemporal, and prefrontal cortex.

Some neural elements in the original model were “non-task-specific” (NS) neurons that

served as noise generators to “task-specific” neurons that processed shapes during a

delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical

TVB connectome model of the cerebral cortex comprising 998 regions of interest

interconnected by white matter fiber tract weights. We embedded our LSNM of visual

object processing into corresponding nodes within the TVB connectome. Reciprocal

connections between TVB nodes and our task-based modules were included in this

framework. We ran visual object processing simulations and showed that the TVB

simulator successfully replaced the noise generation originally provided by NS neurons;

i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent

neural and fMRI activity to that of the original task-based models. Additionally, we found

partial agreement between the functional connectivities using the hybrid LSNM/TVB

model and the original LSNM. Our framework thus presents a way to embed task-based

neural models into the TVB platform, enabling a better comparison between empirical

and computational data, which in turn can lead to a better understanding of how

interacting neural populations give rise to human cognitive behaviors.
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INTRODUCTION

Large-scale neural network models aim to shed light on the
mechanisms used by the brain to accomplish goal-directed
behavioral tasks. Often, for computational efficiency large-scale
neural models (LSNM) comprise the minimum number of brain
regions that are necessary to simulate a given task. However,
by restricting the number of brain regions to only a few, neural
network models may miss the contributions and constraints that
the “rest of the brain” could provide on both the simulated task
and the sought-after mechanisms.

In the past few years, there has been increased interest in using
LSNM with functional neuroimaging data such as PET, fMRI,
EEG/MEG in order to help understand the neural basis for the
patterns of activity observed in the imaging data. Examples can be
found for resting state data (Honey et al., 2007; Alstott et al., 2009;
Cabral et al., 2011, 2012; van Dellen et al., 2013), and for task-
based data (Tagamets and Horwitz, 1998; Horwitz and Tagamets,
1999; Corchs and Deco, 2002; Deco et al., 2004; Husain et al.,
2004; Horwitz et al., 2005; Robinson et al., 2005; Ulloa et al.,
2008; Peters et al., 2010; Bojak et al., 2011; Banerjee et al., 2012a;
Furtinger et al., 2014). Such a modeling framework requires three
submodels: a structural model of the anatomical links between
brain regions that provides the interregional connection weights;
one or more neural models at each node for generating the neural
activity; and a forward model that transforms a combination of
the neural activity into a neuroimaging signal.

Recently, a software platform called The Virtual Brain
(TVB) has become available that facilitates applying LSNM
to neuroimaging data in a whole brain framework (Jirsa
et al., 2010; Ritter et al., 2013; Sanz Leon et al., 2013,
2015). The platform consists of several structural models (e.g.,
monkey CoCoMac data Kotter, 2004; human diffusion spectrum
imaging (DSI) connectome Hagmann et al., 2008), several
neural models that can represent the activity of a node (e.g.,
Wilson-Cowan unit Wilson and Cowan, 1972; Jansen-Rit unit
Jansen and Rit, 1995), and several forward models that can
convert some measure of neural activity into either fMRI
(e.g., Friston et al., 2000) or EEG/MEG signals (e.g., Sarvas,
1987). A recent development incorporates an automated pipeline
for constructing personalized virtual brains from multimodal
neuroimaging data, including individual diffusion-weightedMRI
data (Schirner et al., 2015).

To date, most of the applications of TVB (and similar
LSNM that employ connectome-type structural models) have
been utilized to simulate resting state data or simple stimulation
studies using neural noise propagating throughout the brain (e.g.,
Jirsa et al., 2010; Cabral et al., 2011; Ritter et al., 2013; Ponce-
Alvarez et al., 2015). However, as noted above, there exists a
number of LSNM that simulate specific cognitive tasks, and
some of these models have been employed to simulate human
functional neuroimaging data. One important difference between
these two categories of neural models is in the nature of the
anatomical submodel that each type employs. In general, the
weights of the anatomical interregional connections found in the
resting state simulations are based on diffusion tensor/spectrum
imaging data (e.g., Hagmann et al., 2008). For the task-based

simulations, a more detailed set of anatomical connection
weights is needed, since it is usually by means of the strength
and specific organization of these interregional connections that
the cognitive task can be implemented (we will provide a specific
example in the next section).

Thus, the question arises as to how to modify a structural
model like the ones provided by TVB to implement the specific
anatomical assumptions constituting the hypotheses underlying
a specific cognitive task. In this paper, we demonstrate how to
do this by embedding one of two models that our laboratory has
previously developed (Tagamets and Horwitz, 1998; Horwitz and
Tagamets, 1999; Husain et al., 2004; Horwitz et al., 2005) into
TVB architecture. These models perform a short-term memory
task for either visual objects (Tagamets and Horwitz, 1998)
or auditory objects (Husain et al., 2004). Simulated neuronal
data from both models were shown to generally agree with
neurophysiological recordings from non-human primates and
simulated functional neuroimaging data matched human PET
and fMRI empirical data. The model used in this paper will be
the visual model.

Below, we briefly describe our in-house visual object short-
term memory model as well as TVB simulator. Next, we describe
the steps we followed to embed the LSNM modules into the
nodes of one of the structural models contained in TVB—the
human connectome model of Hagmann et al. (2008). We then
present results of simulated neuronal activity, simulated fMRI
BOLD signal and simulated functional connectivity from the
enhanced-TVB model and compare them with that of the stand-
alone version of the task-based LSNM. A good match between
the stand-alone and enhanced-TVB simulated data sets will
demonstrate that we have successfully combined the LSNM and
TVB models. Finally, we discuss our results and give directions
for future work.

OVERVIEW: VISUAL OBJECT
PROCESSING MODEL AND THE VIRTUAL
BRAIN

Visual Object Processing Model
Our in-house visual (Tagamets and Horwitz, 1998) object
processing model consists of interconnected neuronal
populations representing the cortical ventral pathway that
has been shown to process primarily the features of a visual
object. This stream begins in striate visual cortex, extends
into the inferior temporal lobe and projects into ventrolateral
prefrontal cortex (Ungerleider and Mishkin, 1982; Haxby et al.,
1991; McIntosh et al., 1994). The regions that comprise the
visual model include ones representing primary and secondary
visual cortex (V1/V2), area V4, anterior inferotemporal cortex
(IT), and prefrontal cortex (PFC) (see Figure 1A). Each of these
regions contain one or more neural populations with different
functional attributes (see caption to Figure 1 for details). This
model was designed to perform a short-term recognition
memory delayed match-to-sample (DMS) task during each trial
of which a stimulus S1 is presented for a certain amount of
time, followed by a delay period in which S1 has to be kept in
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FIGURE 1 | (A) Large-scale neural models of visual short-term memory. FS, D1, D2, and FR represent distinct neuronal populations within PFC (see Tagamets and

Horwitz, 1998 for details). Abbreviations: LGN, lateral geniculate nucleus; V1–V2, primary and secondary visual cortex; V4, extrastriate visual cortex; IT,

inferior-temporal cortex; PFC, prefrontal cortex. (B) Basic neuronal population unit (Wilson-Cowan) of the visual model of short term memory. Each unit has an

excitatory (E) and an inhibitory (I) element. Dark arrows represent excitation and the red arrow represents inhibition. Adapted from Horwitz et al. (2005).

short-term memory. When a second stimulus (S2) is presented,
the model has to respond as to whether S2 matches S1. The
model can also perform a control task, passive perception of
the stimuli, in which no response is required. Multiple trials of
the active and passive tasks constitute a simulated functional
neuroimaging study.

The key feature used to define a visual object was shape.
Model neurons in V1 and V4 were assumed to be orientation
selective (for simplicity, horizontal and vertical orientations were
used). The structural submodels employed were based on known
monkey neuroanatomical data. An important assumption for the

visual model, inferred from such experimental data, was that
the spatial receptive field on neurons increased along the ventral
processing pathway (see Tagamets and Horwitz, 1998 for details).
As a result, the model neurons in V4 responded to stimuli that
had longer horizontal and vertical lines than did model neurons
in the V1. Furthermore, because of the increasing receptive field
size, the simulated image presented to the model was represented
in the model IT as a distributed representation.

An important aspect of the LSNM was how the model
maintained a representation of the S1 during the delay period of
a trial and decided if the S2 stimulus matched the S1 stimulus.
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This was accomplished by the arrangement and strengths of
connections between the four PFC subpopulations, along with
their connections back to the IT module. The four types of
simulated neurons in the model PFC were based on experimental
findings of Funahashi et al. (1990) who found neurons in monkey
PFC with four different response firing patterns during a delayed
response task. Also of importance in our model is how the task
instructions are provided to the model. Our LSNM performs
two tasks, the DMS task and a control task (passive viewing of
degraded shapes) in which stimuli are presented, but nothing is
maintained in short-term memory; the task that is performed is
controlled by the setting of an input (from outside the model)
to one of the PFC neural populations (labeled D2 in Figure 1).
Although, this control variable is labeled as “attention” in
Figure 1, it embodies a number of top-down processes including
attending to the stimuli. If the second stimulus of the trial, S2,
matches the first, S1, then the activity in the FR submodule rises
above a threshold value, and that constitutes a positive response.

Each neuronal population consisted of 81 microcircuits, each
representing a cortical column. The model employed modified
Wilson-Cowan units (an interacting excitatory and inhibitory
pair of elements for which spike rate was the measure of
output neural activity) as the microcircuit (see Figure 1B; Wilson
and Cowan, 1972; Tagamets and Horwitz, 1998). The input
synaptic activity to each neuronal unit can also be evaluated
and combinations of this activity were related to the fMRI or
MEG/EEG signals via a forwardmodel. In this paper, we will only
consider simulated fMRI (Horwitz and Tagamets, 1999).

Half the neural populations within the stand-alone model
were “non-task-specific” neurons (Horwitz et al., 2005) that
served as noise generators to “task-specific” neurons that
processed shapes during the DMS task. The model generated
time series of simulated electrical neuronal and synaptic activity
for each module that represents a brain region. The time series
of synaptic activity, convolved with a hemodynamic response
function, was then used to compute simulated fMRI BOLD signal
for each module representing a brain region, as well as functional
connectivity among key brain regions (see Horwitz et al., 2005
for details on this method). The model is able to perform the
DMS task, generate simulated neural activities in the various
brain regions that matches empirical data from non-human
preparations, and produces simulated functional neuroimaging
data that generally agree with human experimental findings (see
Tagamets and Horwitz, 1998; Horwitz et al., 2005 for details). In
the current paper, we replace the non-task-specific neurons by
noise-generated activity from neural elements in TVB.

The Virtual Brain
The Virtual Brain (TVB) software (Sanz Leon et al., 2013,
2015) is a simulator of primarily resting state brain activity that
combines: (i) white matter structural connections among brain
regions to simulate long-range connections, and (ii) a given
neuronal populationmodel to simulate local brain activity. It also
employs forward models that convert simulated neural activity
into simulated functional neuroimaging data. TVB source code
and documentation are freely available from https://github.com/
the-virtual-brain.

In the current paper, for the structural model, we have
chosen to use the DSI-based connectome described by Hagmann
et al. (2008), which contains 998 nodes and 66 brain regions.
For the neural model for each node, we have chosen to use
Wilson-Cowan population neuronal units (Wilson and Cowan,
1972) to model the local brain activity because our in-house
LSNM simulators used modified Wilson-Cowan equations as
their basic neuronal unit (the two types of Wilson-Cowan units
differ primarily in that they have different weights between and
within unit elements, and the modified Wilson-Cowan units
employed in the LSNM nodes have no inhibitory-to-inhibitory
self-connection). Our forward model that converts simulated
neural activity into simulated fMRI is a modification of the
Balloon-Winkessel model of Friston et al. (2000) and Stephan
et al. (2007) that is included in the TVB.

METHODS

In the following, we describe the way in which we embedded
the LSNM visual model of Tagamets and Horwitz (1998)
and Horwitz et al. (2005) into the TVB. Within the LSNM,
connections and parameter choices closely follow those in the
original papers. Likewise, the connections and parameter choices
among TVB nodes closely follow those described by Sanz Leon
et al. (2015).

Task-Based Model Node Placement in the
TVB
The connectome derived by Hagmann et al. (2008) serves as a
source of neural noise to our task-based neural model. Such a
connectome was obtained by averaging the weighted network
of five experimental subjects, where each one of the 998 nodes
represents a region of interest (ROI) covering a surface area of
approximately 1.5 cm2. The connection weights among the nodes
represent cortico-cortical connections given by white matter
connection density among the given nodes. As stated above, each
node is represented by aWilson-Cowan population unit and thus
each node is assumed to be comprised of one excitatory and
one inhibitory neural population. We implemented noise as an
additive term to the stochastic Euler integration scheme provided
by the TVB software.

To facilitate the interaction, at a computational level, between
our in-house LSNM simulator and the TVB source code (written
in Python), we ported our simulator to the Python language. We
then embedded, separately, our model of visual object processing
into corresponding nodes within the TVB model (source code
can be found at https://github.com/NIDCD/lsnm_in_python).
Four steps were followed to embed each of the LSNM submodules
of our model into the connectome:

1. We identified Talairach coordinates (Talairach and Tournoux,
1988) for each of the modules in the LSNM visual model (see
Table 1) in the visual experimental literature, primarily from
Haxby et al. (1995).

2. We used those hypothesized Talairach coordinates to find
the closest connectome node (also shown in Table 1) to each
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TABLE 1 | Hypothesized locations, in Talairach coordinates (Talairach and

Tournoux, 1988), of visual LSNM modules, along with the closest node in

the Hagmann et al. (2008) connectome.

Visual

submodule

Talairach location Source Host connectome

node

V1/V2 (18, −88, 8) Haxby et al., 1995 (14, −86, 7)

V4 (30, −72, −12) Haxby et al., 1995 (33, −70, −7)

IT (28, −36, −8) Haxby et al., 1995 (31, −39, −6)

FS Location selected for illustrative purposes (47, 19, 9)

D1 (42, 26, 20) Haxby et al., 1995 (43, 29, 21)

D2 Location selected for illustrative purposes (42, 39, 2)

FR Location selected for illustrative purposes (29, 25, 40)

Note that the locations of FS, D1, D2, and FR are not explicitly known (see text) and were
chosen only to demonstrate validity of the method.

FIGURE 2 | Graphical representation of the locations where visual

LSNM modules were embedded, relative to the location of the 998

nodes (smaller gray spheres) comprising the structural connectome of

Hagmann et al. (2008), as represented in TVB. The larger spheres

represent the location of the visual processing LSNM modules, as indicated

with colored labels. Connections among LSNM modules and among nodes

are not shown but were preserved upon embedding.

LSNM module’s location and thus designated “host” TVB
nodes for each of the LSNMmodules (Figure 2).

3. We established new connections, from the connectome nodes
that were originally connected to the TVB host node, to the
“embedded” LSNMmodule (see Figure 3).

4. We also established feedback connections, from each one of
the embedded LSNM submodules to the connectome nodes
that were connected to a given submodule.

Because each one of the embedded LSNM submodules greatly
outnumber their TVB host node (e.g., by 81 to 1 in IT in the
current paper), we divided the long-range coupling constant
used in TVB among connectome nodes by the number of units
contained within each submodule to be embedded (Figure 3).
We used the result of this arithmetic division as a mean value to
generate pseudo-random numbers with a Gaussian distribution,
and used those numbers as a coupling term (details of which
are provided below) from connectome nodes to LSNM units.
Regarding the feedback connections from the embedded LSNM
submodules to the TVB nodes, we used the long-range coupling
constant provided by TVB to scale the connectome’s structural
connection weights (see details below).

FIGURE 3 | Graphical depiction that shows how a given LSNM module

was embedded into a TVB node. (A) An LSNM module is composed of

several neuronal population units (red circles) and we find the TVB node

(purple circle with incoming connections) that is closest to the hypothesized

Talairach location of the LSNM module. Several other nodes in TVB have

connections to the designated “host” node (blue arrows); (B) we embed the

LSNM module by connecting all TVB nodes that have connections to the host

TVB node to the embedded LSNM units.

The locations of the four PFC nodes (FS, D1, D2, FR) require
some comment. As mentioned above, the inclusion of these four
neural populations in the original LSNMs was based on the
electrophysiological studies of Funahashi et al. (1990) that found
inmonkey PFC four distinct neuronal responses during a delayed
response task: neurons that (1) increased their activity when
a stimulus was present (represented in our model by FS), (2)
increased their activity during the delay part of the task (D1), (3)
increased their activity during both when a stimulus was present
and during the delay period (D2), and (4) increased their activity
prior to making a correct response (FR). It is not known if these
neuronal types are found in separate anatomical locations in PFC
or are intermixed within the same brain area, although the latter
is the more likely case (except possibly for the FR population). In
the original modeling studies of Tagamets and Horwitz (1998)
and Husain et al. (2004), the functional neuroimaging data
represented a single region that included all four nodes. To
illustrate the integrated synaptic activity and fMRI signal for
each one of the modules of the combined LSNM / TVB model
separately, we have assigned a different spatial location to each
one of the four PFC sub-modules. We have used the Talairach
coordinates of the prefrontal cortex, based on Haxby et al. (1995),
for the submodule D1 and have designated spatial locations in
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adjacent regions of interest for the rest of the submodules (see
Table 1).

Simulating Electrical Activity and fMRI
Activity
Electrical Activities of Each Node in Hagmann’s

Connectome (TVB Equations)
Each one of the nodes in Hagmann’s connectome is represented
as a Wilson-Cowan model of excitatory (E) and inhibitory (I)
neuronal populations, as described in Sanz Leon et al. (2015):

Ėi =
1

τE

(

−Ei +
(

kE − rEEi
)

SE [αE (cEEEi − cIEIi + −θE

+ Ŵ (Ei,Ek, uik))])

and

İi =
1

τI

(

−Ii +
(

kI −rIIi
)

SI [αI (cEIEi − cIIIi − θI

+ Ŵ (Ei,Ek, uik))])

where SE and SI are sigmoid functions described by

Sa
[

f (ϕ)
]

=
c

1+ e(−a(f (ϕa)−b))

cEE, cEI, cII, cIE are the connections within the single neuronal
unit itself; note that although the original TVB Wilson-Cowan
population model allows us to consider the influence of a local
neighborhood of neuronal populations, we have not used this
feature in our current simulations and have left that term out
of the equations above; Ŵ(Ei, Ek, uik) is the long-range coupling
function, defined as

Ŵ (Ei, Ek, uik) = a

(

∑l

j= 1
uijEj(t −τij)+

∑n

j= 1
uijEj(t − τij)

)

where l is the number of nodes in the connectome and n is the
number of LSNM units connected to a connectome node; aŴ is a
constant that depends on the number of nodes in the connectome
(see Tables S1, S2) for the definition and value of the parameters
in the above equations).

Electrical Activities of Each LSNM Unit
Each one of the submodules of the LSNM model contains 81
neuronal population units. Each one of those units is modeled
as a modified Wilson-Cowan population of excitatory (E) and
inhibitory (I) elements. The electrical activities of each one of
those elements at time t is given by the following equations:

dEi (t)

dt
= △

(

1

1+ e −KE[wEEEi(t) + wIEIi(t) + iniE(t) − φE + N(t)]

)

− δEi (t)

and

dIi (t)

dt
= △

(

1

1+ e − KI [wEIEi(t) + iniI(t) − φI + N(t)]

)

− δIi (t)

where △ is the rate of change, δ is the rate of decay, KE,KI are
gain constants, φE, φI are input threshold values, N(t) is a noise
term, wEE,wIE,wEI are the weights within a unit (the values of
△, δ, K, τ, N are given in the Table S3); iniE(t), iniI(t) are
the inputs coming from other brain regions at time t. iniE (t) is
given by:

iniE(t) =
∑

j

wE
jiEj (t)+

∑

j

wI
jiIj (t)+

∑

j

cjiz
C
jiCj(t)

where wE
ji and wI

ji are the weights originating from excitatory

(E) or inhibitory (I) unit j from another LSNM unit into the
ith excitatory element, Cj is the connectome excitatory unit

j with connections to the LSNM unit i, zCji is the value of

the anatomical connection weight from connectome unit j to
LSNM unit i, and cjiis a coupling term, which was obtained
by using Python’s Gaussian pseudo-random number generator
(random.gauss), using a /81 as themean value. The input coming
into the ith inhibitory element, iniI(t), is given by:

iniI(t) =
∑

k

wE
kiEk (t)+

∑

k

wI
kiIk (t)

where wE
ki
and wI

ki
are the weights originating from excitatory

(E) or inhibitory (I) unit k from another LSNM unit into
the ith inhibitory element. Note that there are no connections
from the connectome to LSNM inhibitory units. See Tables
S4, S5 for details. Note also that, whereas TVB simulator
incorporates explicit transmission delays among the connectome
nodes, the LSNM nodes do not. The time step used in the LSNM
model is 5ms.

Integrated Synaptic Activity
Prior to computing fMRI BOLD activities we compute the
synaptic activity, spatially integrated over each LSNM module
(or connectome node) and temporally integrated over 50ms as
described by Horwitz and Tagamets (1999)

rSYN =
∑

t,i

INi(t)

where INi(t) is the sum of absolute values of all inputs to both E
and I elements of unit i, at time t, and is given by:

INi (t) = wEEEi (t)+ wEIEi (t)+
∣

∣wIEIi(t)
∣

∣+
∑

k,i

wkiEk(t)

Note that the first three terms above are the synaptic weights
from within unit i and the last term is the sum of synaptic
connections originating in all other LSNM units and connectome
nodes connected to unit i. Note that, in our current scheme, there
are no long-range connections from inhibitory populations.

Generation of Subjects and Task Performance of the

LSNM Model
We generated simulated subjects by creating a number of
different sets of connection weights among submodules of
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the LSNM visual network until we obtained the number of
desired subjects whose task performance accuracy was above
60%. The performance difference between subjects depends
primarily on the amount of neural noise. The connection
weights among the TVB connectome nodes remained unchanged
across subjects. The generation of different connectome sets
to simulate individual subjects is outside the scope of the
current paper but will be essential for future simulation studies
investigating the effects of a behavioral task on non-task brain
nodes. Task performance was measured as the proportion of
correct responses over an experiment. A response in the response
module (FR, described in the caption to Figure 1) was considered
a correct response in a given trial if at least 2 units had neuronal
electrical responses above a threshold of 0.7 during the response
period. To create different sets of weights that were different from
the ideal subject, we multiplied feed forward connections among
modules in the LSNM visual model by a random proportion of
between 0.95 and 1.

Equations for the Forward fMRI BOLD Model
We implemented the BOLD signal model described by Stephan
et al. (2007). We use the output of the integrated synaptic
activity above as the neural state equation to the hemodynamic
state equations below. The BOLD signal for each ROI, y(t), is
computed as follows:

y (t) = V0

(

k1
(

1− q
)

+ k2

(

1−
q

v

)

+ k3 (1− v)
)

where the coefficients k1, k2, k3 are computed as:

k1 = 4.3ϑ0E0TE

k2 = εr0E0TE

k3 = 1−ε

where V0 is the resting venous blood volume fraction, q is the
deoxyhemoglobin content, v is the venous blood volume, E0 is
the oxygen extraction fraction at rest, ε is the ratio of intra- and
extra-vascular signals, and r0 is the slope of the relation between
the intravascular relaxation rate and oxygen saturation, ϑ0 is the
frequency offset at the outer surface of the magnetized vessel for
fully deoxygenated blood at 1.5T, and TE is the echo time. The
evolution of the venous blood volume v and deoxyhemoglobin
content q is given by the balloon model hemodynamic state
equations, as follows:

τ0
dv

dt
= f (t)− v(t)1/α

τ0
dq

dt
= f (t)

1− (1− E0)
1/f

E0
− v(t)1/α

q(t)

v(t)

where τ0 is the hemodynamics transit time, α represents the
resistance of the venous balloon (vessel stiffness), and f (t) is the
blood inflow at time t and is given by

df

dt
= s

where s is an exponentially decaying vasodilatory signal given by

ds

dt
= ǫx−

s

τs
−

(f−1)

τf

where ǫ is the efficacy with which neuronal activity x(t) (i.e.,
integrated synaptic activity) causes an increase in signal, τs is the
time constant for signal decay, and τf is the time constant for
autoregulatory feedback from blood flow (Friston et al., 2000).
For the values we use for all these parameters (Friston et al., 2000;
Obata et al., 2004), see the Table S6. The resulting time series is
downsampled to correspond to a TR value of 2 s.

RESULTS

In the previous section, we described a framework for inserting
task-based neural network models into a connectome-based
model of the cerebral cortex. Specifically, we embedded a
LSNM of visual short-term memory into the connectome. The
connectome acts as a source of noise, and therefore a source
of variability, to the electrical activities of task-specific neuronal
populations of the visual LSNM. The visual LSNM, in turn,
incorporates extra connectivity into the connectome. Such extra
connectivity is, as mentioned above, a refinement of the gross
connectivity provided by the white-matter tract weights given
by the connectome, and they are necessary for a computational
model to perform a behavioral task. In order to embed the LSNM
into the connectome, we selected specific spatial locations for
each LSNM submodule.

To test our modeling framework, we used the standard
visual DMS task described in the Overview section. To give
our simulations as much realism as possible, we simulated an
experiment consisting of multiple trials of the DMS task and
passive viewing (control) task, as shown in Figure 4A. Our
simulated experiment consisted of 36 trials, alternating three
DMS trials and three control trials (Figure 4B). To facilitate
a direct comparison of the current simulations with those of
Horwitz et al. (2005), the attention level/task control parameter
was varied during the DMS condition (range: 0.24–0.34). We
simulated the passive viewing trials by using a constant low
level of attention (0.05). Ten different subjects were generated by
following the steps described in the Methods section.

Electrical Activity in a Representative
Subject
The neural activity time-series for each one of the LSNM
submodules and the respective connectome host nodes, for a
representative subject, are shown in Figure 5. To be able to
inspect the fine details of the simulated electrical activity, only
the first six trials are shown (three DMS and three control). We
are able to observe that the electrical activities during DMS trials
as compared to control trials are of a similar strength in the V1
units and, to a lesser extent, in V4 LSNM submodules (red-line
plots in Figure 5). However, if we look at the electrical activity in
the IT and FS submodules (red-line plots in Figure 5), we observe
that the electrical activity in IT and FS is stronger during the DMS
trials than during the control trials. We also observe that D1 and
D2 exhibit electrical activity during the delay period within DMS
trials but not within passive viewing trials, and that D2’s activity
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FIGURE 4 | Simulated experiment. (A) One trial of the simulated visual

delayed match-to-sample (DMS) task: a visual pattern S1 is presented for 1 s,

followed by a 1.5-s delay period during which S1 has to be kept in short-term

memory. When a second visual pattern (S2) is presented, the experimental

subject has to respond whether S2 matches the memory of S1. (B) Timing of

presentation of DMS and passive viewing (CTL) trials in a full experimental

paradigm. Each block, DMS or CTL, consisted of 3 trials and was 16.5 s long.

The total duration of the simulated experiment was 198 s.

is stronger during stimulus presentation within DMS trials than
during passive viewing trials. Finally, the electrical activity in
FR shows a stronger response during the response period for a
match (first and third DMS trial in Figure 5) than for a mismatch
(second DMS trial in Figure 5). Additionally, during the control
trials, the FR submodule exhibits a rather weak response for
eithermatch ormismatch. These results were expected andmatch
the performance of the stand-alone LSNM visual short-term
memory of (Tagamets and Horwitz, 1998; Horwitz et al., 2005);
moreover, they are in agreement with the experimental findings
of Funahashi et al. (1990). Regarding the difference between the
DMS trials and the control trials in the IT, FS, D1, D2, and FR
submodules, we know that the only difference between the DMS
trials and the control trials is the different levels of attention/task
control parameter used in those trials. Whereas we use a very low
attention parameter for the control trials (0.05), we employed a
higher level of attention for the DMS trials. As displayed in the
LSNM visual model diagram shown in Figure 1A, the attention
parameter directly modulates the electrical activity of D2 (as
depicted by an arrow from “attention” to “D2”), and indirectly
(through indirect connections through other submodules) affects
the neural activity of V4, IT, FS, D1, and FR. Finally, note that the
background noise shown by blue-line plots in Figure 5 represents
the electrical activity of the connectome nodes that are acting as
hosts to the respective LSNM submodules in the same plot; there
appears to be no task-related difference in the activity pattern
of the background noise units. The results shown in Figure 5

representing the combined LSNM-TVB model are quite similar
to those shown in Figure 3 of Horwitz et al. (2005) for the LSNM
stand-alone model, thus demonstrating a successful embedding
of the LSNM into TVB.

Integrated Synaptic Activity in a
Representative Subject
As a first step for computing the fMRI BOLD time-series for
our representative subject, we computed the integrated synaptic
activity (ISA) for select regions of interest (ROIs) in the hybrid

LSNM/TVB model. These ROIs are composed of both task-
related neuronal populations (our original LSNM submodules)
and non-task-related neuronal populations (a number of TVB
nodes spatially adjacent to the LSNM submodules that are
not engaged in the task at hand). We arbitrarily selected five
connectome nodes that were closest to each embedded LSNM
submodule. Thus, our ROIs were composed of one embedded
LSNM submodule, that includes the host connectome node, and
five adjacent connectome nodes, as depicted in Figure 6. We then
used the procedure outlined in the Methods section to compute
the integrated synaptic activity of each ROI. Figure 7 shows the
integrated synaptic activity for the ROIs corresponding to V1
(yellow), IT (blue), and D1 (red) during the first six trials for
the same representative subject discussed earlier. This integrated
synaptic activity is what we would see if we were able to image
the synaptic activity in different brain regions directly; we will
use it to compare with the analysis of the simulated BOLD
time-series below. The y axis is in arbitrary units (and thus, no
significance is attached to the magnitude differences between
the different nodes) and the x axis represents time in seconds.
Activity representing stimulus presentation is clearly evident in
V1, but not in the other two ROIs.

Simulated fMRI Bold Time-Series
We used the integrated synaptic activity of each ROI as the input
to the fMRI BOLD balloon model of hemodynamic response (see
Methods section) to obtain a simulated fMRI signal time-series
for each ROI using the same representative subject discussed
above. Figure 8A shows these time-series during the length of
the simulated experiment (198 s). By inspecting the time-series,
we can appreciate, in some areas more clearly than others, that
the simulated fMRI signal is greater during the DMS trials than
during the control trials. Figure 8B shows the mean change in
simulated fMRI across 10 subjects for the DMS task condition
relative to the control condition. Performance data for these 10
simulated subjects is presented in Table 2; simulated fMRI was
significantly higher for the DMS task compared to the passive
viewing control condition (paired t-tests, p < 0.05 uncorrected;
see Table 3).

Functional Connectivity between Brain
Regions
To further compare our hybrid LSNM/connectome model’s
performance with the stand-alone model presented in Horwitz
et al. (2005), we averaged functional connectivity values (defined
as the within-condition correlation coefficient of the time series
between two regions) across subjects (applying a Fisher Z
transformation prior to averaging). Figure 9 shows the mean
of the within-subject functional connectivity task difference
between IT and each simulated ROI using both the integrated
synaptic activity time-series and the fMRI BOLD signal time-
series, and Table 4 presents the results of a statistical comparison
between the two conditions. For comparison purposes, we also
show in Figure 9 the functional connectivity of IT with the
contralateral IT (which should have a low value, since activity
in the contralateral IT consists entirely of noise). Figure 9 and
Table 4 demonstrate that there is a much stronger functional
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FIGURE 5 | Plots of electrical activity of all LSNM visual modules (red lines) and host nodes of Hagmann’s connectome (blue lines), for a

representative simulated subject. The simulated tasks were: three DMS trials (match, mismatch, match), followed by three control trials where degraded shapes

were used as inputs and the attention parameter was set to low (passive viewing). The y axis of each of the plots represents level of electrical activity, between 0 and

1. V1h and V1v denote vertical and horizontal-selective neuronal populations within V1/V2. V4h, V4c, and V4v denote vertical, corner, and horizontal-selective

neuronal populations within V4.

connectivity, expressed as a within-task time-series correlation
coefficient, between the ISA in IT and all other brain regions
(except cIT), during the DMS task as compared to the control
task. This result is what one would expect, knowing the network
architecture.

Regarding the functional connectivity between the BOLD
time-series of IT versus the BOLD time-series of all other ROIs
(also shown in Figure 9), our results are mixed. We observe
that, whereas the mean BOLD functional connectivity difference
values between IT and FS, D1, and FR are statistically greater
during the DMS condition than during the control condition
(as expected), the functional connectivity values between IT
and V4 and D2 are smaller during the DMS condition than
during the control condition. Thus, the functional connectivity
values of the fMRI BOLD time-series do not fully reflect the
functional connectivity values obtained using the integrated

synaptic activity time-series. This is not surprising since the
ISA has a finer temporal resolution than does the fMRI, and
futhermore, the hemodynamic response blurs together various
aspects of the neural processing. This is similar to what was found
in Horwitz et al. (2005).

Stimulation Results Using Only the
Connectome
The question may arise: is the addition of our LSNM
adding anything new? That is, would the TVB, as originally
constructed, be able to perform a visual processing task and
show the appropriate simulated electrophysiological activities?
To compare the functional connectivity values of the hybrid
LSNM/TVB model vs. TVB alone, we simulated a “V1
stimulation” paradigm using TVB.We created a stimulus pattern
that was similar in structure to the input stimuli that was used
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FIGURE 6 | Regions of interest used for computation of both

integrated synaptic activities and fMRI BOLD time-series.

in the hybrid LSNM/TVB simulations described above. The
connectome node in which the V1 LSNM was to be embedded
was stimulated with a train of 1-s pulses, 1.5-s delay period, and
2-s inter-trial intervals. The timing of stimulation was the same
as the timing of stimulus presentation shown in Figure 4A. The
duration of the stimulation experiment was 198 s and only one
subject was simulated. Because we did not have an attention node
in TVB, we did not simulate a control condition, and therefore
all trials were, in fact, analogous to the passive viewing condition
used in the hybrid LSNM/TVB model. Figure 10A shows the
simulated BOLD time-series for that experiment, and Figure 10B
shows the functional connectivity between the IT ROI and all
other ROIs. We are able to observe in Figure 10B a set of very
small positive correlation coefficients using the ISAs and a set of
both positive and negative correlation coefficients using the fMRI
time-series. The patterns of functional connectivity for both the
ISA and fMRI look nothing like those seen in Figure 9. This result
is as expected because in this case, essentially neural noise is the
only thing being transmitted through the network. Thus, neither
the simulated fMRI activities nor the functional connectivities
are similar to those found for the simulations incorporating
the task-based LSNM. These results demonstrate that the DSI-
based structural connection weights are incapable of yielding
the patterns of visual processing activity found in the task-based
LSNM.

DISCUSSION

In this paper, we demonstrated how to embed a previously or
newly constructed LSNM that performs one or more specific
cognitive tasks (in our case, a visual DMS for object shape
and a passive viewing of objects) into a structural connectome
model of the human cerebral cortex that is part of TVB software
framework. In work that will be presented elsewhere, we also
accomplished this for a LSNM of the auditory object processing
pathway that performs an auditory object DMS task (Horwitz
et al., in preparation). The final result of the current paper is a
full cerebral cortex model that performs both a visual DMS task
as well as a control passive viewing task in a part of the brain, and
generates inherent activity in the remaining parts of the brain not
directly engaged by the task. Neural noise generated by the latter

FIGURE 7 | Integrated synaptic activity using the ROIs for V1 (yellow),

IT (blue), and D1 (red) shown in Figure 6 during a visual DMS

experiment for a representative subject. Only the first six trials of the

experiment are shown, corresponding to the electrical activities shown in

Figure 5. The y-axis is in arbitrary units and the x-axis represents time in

seconds.

does affect the task-related nodes, which in turn have feedback
connections back to the non-task related nodes. Importantly,
this hybrid model can perform the cognitive tasks because the
task-based nodes are connected by a more finely detailed set of
anatomical connections than provided by the white matter DSI
connection weights found in the structural connectome model
supplied by the TVB software.

The benefits of the hybrid LSNM/TVB framework proposed in
this paper are threefold. First, our framework adds a biologically
plausible source of neural noise—originating from the TVB
connectome nodes—to the electrical activities of task-specific
neuronal populations (the LSNM nodes). Previous modeling
work (Horwitz et al., 2005) had implemented neural noise
by adding ad-hoc model regions that provided noise to task-
specific neurons, but the new approach allows the addition
of generic connectome data sets that have been obtained
independently from the modeling work. Second, our framework
incorporates extra connectivity into the TVB connectome. Such
extra connectivity is a refinement of the gross connectivity
provided by the white-matter tract weights given by the TVB
connectome, and they are necessary for a model to perform
a behavioral task. Previous computational models of the brain
using the connectome have simulated resting-state but not task-
based experiments. Finally, our framework compels modelers
to select specific spatial locations within the connectome
for putative task-based neuronal populations. Many previous
modeling approaches did not have the constraint of having to
specify explicit locations within the brain for model elements.

Most of the simulations we presented here were designed
to show that they yielded results that were in agreement
with those produced by the original LSNM (Tagamets and
Horwitz, 1998; Horwitz and Tagamets, 1999; Horwitz et al.,
2005), which themselves matched empirical electrophysiological
data from non-human primates and functional neuroimaging
(e.g., fMRI) data from human subjects. Because the simulated
data from the original LSNM generally agreed with empirical
findings, the combined model we have constructed shows
comparable computational-experimental agreement. Thus, this
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FIGURE 8 | (A) Simulated fMRI BOLD signals, using the balloon

hemodynamic response model, in combined LSNM/TVB modules,

corresponding to the representative subject’s integrated synaptic activity

shown in Figure 7. Thirty-six trials were simulated, in groups of six task (DMS)

trials (black areas) followed by six control (CTL) trials (gray areas). The x-axis

represents time in seconds and the y-axis is in arbitrary units. The simulated

TR is 2 s. (B) Bar graphs representing the mean signal change of timepoints 4,

5, and 6 after onset of a block of trials for each condition across 10 simulated

subjects. In each ROI, the mean of the within-subject difference between the

DMS and CTL conditions was statistically significant (see Table 3). Error bars

indicate standard errors.

work presents a template for expanding the TVB from a resting
state modeling software package into a task-based framework.

Over the years, a large number of task-based neural models
have been published, some of which have simulated human
and non-human primate functional neuroimaging data. As we
have repeatedly emphasized (e.g., Horwitz et al., 1999; Horwitz
and Banerjee, 2012), functional neuroimaging data, being non-
invasive, provide a major source of brain-based data from healthy
humans as well as from many individuals with various types
of brain disorders, and thus play a central role in our attempts
to understand the neural basis of cognitive function (and its
dysfunction), especially for those cognitive functions such as
language that are uniquely human. Examples of this literature
from other research groups include (Corchs and Deco, 2002;
Deco et al., 2004; David et al., 2005; Robinson et al., 2005;
Goebel and De Weerd, 2009; Peters et al., 2010; Bojak et al.,
2011; Furtinger et al., 2014). Several other large-scale neural
modeling efforts, although not specifically directed at functional
neuroimaging data, nonetheless could be easily extended to

TABLE 2 | Within subject average performances during the DMS

condition, as measured by counting the number of neuronal populations

in the response module (FR) responding above a certain threshold during

the response period.

Subject DMS Performance (%)

S1 77.8

S2 72.2

S3 83.3

S4 66.7

S5 66.7

S6 61.1

S7 77.8

S8 83.3

S9 72.2

S10 77.8

simulate such data (e.g., Garagnani et al., 2008; Eliasmith et al.,
2012; Garagnani and Pulvermuller, 2013).

Biologically realistic LSNM serve two functions. First,
and certainly most important, such models embody neural
mechanisms hypothesized to implement the specific cognitive
tasks under investigation. For example, in the Tagamets-Horwitz
LSNM (Tagamets and Horwitz, 1998) used in this paper, the way
in which a representation is maintained in short-term memory
during the delay portion of the DMS task is hypothesized to
depend on the wiring pattern of four PFC neural populations. In
the paper by Peters et al. (2010), a LSNM is used to simulate early
visual processing of brightness changes in a dynamic, illusory
display. The key hypothesis of their model, which is supported
by anatomical and neurophysiological evidence, is that there
are separate but interacting streams of processing related to the
processing of contour boundaries and the processing of surfaces
in early visual cortex.

The second function that LSNMs support is to provide partial
validation for the interpretations arising from novel functional
neuroimaging analysis methods. Unlike real brains, a LSNM can
provide a ground truth for assessing a data analysis method,
since every aspect of the model is known. For instance, the
Tagamets and Horwitz (1998) visual processing model was used
by Lee et al. (2006) to generate simulated fMRI data that could
be analyzed by Dynamic Causal Modeling (DCM) (Friston
et al., 2003); it was found that DCM produced strong evidence
for those causal models with correctly specified anatomical
connectivity corresponding to the underlying neural model. In
another study, Banerjee et al. (2012a) employed the same visual
model and generated simulated MEG data that were analyzed
using a method that compares timing differences during network
performance between two distinct tasks (Banerjee et al., 2012b).
The simulated results supported the interpretation that the data
analysis method would have drawn concerning the underlying
neural network behavior mediating the tasks.

It is important to emphasize that connectome models
obtained from diffusion tensor imaging data, such as employed
by the TVB, are inadequate to explain the specific neural basis
underlying any particular cognitive function (e.g., Figure 10).
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TABLE 3 | Comparison of Signal Change of simulated fMRI across 10 simulated subjects during a visual DMS task vs. control task (passive viewing of

degraded shapes).

DMS-mean DMS-s.d. Control-mean Control-s.d. Mean difference t statistic

V1/V2 2.5302 0.5472 −3.7968 0.8245 6.3269 14.4291*

V4 15.5375 3.0294 −11.7135 3.6004 27.2510 12.4791*

IT 3.0592 1.3521 −2.2049 1.6807 5.2641 5.3149*

FS 6.7389 1.3770 −3.3634 1.7132 10.1023 10.1016*

D1 7.8545 1.2092 −1.8398 1.0691 9.6943 12.8041*

D2 17.2893 1.7016 −10.7798 1.8173 28.0691 24.0932*

FR 6.5407 0.7699 −3.3149 0.5918 9.8556 21.9574*

The significance test used was a paired t-test with degrees of freedom = 9. *p < 0.05 (uncorrected).

FIGURE 9 | Mean across subjects of the within-subject functional connectivity task differences between IT and all other brain modules. Shown on the

left are the functional connectivity task differences for the integrated synaptic activity (ISA) and on the right for the fMRI BOLD time-series. The differences between

DMS and CTL in the ISA time-series all reached statistical significance; all the differences (except for V1) between DMS and CTL in the fMRI time-series also were

statistically significance (see Table 4 for more details). Error bars represent standard errors.

One reason is that structural connectivity data acquired from
diffusion tensor/spectrum imaging lead to symmetric connection
weights, since the direction of the white matter fibers between
nodes cannot be determined by this technique. Usually for
task-based models, the connection weights between nodes
are asymmetric. A second reason is that the interregional
connectivity weights derived from DTI are simply too crude.
Task-based models, such as those mentioned above and those
we employed in this paper, have a much finer and detailed set
of interregional connection weights. It may be that advances in
human structure imaging will result in more refined DTI-like
measurements in the future, but such measurements will still
likely be at a spatial scale that is too large to yield a set of weights
that can enable a neural model to perform a specific task.

An approach somewhat similar to the one presented in this
paper was developed by Goebel and colleagues (Goebel and De

Weerd, 2009; Peters et al., 2010, 2012). The key notion was
that one should combine task-based neural modeling within a
whole-brain framework, so that functional neural imaging and
neural modeling data can be directly compared. Specifically,
Goebel and colleagues developed what was called a “common
brain space” framework in which the neural elements of a
computational model are connected to vertices of a cortical mesh
in such a way as to implement specific hypotheses about how a
task is mediated. In this common brain space, both simulated
computational data and experimental functional neural imaging
topographic data could be explicitly compared using exactly the
same data analytic tools. Conceptually, the notion presented
in this paper is similar, with the exception that instead of a
cortical mesh, we employ the TVB connectome nodes. Our
approach entails a larger cortical network, while the Goebel
et al. framework has produced results at a finer spatial scale,
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TABLE 4 | Task differences in functional connectivities of IT and all other brain areas across 10 simulated subjects between a visual DMS task and control

task (passive viewing of degraded shapes) for both the simulated integrated synaptic activities (ISA) and simulated fMRI BOLD.

DMS mean DMS s.d. Control mean Control s.d. Mean difference t statistic

ISA

V1 0.4315 0.0415 0.2171 0.0611 0.2144 9.7492*

V4 0.5482 0.0671 0.2872 0.0981 0.2609 6.7897*

FS 0.3396 0.0626 0.1134 0.0782 0.2262 6.8929*

D1 0.1384 0.0101 0.0379 0.0190 0.1005 13.5152*

D2 0.2874 0.0413 0.0675 0.0529 0.2199 9.8959*

FR 0.1523 0.0172 0.0067 0.0178 0.1456 17.2853*

cIT −0.0022 0.0019 −0.0173 0.0028 0.0151 12.0941*

fMRI

V1 0.8265 0.0991 0.8065 0.1796 0.0201 0.4653

V4 0.6477 0.1488 1.0601 0.2323 −0.4124 −6.5015*

FS 1.0479 0.0758 0.7572 0.2340 0.2906 3.8488*

D1 1.0075 0.1727 0.7761 0.1649 0.2315 5.4840*

D2 0.7739 0.1649 1.0936 0.2014 −0.3197 −7.5872*

FR 0.7640 0.1164 0.6312 0.1464 0.1328 3.0321*

cIT 0.2162 0.0406 0.0729 0.0453 0.1434 15.4369*

The significance test used was a paired two-tailed t-test with degrees of freedom = 9. *p < 0.05 (uncorrected).

specifically one that can be related to visual system neuroimaging
data.

In the past, when a large-scale neural network model was
devised, one could assign spatial names to the network modules
without worrying about the actual topographic location of the
computational modules. However, in the framework proposed
here, these modules had to be placed into an actual cerebral
cortical connectome each of whose nodes had specific spatial
coordinates. There are likely to be a number of ways to decide
which neural modeling node corresponds to which connectome
node. In this paper, we used Talairach coordinates (Talairach
and Tournoux, 1988) obtained from experimental task data
(Haxby et al., 1995) for assigning topographic locations to the
computational modules. The one area where this method did not
work was in the PFC. As mentioned above, four distinct neural
populations formed the PFC module, but it was not known if
all four should be in the same macroscopic spatial location or
in different locations. This is an important topic future research
will need to address, since we know from experiments in non-
human primates that a brain area is likely to be comprised of
multiple neural populations (i.e., a single fMRI voxel contains
neurons from several cortical columns and several cortical
layers). Ultrahigh field fMRI is currently providing data that can
somewhat resolve cortical columns or layers (for a review, see
Bandettini et al., 2012).

A related issue is how many TVB nodes to include in any
functional brain imaging ROI. In previous work (Horwitz et al.,
2005), we indicated that a brain imaging ROI contained neural
elements that participated in the task of interest, and other neural
elements (non-specific nodes) that did not. However, because
of the low spatial resolution of functional neuroimaging data,
the neural activity of these latter elements would contribute
to the measured neuroimaging data. In the combined model

presented in this paper, we placed an arbitrary number (i.e., 5) of
non-specific connectome nodes into each ROI of the task-based
modules. Because these non-specific nodes are processing only
noise, their contribution to the simulated fMRI signal is small.
Nonetheless, future research will need to address the question of
how to determine the appropriate number of such non-specific
elements.

In the LSNM used in the current paper, a number of
simplifications were employed that may have to be modified in
future studies where more detailed neural models are employed.
For example, in the current paper, we assumed there were no
conduction delays between the various neural populations. This
may be justified here by the fact that we didn’t employ spiking
neurons, used a task whose temporal resolution was in the range
of seconds, and targeted fMRI where the BOLD signal is delayed
by 4–6 s. Simulating EEG/MEG could necessitate, depending
on the specific task that is under study, the incorporation of
conduction delays into the model. For instance, both Ghosh et al.
(2008) and Deco et al. (2009) found that important questions
about resting state fMRI required employing neural models that
include such delays. Note also that the Wilson-Cowan units used
in the TVB differed somewhat from the LSNMmodifiedWilson-
Cowan units. Future studies should clarify how these two sets
differ with respect to network dynamics.

The connectome provides an anatomical starting point for
extending the model so that it can perform other tasks, as well as
the original one. The strength of the DSI anatomical connection
weights provided by the connectome offer a useful hint as to
where to insert the new modules that would extend the model’s
capability. This we see as a positive feature of the task-based
connectome framework that is being proposed.

Finally, one more future research issue that our approach
generates is to assess the effect of the task-based elements on

Frontiers in Neuroinformatics | www.frontiersin.org 13 August 2016 | Volume 10 | Article 32

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Ulloa and Horwitz Task-Based Connectome Neural Model

FIGURE 10 | (A) Simulated BOLD signal of the unmodified TVB Hagmann

et al. (2008) brain model during visual stimulation in a single subject. One of

the nodes in V1 was stimulated with a series of pulse trains that were similar in

timing to the stimuli presented during the DMS task. (B) Functional

connectivity between IT and all other ROIs in the network using both

integrated synaptic activities and fMRI BOLD time-series.

the non-task based connectome nodes. Recall that there are
bidirectional connections between the two sets of nodes. The
non-task based nodes provide neural noise to the task-based
elements, but the activity of the task-based elements in turn

project back to the non-task based nodes. Two questions arise
that could be compared with experimental data. First, how does
the task-based activity affect the activity of the rest of the brain?
Does it change its resting state character in any way? Second, will
the task-based activity of one node affect others in the task-based
part of the brain via activity it sends out to the non-task nodes
which returns as noise to other task-based elements?

In conclusion, we have demonstrated how to embed a large-
scale, biologically realistic task-based neural model into TVB,
which provides a detailed connectome of the human cerebral
cortex, neural processing units for each node of the connectome,
and a set of forward models that can convert the simulated
neural activity into a variety of functional brain imaging signals.
Such a system will enable a better comparison between empirical
and computational data, and lead to a better understanding of
how interacting neural populations can lead to high level human
cognitive behaviors.
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