
Molecular Cell

Article
Latent Regulatory Potential
of Human-Specific Repetitive Elements
Michelle C. Ward,1,5 Michael D. Wilson,1,5,6,* Nuno L. Barbosa-Morais,2 Dominic Schmidt,1 Rory Stark,1 Qun Pan,2

Petra C. Schwalie,3 Suraj Menon,1 Margus Lukk,1 Stephen Watt,1 David Thybert,3 Claudia Kutter,1 Kristina Kirschner,1

Paul Flicek,3,4 Benjamin J. Blencowe,2 and Duncan T. Odom1,4,*
1University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
2Banting and Best Department of Medical Research and Department of Molecular Genetics, Donnelly Centre, Toronto, ONM5S 3E1, Canada
3European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
4Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
5These authors contributed equally to this work
6Present address: SickKids Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ONM5G 1L7, Canada

*Correspondence: michael.wilson@sickkids.ca (M.D.W.), duncan.odom@cruk.cam.ac.uk (D.T.O.)

http://dx.doi.org/10.1016/j.molcel.2012.11.013
Open access under CC BY license.
SUMMARY

At least half of the human genome is derived from
repetitive elements, which are often lineage specific
and silenced by a variety of genetic and epigenetic
mechanisms. Using a transchromosomic mouse
strain that transmits an almost complete single
copy of human chromosome 21 via the female
germline, we show that a heterologous regulatory
environment can transcriptionally activate trans-
poson-derived human regulatory regions. In the
mouse nucleus, hundreds of locations on human
chromosome 21 newly associate with activating
histone modifications in both somatic and germline
tissues, and influence the gene expression of nearby
transcripts. These regions are enriched with primate
and human lineage-specific transposable elements,
and their activation corresponds to changes in DNA
methylation at CpG dinucleotides. This study reveals
the latent regulatory potential of the repetitive human
genome and illustrates the species specificity of
mechanisms that control it.

INTRODUCTION

Between one-half and possibly up to two-thirds of the human

genome is derived from repetitive sequences, most of which

are classified as transposable elements (TEs) (de Koning et al.,

2011). TEs can serve as regulatory DNA contributing to tissue-

specific transcriptional evolution (Bourque et al., 2008; Faulkner

et al., 2009; Lowe et al., 2007; Oliver andGreene, 2009), and their

activity has altered the regulatory circuitry of embryonic stem

cells (Kunarso et al., 2010), mammalian pregnancy pathways

(Lynch et al., 2011; Xie et al., 2010), and the deployment of

CTCF binding sites across mammalian genomes (Bourque

et al., 2008; Schmidt et al., 2012). The rapid increase in

sequenced mammalian genomes (Lindblad-Toh et al., 2011),

in vivo multivertebrate transcription factor binding maps
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(Kunarso et al., 2010; Schmidt et al., 2010, 2012), and computa-

tional tools to dissect repeat-based genomes (Treangen and

Salzberg, 2012) has uncovered lineage-specific genome innova-

tions whose biological functions are not known.

Relative to the mobility of TEs in species such as maize,

Drosophila, mice, and some primates (Maksakova et al., 2006),

the activity of retrotransposons has declined in hominids (Lander

et al., 2001), yet TEs continue to shape the human genome. The

insertion of TEs underlies at least 65 human diseases (Cordaux

and Batzer, 2009; Goodier and Kazazian, 2008) and can provide

a substrate for nonallelic homologous recombination, resulting in

structural changes (Beck et al., 2011). As transposons rapidly

acquire mutations and as their activity can damage a genome,

multiple mechanisms have evolved to silence them in mammals

(Levin and Moran, 2011), including specific histone modifica-

tions, DNA methylation, and targeted small RNAs (De Fazio

et al., 2011; Maksakova et al., 2008; Rebollo et al., 2011; Reuter

et al., 2011).

One consequence of the arms race between transposons and

transposon silencing mechanisms is that the regulatory potential

of a transposon-derived sequence is difficult to evaluate in its

host which has coevolved mechanisms to repress it. Thus,

functional in vivo studies of TEs often employ heterologous

strategies such as placing human retroelements into other

vertebrate species including mouse, rat (Kano et al., 2009), and

zebrafish (Pi et al., 2004). Using an aneuploid mouse that stably

transmits a majority (42 of 46.9 Mb) of human chromosome 21

(HsChr21) through the female germline (Tc1) (O’Doherty et al.,

2005), we previously demonstrated that the nonrepetitive portion

of mammalian genomes is largely transcriptionally directed by

cis-acting regulatory elements (Wilson et al., 2008). This study

employed genome-tiling microarrays, which by design did not

permit the analysis of repetitive regions. Using high-throughput

sequencing, which allows us to explore a greater percentage

of the TE-derived genome, we here explore the in vivo transcrip-

tional control of a human chromosome placed in a heterologous

mouse environment. This unique system revealed unexpected

regulatory and transcriptional potential in many recently evolved

human sequences which are associated with changes in DNA

methylation and chromatin state.
.
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Figure 1. In a Mouse Carrying Human Chromosome 21, Most

Locations of Human Chromosome 21 Are Transcribed in Liver

Largely as in Human Tissues, Yet Specific Loci Show Differences

(A) High-throughput sequencing of chromatin immunoprecipitations and

poly(A) mRNA enrichment revealed that the CSTB locus is occupied by RNA

polymerase II, enriched for H3K4me3, and transcribed into RNA in both human

and Tc1 mouse liver.

(B) The DSCR4/8 locus on HsChr21 shows similar evidence of transcription in

Tc1 mouse liver tissue, which is not evident in normal human liver.
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RESULTS

Many HsChr21 Regions Transcriptionally Active in Tc1
Mouse Tissues Are Silent in Human
To compare in vivo gene regulation of both repetitive and non-

repetitive regions of HsChr21 between human and Tc1 mouse

livers, we experimentally profiled the following using high-

throughput sequencing methodologies: (1) polyadenylated

(poly[A])-containing mRNA transcripts, (2) regions enriched

for trimethylation of H3K4 (H3K4me3) as a marker for tran-

scriptional initiation (Bernstein et al., 2005; Guenther et al.,

2007; Heintzman et al., 2007), and (3) genomic occupancy of

the RNA polymerase II (Pol II) basal machinery (Figure 1; Exper-

imental Procedures; see Table S1A, Document S2, and

Figure S1 online).

Using H3K4me3 as a proxy for transcription initiation, we

found that most regions activated on HsChr21 (214/383) were

not significantly different in quality and quantity between the

two species (we henceforth refer to these sites as Shared; Fig-

ure 1A, Figure S2A, Experimental Procedures). By using

sequencing-based methods instead of microarrays, we also

identified specific human sequence locations uniquely activated

in the mouse nucleus. For example, in Tc1 mouse livers, the

bidirectional promoter of the Down’s Syndrome critical regions
Mo
4 and 8 (DSCR4 and DSCR8) is bound by Pol II, enriched for

H3K4me3, and generates poly(A) transcripts (Figure 1B).

Normally, these two long noncoding RNAs are transcriptionally

driven in human placenta by a primate-specific LTR retrotrans-

poson but are silenced in liver (Dunn et al., 2006).

In total, we identified 118 regions on HsChr21 enriched for

trimethylation of H3K4 in Tc1 mouse liver compared to human

(henceforth Tc1-specific), which we defined as having at

least 4-fold greater normalized read counts, with an FDR

of <0.1 (Experimental Procedures, Figure 2A, Figures S2A

and S2B). We confirmed that the Tc1-specific regions were

robust and could not be explained by misalignment of

sequencing reads with control experiments including paired-

end mapping of chromatin immunoprecipitation (ChIP) experi-

ments (Table S1A), different alignment strategies (Tables

S1B–S1D, Figure S2C), and were also validated by qPCR

(Table S1E and Figure S2D).

Only 51 locations on HsChr21 activated in human liver were

found enriched relative to Tc1 mouse liver (henceforth Human-

specific) using these criteria. Notably, in contrast to most

Tc1-specific activated regions, which largely appeared unique

to the mouse, regions identified as containing H3K4me3 specif-

ically in human often showed measurable signal in the Tc1

mouse (Figure 2, Figures S2E and S2F).

The design and sensitivity of genome tiling microarrays used

by the prior study that compared human and Tc1 mouse

liver gene regulation (Wilson et al., 2008) prevented the identi-

fication of the majority of these Tc1-specific regions, discov-

ered here by ChIP-seq. Because repetitive sequences are

excluded from microarray design (Bertone et al., 2006), 40%

of the Tc1-specific regions (n = 47) overlapped less than

three microarray probes, which was the minimum criteria to

identify regions bound by ChIP experiments. Indeed, only

907 of the 74,901 chromosome 21 probes on the Agilent micro-

array overlap with sequences in the RepeatMasker library.

Thirty-seven percent (n = 44) of the Tc1-specific regions that

overlapped three or more probes had insufficient signal to be

called in either species in our previous study. Of the remaining

27 Tc1-specific H3K4me3 regions that were identified on

microarrays, only nine were classified as unique to the Tc1

mouse. In summary, our current study validates over 94% of

the Shared H3K4me3 regions originally identified by ChIP-

chip; however, due to the increased coverage and sensitivity

afforded by sequencing, we newly identify Tc1-specific geno-

mic regions associated with activated chromatin and repetitive

elements.

Consequences of Tc1-Specific Transcriptional
Activation
H3K4me3 has been shown to serve as an anchorage for the

basal transcriptional machinery (Bernstein et al., 2005; Guenther

et al., 2007; Heintzman et al., 2007; Vermeulen et al., 2007). We

looked for evidence for transcriptional activation near HsChr21

regions associated with H3K4me3. Tc1-specific H3K4me3

regions both have higher overlap with Pol II in Tc1 mouse liver

than in human liver (74% versus 28%, respectively; Figure S2G)

and are located near genes with higher gene expression in the

Tc1mouse (Figure 2 and Figure S2G). Many Tc1-specific regions
lecular Cell 49, 262–272, January 24, 2013 ª2013 Elsevier Inc. 263
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Figure 2. Tc1-Specific Transcription Initia-

tion Occurs in Somatic and Germline

Tissues and Influences Gene Expression

(A–C) Chromosome-wide identification of all

regions enriched for H3K4me3 on HsChr21 in

mouse and human liver, kidney, and testes;

heatmap is sorted by descending signal strength

and by species specificity.

(D) Similar sets of loci on HsChr21 are enriched for

H3K4me3 in both mouse and human, and these

are largely a subset of loci found in testes in both

species. In liver and kidney, Tc1-specific loci

enriched for H3K4me3 were found in similar loca-

tions, which were distinct from those found in Tc1

mouse testes.

(E) H3K4me3-enriched sites in the Shared and

Tc1-specific categories in liver were associated

with the nearest transcription start site and

the expression levels of genes on Tc1-HsChr21

determined relative to human genes (Shared,

n = 86; Tc1 specific, n = 17) (***p % 0.0005, one-

sided Mann-Whitney U test).
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have therefore resulted in changes in gene expression, high-

lighting their latent regulatory potential.

We asked whether the transcriptional activation observed in

Tc1 mouse liver also occurred in other somatic tissues. We

mapped H3K4me3-associated DNA regions in Tc1 mouse

and human kidney samples and identified a similar set of

Tc1-specific transcriptionally active regions, many of which

were shared with liver (Figure 2B and Table S3). H3K4me3

profiling in Tc1 mouse brain, spleen, and muscle tissues re-

vealed that at least 50% of Tc1-specific liver regions are en-

riched across all profiled somatic tissues (Table S3 and

Figure S2H). Thus, the occurrence of Tc1-specific H3K4me3

regions on HsChr21 occurs broadly across somatic mouse

tissues.

Relative to somatic tissues, testes transcribe a greater

proportion of the mouse genome (Shima et al., 2004), and this

transcription is accompanied by an increased number of

H3K4me3-associated regions (Smagulova et al., 2011). We

tested the possibility that this global transcriptional upregulation

in germline tissuesmight further unmask additional latent regula-

tory regions in the human genome. Consistent with these

reports, more than twice as many H3K4me3-associated regions
264 Molecular Cell 49, 262–272, January 24, 2013 ª2013 Elsevier Inc.
were identified on HsChr21 in testes from

either Tc1 mouse (n = 994) or human (n =

905), compared to somatic tissues (Fig-

ure 2C). In testes, the majority of regions

enriched in H3K4me3 were shared

between human and mouse (n = 750)

and appear to be a superset encompass-

ing those found in liver and kidney (Fig-

ure 2D). The regions enriched for

H3K4me3 specifically in Tc1 mouse

testes were largely distinct from those

found specifically in Tc1 mouse liver and

kidney (Figure 2D and Table S3). In sum,

our data indicate that latent regulatory
regions in the human genome can become transcriptionally acti-

vated in somatic and germline tissues of a heterologous species.

Young, Primate-Specific Repeats Can Be
Transcriptionally Activated in the Tc1 Mouse
Weaskedwhether the TE composition differed between the Tc1-

specific H3K4me3 regions and those H3K4me3 regions that

showed no significant differences between species. To do this,

we collected all the repeat elements that were significantly

enriched for H3K4me3 in liver, kidney, and testes and then sub-

divided them based on whether they were shared between

species or unique to the Tc1 mouse (Figures 3A–3C). We found

that repeat elements were significantly more likely to be specif-

ically enriched for H3K4me3 in Tc1 liver and kidney tissues

(p = 7.6 3 10�9 and 6.7 3 10�9, respectively) (Figures 3A and

3B, leftmost panels). In contrast to the somatic tissues, the

testes do not show significant repetitive element enrichment

between Tc1-specific and Shared H3K4me3 regions (p = 0.27;

Tables S2A and S2B) (Figure 3C, leftmost panel).

To identify whether specific types of repeats were responsible

for the transcriptional activation identified in the somatic tissues

of the Tc1 mouse, we further subdivided the H3K4me3 regions
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Figure 3. Tc1-Specific Locations of Transcription Initiation Are

Enriched for Young, Lineage-Specific Repetitive Elements

(A) Fraction of repeat elements within a 10 kb window around the

H3K4me3 peak summit in Shared (black) and Tc1-specific (red) events in

liver. Shown is age of the repeats in Tc1-specific and Shared sites as

determined by nucleotide substitution rates of repeat instances at H3K4me3

peak summits.

(B) As in (A) for kidney.

(C) As in (A) for testes.
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Mo
by their component repeat class (Figures 3A–3C, middle panels).

Most notably, LTR elements showed a clear, Tc1-specific

enrichment of H3K4me3 in the liver and kidney (p < 10�5). Simi-

larly, H3K4me3 in Tc1 mouse liver and kidney was enriched at

LINE repeats, despite a more diffuse architecture (p < 10�3)

(Figures 3A and 3B; Tables S2A and S2B, Figure S3A, Document

S2). Five of the 20 human transposable SVA elements on

chromosome 21 (Tc1-HsChr21) were significantly enriched for

Tc1-specific H3K4me3 in liver (and 6/20 in kidney) (p < 0.03)

(Table S2B).

In total, there are 41,877 repeat instances across Tc1-

HsChr21, of which 1,043 were associated with H3K4me3. The

distribution of the repeat classes captured in these H3K4me3

regions is similar to the repeat class distribution in the entire

Tc1 HsChr21 chromosome (9% versus 8%, respectively, for

DNA elements; 33% versus 22% for LINEs; 23% versus 25%

LTRs; and 35% versus 43% for SINEs) (Tables S2C, Document

S2). This suggests that the observed Tc1-specific repeat enrich-

ments are not due to biases in repeat content in promoter

regions.

At least 60% of Tc1-specific H3K4me3-associated regions

enriched for repeats were identified in all somatic tissues profiled

(Table S3). Of the most significantly enriched repeat types

identified in the Tc1 mouse liver, the LTR elements LTR12C

(10/11 on Tc1-HsChr21) and LTR12D (5/5 on Tc1-HsChr21)

were constitutively activated across kidney, brain, muscle, and

spleen Tc1mouse tissues (Table S3A and Figure 4). Other signif-

icant liver-enriched repeats of the LINE, SVA, and SINE classes

showed variable activation across tissues (Table S3).

Many of these repeat elements were primate and human

lineage-specific and were transcriptionally silent in human liver

and kidney (Figure 3D, Figure S3B). Indeed, based on analysis

of the nucleotide substitution andmutation rates, these repetitive

elements are significantly younger than those shared between

human and Tc1 mice (Experimental Procedures, Figures 3A

and 3B, righthand panels; Figure S3A), consistent with a mecha-

nism wherein mice may lack the regulatory machinery needed to

silence human-specific repetitive elements.

In the testes, the repeat enrichments were not significantly

different between the Tc1-specific and Shared categories (p =

0.27) (Table S2B). In contrast to the human somatic tissues,

many repetitive elements found in the Tc1 mouse testes are

also enriched for H3K4me3 in human testes (e.g., 2/12 L1s, 1/5

SVAs, 7/8 AluYs, and 14/17 LTRs).

Between somatic andgermline tissues, themost striking differ-

ence in transcription initiation among classes of repeat regions

was observed for the SINE class (especially the AluY subfamily),

which were significantly more often enriched for H3K4me3 in

both human and Tc1 mouse testes (Figure 3C, middle panel;
(D) Number and lineage of repeat elements at H3K4me3 peak summits in liver,

kidney, and testes. Pie charts are scaled relative to the total number of

H3K4me3 binding events in the Shared category where the purple proportion

represents the fraction of H3K4me3 events that have a repeat element at the

H3K4me3 peak summit. Bar charts represent the lineage in which the repeat

elements originated; the numbers of human-specific (and primate-specific for

Shared testes sites) are reported beside the bar charts. The composition of

repeat lineages on HsChr21 is shown in the bar graph on the right panel (*p%

0.05, **p % 0.005, Wilcoxon rank-sum test).
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Figure 4. Repetitive Elements Contain Latent Transcriptional

Regulator Binding Sites

(A) Individual CEBPA, HNF4A, and CTCF binding sites can be carried by

specific repeat elements. An LTR12C repetitive element upstream of theSOD1
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Figure S3, Table S3B). AluY is the youngest Alu subfamily

member in human, originating less than 35 million years ago

(Jurka et al., 2002), after the mammalian radiation. The many

recently evolved SINE elements transcribed in both species’

testes shifted the repeat age distribution (Figure 3C, right panel);

removal of this specific class of repeats results in age distribu-

tions similar to those found in somatic tissues (Figure S3A).

In contrast tomouse B1 SINE elements, which are often bound

by Pol II at testes-specific promoters (Ichiyanagi et al., 2011),

primate-specific Alu SINE elements are regulated by RNA poly-

merase III (Pol III) (Rogers, 1983). We performed Pol III ChIP-seq

in Tc1 testes, and using multiply mapping reads, we observed

165 AluY-associated Pol III peaks that occurred within regions

enriched for H3K4me3 in the same tissue (Table S4). While these

results support the role of Pol III in regulating AluY elements in

mouse testes, the low mappability of AluY repeats prevented

us from assessing binding differences with other Tc1 mouse

tissues. Overall, these results indicate that Pol III and its regula-

tory machinery can, at least in part, accurately interpret human

AluYs in the heterologous mouse testes.

Transcriptional Regulator Binding in the Tc1 Mouse
Given the widespread transcriptional activation of human-

specific repeat elements in Tc1 mouse tissues, we asked

whether theymight also harbor latent transcription factor binding

sites. Recent studies have demonstrated that up to a quarter of

the OCT4 and NANOG stem-cell-specific transcription factor

binding events in the human genome contain TEs (Kunarso

et al., 2010); similarly, the binding evolution of neural restrictive

silencing factor (NRSF) (Johnson et al., 2006) and the insulator

protein CTCF binding can depend on repetitive elements (Bour-

que et al., 2008; Kunarso et al., 2010; Schmidt et al., 2012).

We investigated the genome-wide binding of CTCF (Schmidt

et al., 2012) as well as the tissue-specific transcription factors

CEBPA and HNF4A (Schmidt et al., 2010) in both human and

Tc1 mouse liver tissue (Figure 4A and Figure S4A) and found

a number of primate-specific repeats bound by these transcrip-

tion factors (Figure S4B). For instance, an LTR12C repeat,

comprising part of the long noncoding RNA BC041449 that is

located directly upstream of the amyotrophic lateral sclerosis

gene SOD1, is occupied by CTCF in Tc1-mouse liver, but not

in human. This CTCF binding event also shows trimethylation

of H3K4 as well as Pol II occupancy, illustrating that repeat-

driven latent regulatory potential could be biologically important

(Figure S4C).

The set of TE families significantly enriched in a Tc1-specific

manner for each transcription factor varied and was distinct

from those revealed in our H3K4me3 ChIP-seq experiments
locus reveals a latent CTCF binding site in Tc1 mouse liver. Upstream of the

Shared H3K4me3 site at theCSTB gene, there is a Shared HNF4A and CEBPA

binding event, while Alu-associated CEBPA and HNF4A sites are revealed in

the Tc1 mouse.

(B) Heatmap representation of repeats enriched in Tc1-specific events (red) or

enriched in Shared (black) at H3K4me3 and transcription factor peak summits

in liver, kidney, and testes. p values as calculated by chi-square test are

presented in –log10 scale. Only repeat names that are significant in at least one

data set are shown (p = 0.05).

.
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Figure 5. Tc1-Specific Sites of Tran-

scription Initiation Are Depleted in DNA

Methylation

(A) Fraction of methylated DNA at H3K4me3-

enriched sites Shared between HsChr21 (blue)

and Tc1-HsChr21 (red) in liver.

(B) Fraction of methylated DNA at Tc1-specific

H3K4me3-enriched sites.

(C) Fraction of methylated DNA at regions where

there is no H3K4me3 enrichment in Human or Tc1

mouse. Interrogated CpG sites are shown within

LTR and LINE repetitive elements (purple) or genes

(gray). Each experiment was performed using

three biological replicates.
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(Figure 4B). For example, the Tc1-specific HNF4A binding events

are particularly enriched for Alu SINE elements, an observation

that is supported by recent analyses showing that these

elements contain HNF4A binding motifs (Bolotin et al., 2011).

A greater fraction of the Tc1-specific CTCF binding sites

are enriched for H3K4me3 (22/39) than are the Shared CTCF

sites (90/358) (Table S5). In contrast, 40%–50% of CEBPA and

HNF4A binding is associated with H3K4me3, regardless of

whether the binding is Shared or Tc1-specific (Table S4). All

CTCF-bound LTR elements are associated with H3K4 trimethy-

lation (4/4) compared to a minority of CEBPA-bound (2/16) and

HNF4A-bound (3/18) Alu elements. The absence of H3K4me3

at these transcription factor binding sites does not exclude the

possibility that their binding was facilitated by the differential

regulation of other epigeneticmodifications, such as those found

at enhancer elements. In sum, many different classes of repeti-

tive elements in the human genome contain latent regulatory

instructions for transcription factor binding, transcriptional acti-

vation, and polymerase occupancy that is revealed in vivo

when placed in a heterologous mouse environment.

Mouse-Nucleus-Mediated Changes in Human
Chromosome 21 DNA Methylation Correspond to
Regions of Unmasked Regulatory Potential
We sought to identify themechanism underlying the activation of

these normally latent human regulatory elements. Prior observa-
Molecular Cell 49, 262–272
tions have noted that methylation of cyto-

sines in CpG dinucleotides can cause

transcriptional silencing of repetitive

elements across eukaryotes (Zemach

et al., 2010). Indeed, cytosine methylation

is typically anticorrelated with H3K4me3

(Cedar and Bergman, 2009). Thus, we

first asked if differences in the methyla-

tion of cytosines on HsChr21 associate

with the transcriptional changes we

observed.

To identify the CpGmethylation state of

representative HsChr21 regions, we per-

formed bisulphite conversion of isolated

genomic DNA from human and Tc1

mouse livers, followed by locus-specific

pyrosequencing analysis. In regions of
Shared H3K4me3 enrichment, CpG dinucleotides were consis-

tently hypomethylated in both species (five regions with two to

four CpG sites per region) (Experimental Procedures, Figure 5A,

Tables S6A and S6B). Conversely, in regions lacking H3K4me3

enrichment, CpGs were uniformly methylated in both species

(two regions with three CpG sites per region) (Figure 5C, Tables

S6A and S6B). These results are consistent with the above-

mentioned anticorrelation between DNA methylation and

H3K4 trimethylation. Importantly, CpGs falling in Tc1-specific,

H3K4me3-enriched regions in Tc1 mouse livers showed less

CpG methylation compared to human livers. This trend was

observed for multiple CpGs in both repeat-associated (LINE

and LTR; n = 4), and nonrepetitive Tc1-specific H3K4me3

regions (n = 3) (Figure 5B, Tables S5A and S5B).

We extended these CpGmethylation experiments to the entire

HsChr21 by using Illumina Human Methylation 450k BeadArrays

to assess CpG methylation in two tissues (liver and testes) ob-

tained from human, Tc1 mice, and (as a hybridization control)

wild-type mice (Experimental Procedures). We identified 3,174

human CpG probes on HsChr21 that did not crosshybridize

with mouse DNA and used these to compare the methylation

state of HsChr21 in mouse and human. Consistent with the

locus-specific results above, we found that in the Tc1 mouse,

CpG sites in Tc1-specific H3K4me3 regions in liver (n = 15)

and testes (n = 12) were depleted of DNAmethylation, compared

to human (liver median fraction methylated CpG sites 0.6 [Hsa]
, January 24, 2013 ª2013 Elsevier Inc. 267
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Figure 6. Changes in Transcription Status

betweenHuman and Tc1MouseAre Associ-

ated with Changes in the Repressive

Histone Mark H3K9me3

(A) The genome-wide occupancy of H3K9me3

was determined in human liver (blue) and Tc1

mouse liver (red) by ChIP-seq and then compared

with the transcriptional activation status of these

regions. The vertical axis shows the log2 normal-

ized read counts for H3K9me3 ChIP experiments

averaged across three individuals from each

species. (*p % 0.05, ***p % 0.0005, Wilcoxon-

matched pairs test).

(B) The occupancy of H3K9me3, H3K4me3, and

Pol II is shown for the BAGE gene on HsChr21

located in human liver (blue) and Tc1 mouse liver

(red). Human liver shows enrichment of the

repressive histone mark H3K9me3 over the BAGE

gene, which is missing in Tc1 mouse liver.

Conversely, the mouse liver shows hallmarks of

transcription (H3K4me3 and Pol II occupancies)

that are absent from human.
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versus 0.45 [Tc1], p < 0.05; testes median methylation 0.83 [Hsa]

versus 0.39 [Tc1], p < 0.05) (Figure S5A and Table S6C). Interest-

ingly, CpG sites within Shared H3K4me3 regions in liver (n = 43)

and testes (n = 92) indicated an elevation of DNA methylation in

the Tc1 mouse relative to human (liver median fraction methyl-

ated CpG sites was 0.06 [Hsa] versus 0.25 [Tc1], p < 0.005);

testes median methylation was 0.11 [Hsa] versus 0.40 [Tc1],

p < 0.005) (Figure S5A). Although this array-based analysis

was limited by the small number of CpG probes in Tc1-specific

H3K4me3 regions, these results suggest that DNA methylation

plays a role in the differential epigenetic regulation of human

DNA sequences in a heterologous mouse environment (Experi-

mental Procedures, Figure S5A, Table S6A).

If DNA methylation changes in the Tc1 mouse were the mech-

anism that unmasked latent regulatory information in human

repetitive sequences, then treating human cells with an agent

that globally demethylates DNA should result in transcriptional

upregulation of the same regions revealed by the Tc1 mouse.

We treated cultured HepG2 liver cancer cells with 5-Aza-

20deoxycytidine-50-triphosphate (5-Aza-dCTP) to globally deme-

thylate cytosines (Dannenberg and Edenberg, 2006) and indeed

observed that this subsequently resulted in trimethylation

of H3K4 in the regions activated in Tc1 mouse tissues (n = 4,

Figure S5B).

For instance, this treatment altered the DNAmethylation of the

LTR16A repeat element found at the DSCR4/8 promoter, which

is also upregulated in Tc1 mice (Figure 1B, Figure S5B). Con-

sistent with the anticorrelation of DNAmethylation and transcrip-

tion, this promoter is hypomethylated in human placenta, where

it is normally expressed, but hypermethylated in blood cells

(Du et al., 2011). Importantly, no increase in H3K4me3 enrich-

ment was observed for regions silenced in both human and

mouse. However, regions not capable of further DNA demethy-

lation (n = 4) also showed enrichment in H3K4me3, suggesting

that the effect we observe could be due in part to indirect effects

(Figure S5B). Indeed, a related cytosine analog designed to
268 Molecular Cell 49, 262–272, January 24, 2013 ª2013 Elsevier Inc
inhibit DNA methylation has been shown to additionally affect

genomic organization (Komashko and Farnham, 2010).

In sum, DNA methylation changes mechanistically contribute

to transcriptional activation of regions identified as latent regula-

tory elements by the Tc1mouse, as global DNA demethylation in

human cells can lead to transcriptional activation of these same

regions.

Changes in the Level of H3K9 Trimethylation Repressive
Mark Occur at Human Regions that Are Specifically
Activated in the Tc1 Mouse
Mechanistic studies in mouse embryonic stem cells have

implicated the regulation of H3K9me3 in silencing proviral ERV

elements through proteins such as KAP-1, the histone deacety-

lase (HDAC1), and ESET (Macfarlan et al., 2011; Matsui et al.,

2010; Reichmann et al., 2012; Rowe et al., 2010). Trimethylation

of H3K9 is associated with transcriptional repression, in con-

trast to trimethylation at H3K4, which is associated with tran-

scriptional activation (Barski et al., 2007). We considered the

possibility that H3K9me3 is important for silencing the active

Tc1-specific H3K4me3-associated repeats in human tissue

(Figure 6A).

We therefore profiled the genome-wide occupancy of

H3K9me3 in human and Tc1 mouse liver using ChIP-seq (Exper-

imental Procedures). We found that in human liver, Tc1-specific

H3K4me3 regions showed elevated levels of H3K9me3 when

compared to Shared H3K4me3 regions (Wilcoxon p = 7.9 3

10�7, Kolmogorov-Smirnov p = 1.53 10�5, distance = 0.28) (Fig-

ure 6A, blue boxplots). We also observed modest changes in the

enrichment of H3K9me3 at Tc1-specific H3K4me3 regions

relative to Shared regions in the Tc1 mouse, but there is less

evidence for this enrichment (Wilcoxon p = 0.001, Kolmogorov-

Smirnov p = 1.2 3 10�1, distance = 0.18) (Figure 6A, red

boxplots). This result is consistent with the idea of trimethylation

of H3K9 playing a role in sustaining transcriptional repression in

human tissues; however, this mark is not anticorrelated with the
.
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trimethylation of H3K4 in our system (Figure 6A). It has previously

been reported that there are site-specific effects of H3K9me3-

mediated repression (Matsui et al., 2010; Karimi et al., 2011),

and our data likely reflect this. Alternatively, the lost repression

observed in the Tc1 mouse may be heterogeneous, such that

the presence of apparently coexisting H3K9 and H3K4 trimethy-

lation may actually indicate fluctuating activation and repression

within a population of cells. This may also help explain why

depletion of DNA methylation appears to transit to intermediate

values, as opposed to complete demethylation.

At a few specific, repeat-containing loci, the occupancy of

H3K9me3 in human appeared to be replaced by hallmarks of

active transcription (Figure 6B). For instance, in human liver,

the BAGE locus is strongly enriched for H3K9me3 across

a genomic region containing a large REP522 satellite repetitive

region; no evidence of occupancy by H3K4me3 or Pol II was

apparent in human liver. Conversely, in Tc1 mouse liver, the

BAGE locus appears to be actively transcribed and lacking the

repressive histone mark H3K9me3. However, the majority of

corresponding activated Tc1-specific regions in human liver

show more modest changes.

We also attempted to perturb the H3K9 trimethylation-

mediated silencing pathway identified in mouse embryonic

stem cells, which has been shown to reactivate human-silent

regions by inhibiting the activity of histone deacetylases (HDACs)

using Trichostatin A in human HepG2 cells. However, this treat-

ment was insufficient to activate latent sites, unlike treatment

with 5-Aza-dCTP (Figure S6B).

DISCUSSION

The dynamic mechanisms underlying the ongoing evolution of

the regulatory human genome are of profound interest, and the

widespread involvement of repeat elements is only beginning

to be understood (Bourque et al., 2008; Faulkner et al., 2009;

Kunarso et al., 2010; Lowe et al., 2007; Lynch et al., 2011; Oliver

and Greene, 2009; Schmidt et al., 2012; Xie et al., 2010).

Although heterologous systems are routinely employed in cell

culture and humanized mouse models (Devoy et al., 2012), it

remains unknown how heterologous nuclear environments

globally interact with species-specific repetitive elements in vivo.

Using an entire human chromosome carried in an aneuploid

mouse, we demonstrated that hundreds of normally silenced

human loci have previously unsuspected regulatory potential.

These loci show tissue-specific activation and are enriched

for primate- and human-specific repeat elements utilized by

transcription factors, insulator elements, and transcriptional

machinery. We experimentally determined that the mechanism

underlying this activation involves depletion of DNA methylation

at LINE and LTR elements and a global decrease in repressive

histone modifications in the Tc1 mouse.

These discoveries support a model wherein the regulatory

impactof certain repeat elements in somatic tissues isdiminished

by DNA methylation, and possibly H3K9 trimethylation (De Fazio

et al., 2011;Kondoand Issa, 2003; LevinandMoran, 2011;Matsui

et al., 2010; Rebollo et al., 2011; Reuter et al., 2011). It follows that

accurate regulation of recently evolved human-specific repeat

elements depends on coevolved, species-specific silencing
Mo
mechanisms. This can involve targeted repression by rapidly

evolving zinc finger DNA-binding proteins (Huntley et al., 2006)

or small RNA molecules that direct epigenetic machinery to

specific genomic loci (Saito andSiomi, 2010). Indeed, the binding

of tissue-specific transcription factors can establish regions of

diminishedDNAmethylation (Stadler et al., 2011), and the subse-

quent, direct establishment of activating epigenetic modifica-

tions has been demonstrated using artificial unmethylated CpG

clusters, which can recruit a CpG binding protein (Cfp1) and

induce H3K4me3 de novo in the absence of Pol II and other tran-

scription machinery (Thomson et al., 2010).

Our results also contribute to our understanding of germ cells

as a highly active and transcriptionally exceptional tissue. The

Tc1 mouse activates primate-lineage-specific AluY elements in

the testes in a similar manner to what we observed in human

testes, suggesting that the testes is uniquely suited to handling

this class of elements. Thus, the testes-specific mechanisms

of transcriptional activation seem to be more conserved than

are the mechanisms of transcriptional silencing linked to

changes in DNA methylation within somatic tissues.

Large-scale efforts using cells from a diverse range of primary

human tissues are beginning to reveal the structure and function

of the noncoding human genome (Consortium, 2011; Farnham,

2012; Dunham et al., 2012). Using a different strategy, we have

exploited a single human chromosome transplanted into a heter-

ologous regulatory environment to assess the transcriptional

potential of most known human repeat families. The complete

human genome is a hundred times larger, indicating that sub-

stantial latent regulatory potential remains to be discovered.

EXPERIMENTAL PROCEDURES

Tissue Preparation

Mouse Material

The Tc1 mouse line was generated and maintained as previously described

(O’Doherty et al., 2005). Tc1 mice were bred by crossing female Tc1 mice to

male (129S8 3 C57BL/6J) F1 mice and were housed in the Biological

Resources Unit under UK Home Office licensing. Tissue was obtained from

at least two independent males. Sibling Tc0mice, which do not carry HsChr21,

or C57BL/6J mice were used as a control. Fresh tissue was either flash frozen

or crosslinked with 1% formaldehyde as previously described (Schmidt et al.,

2009).

Human Material

Male and female human tissue samples were obtained from biopsied tissue

collected at Addenbrooke’s Hospital, Cambridge, and were provided by the

Biobank under human tissue license 08/H0308/117. Liver tissue was also

obtained from the Liver Tissue Distribution Program (NIDDK contract number

N01-DK-9-2310) at the University of Pittsburgh. For ChIP-seq, these samples

were thawed in 1% formaldehyde and processed equivalently to the fresh

crosslinked liver material used in this study.

ChIP-seq

ChIP-seq was performed for H3K4me3, Pol II, Pol III, and H3K9me3 as

described in Schmidt et al. (2009). The data for CEBPA and HNF4A (Schmidt

et al., 2010) and CTCF (Schmidt et al., 2012) have been previously described

and are deposited under accession numbers E-MTAB-722 and E-MTAB- 437,

respectively.

Sequence Alignment, Peak Calling, and Repeat Identification

ChIP-seq and input reads of 36–50 bp were aligned to the reference genome,

human NCBI36 (hg18), the mouse genome (NCBIm37) (mm9) with the addition

of HsChr21 (Tc1 genome), or a composite human + mouse genome, using the
lecular Cell 49, 262–272, January 24, 2013 ª2013 Elsevier Inc. 269
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default parameters of the MAQ short DNA read alignment tool (http://maq.

sourceforge.net/maq-man.shtml). Regions with a mapping quality score of

0 were removed, and uniquely mapping reads were used for subsequent

enrichment analysis. Regions of H3K4me3 enrichment were determined using

the Control-based ChIP-seq Analysis Tool (CCAT2.0) (Xu et al., 2010). Peaks

were called at an FDR of 0.001 with a minimum 5-fold enrichment over input.

As previously described, ChIP-enriched regions of CEBPA and HNF4A

(Schmidt et al., 2010) and CTCF (Schmidt et al., 2012) were called

using SWEMBL (http://www.ebi.ac.uk/�swilder/SWEMBL/) with the para-

meters �R 0.005 �i �S.

Regions that mapped to known deleted or alpha satellite regions DNA on

HsChr21 in the Tc1 mouse (O’Doherty et al., 2005) were excluded from

analysis (precise regions were kindly provided by Dr. Susan Gribble). Peaks

were overlapped with RepeatMasker (A.F.A. Smit, R. Hubley, and P. Green,

RepeatMasker Open-3.0, 1996–2010, http://www.repeatmasker.org/) using

custom Galaxy workflows (Blankenberg et al., 2010) (http://main.g2.bx.

psu.edu/u/mdwilson/w/wilsonwardetalrepeatitemizationccat, http://main.g2.

bx.psu.edu/u/mdwilson/w/wilsonwardetaltfrepeatitemizationswembl).

Differential Binding Analysis

Enrichment analysis for all ChIP-seq experiments was performed as in Ross-

Innes et al. (2012) using the DiffBind R/Bioconductor package (version 1.0)

(R. Stark and G.D. Brown, DiffBind: differential binding analysis of ChIP-seq

peak data, Bioconductor [2011] http://bioconductor.org/packages/release/

bioc/html/DiffBind.html) for analysis of differential binding.

RNA-Seq

Library Preparation and Sequencing

For the Tc1 mouse, mRNA-seq libraries were prepared from total RNA of three

liver samples and sequenced on an Illumina Genome Analyzer II (50 bp single-

end reads). For human liver, HiSeq 50 bp paired-end sequence reads from

Illumina Human BodyMap 2.0 project were used. RefSeq transcripts were

downloaded from NCBI (ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/).

Alignment and Gene Expression Analysis

RNA-seq reads were mapped to RefSeq transcript sequences using Blat

(Kent, 2002), and mapped reads were filtered as previously described (Pan

et al., 2008). Gene expression levels were quantified in reads per kilobase of

transcript per million mapped reads (RPKM) (Mortazavi et al., 2008).

DNA Methylation Analysis

Locus-Specific DNA Methylation Assays

DNA was extracted from three Tc1, Tc0, and human liver tissues using

the Easy-DNA Kit (Invitrogen) and bisulphite converted using the EZ DNA

Methylation-Gold Kit (Zymo) according to manufacturers’ instructions.

Regions of interest were amplified in a nested PCR reaction and the ratio of

C:Ts determined using the PyroMark Q96 MD pyrosequencer (QIAGEN) and

Pyro Q-CpG software (QIAGEN).

Illumina Infinium Human Methylation450K Bead Arrays

DNA was extracted and bisulphite treated from liver and testes flash

frozen material from four human, Tc1, and Tc0 individuals as described

above. Methylation profiling was performed using Illumina Infinium Human

Methylation450K beadarrays according to the manufacturer’s standard

protocol. Data were normalized using the Lumi BioConductor package (Du

et al., 2008). Probes that showed significant detectable signal in Tc1

littermates that do not harbor Tc1-HsChr21 were excluded from further anal-

ysis. Arrays were run and analyzed by the Cambridge Genomics Service.

Abrogation of DNA Methylation in a Human Cell Line

HepG2 cells were treated with 1.5 mM 5-Aza-20deoxycytidine-50-triphosphate
(5-Aza-dCTP) (Jena Bioscience) for 48 hr and retreated after 24 hr. Treated

and untreated control cells were crosslinked with 1% formaldehyde 48 hr after

initial treatment andH3K4me3ChIP-qPCRperformedasdescribedabove.DNA

methylation levelswere assayed to verify thatDNAdemethylationhadoccurred.

Inhibition of HDAC Activity in a Human Cell Line

HepG2 cells were treated with DMSO or 500 nM Trichostatin A (TSA) (Sigma)

for 24 hr prior to formaldehyde crosslinking followed by H3K4me3 ChIP-

qPCR analysis as described above.
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Nimwegen, E., Wirbelauer, C., Oakeley, E.J., Gaidatzis, D., et al. (2011).

DNA-binding factors shape the mouse methylome at distal regulatory regions.

Nature 480, 490–495.

Thomson, J.P., Skene, P.J., Selfridge, J., Clouaire, T., Guy, J., Webb, S., Kerr,

A.R., Deaton, A., Andrews, R., James, K.D., et al. (2010). CpG islands influence

chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086.

Treangen, T.J., and Salzberg, S.L. (2012). Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nat. Rev. Genet. 13,

36–46.

Vermeulen, M., Mulder, K.W., Denissov, S., Pijnappel, W.W., van Schaik, F.M.,

Varier, R.A., Baltissen, M.P., Stunnenberg, H.G., Mann, M., and Timmers, H.T.

(2007). Selective anchoring of TFIID to nucleosomes by trimethylation of

histone H3 lysine 4. Cell 131, 58–69.

Wilson, M.D., Barbosa-Morais, N.L., Schmidt, D., Conboy, C.M., Vanes, L.,

Tybulewicz, V.L., Fisher, E.M., Tavaré, S., and Odom, D.T. (2008). Species-
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