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Abstract: Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by
abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral
blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents
represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights
in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and
daunorubicin which still represent milestones agents for inducing therapeutic response and disease
eradication. However, failure to achieve complete remission in AML is still high especially in
elderly patients (40-60% in patients >65 years old). Several lines of basic and clinical research
have been employed to improve the achievement of complete remission. These lines of research
include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted
therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms
underlying epigenetic therapies’ (e.g., hypomethylating agents) resistance and providing critical
points and hints for possible future therapies overcoming AML refractoriness.
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1. Introduction

Although the recent approval of several new pharmacologic agents contributed to expanding
the panoply of options in the arena of acute myeloid leukemia (AML) treatments, the outcomes of
resistant diseases are still dismal with only less than 30% of patients becoming long-term survivors [1,2].
In particular, if signs of progress have been made in terms of therapeutic support, anti-infectious
prophylaxis, or choice of less intensive treatments for elderly patients (e.g., hypomethylating agents
[HMA]), leading to the improvement of treatment-related mortality during induction therapy
(decreased from 16% in the early 90" to around 4-5% in the more recent years), the rates of patients
with chemoresistant AML, (accounting for 35% to 45% of new cases) remain still virtually unchanged
over the last few decades [3,4]. Thus, the acquisition of new insights in AML biology represents
an unmet need in order to expand the horizon of targetable mechanisms and overcome therapeutic
resistance in a disease responsible for the highest percentage of leukemic deaths [2]. The recent
applications of genomic-scanning technologies (whole genome sequencing), combining high sensitivity
and depth, have helped understanding several targetable mechanisms and/or mutated clones refractory
to conventional therapies. Heterogeneity of subclones expanding over the course of therapies
or appearance of new mutations has been attributed to treatment failure or refractoriness. Therefore,
cytotoxic therapies failed to eliminate these therapy-resistant subclones. For instance, AML with FLT3
mutations is an example of a subtype in which treatment with FLT3 inhibitors, although promising, is
not completely efficient due to the activation of target-dependent mechanisms (acquisition of point
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mutations in the kinase domain) reducing enzyme-inhibitor binding or through target-independent
mechanisms and leading to primary or acquired resistance. Therapeutic resistance is one of the most
crucial milestones in drug treatment. Translational research has indeed focused for years on the
study of this topic. A variety of biological and genetic factors has been investigated with the recent
involvement of untranscribed RNA products called non-coding RNAs (ncRNAs) in the regulation of
main molecular drivers of AML (CEBPA, FLT3, NPM1) [5]. More recently efforts in drug development
have produced small molecule inhibitors overcoming the adaptive resistance mechanism in FLT3
mutant AML. In fact, FLT3 mutant AML cells treated with FLT3 inhibitors (AC220, quizartinib), activate
an innate immune pathway via the interleukin-1 receptor-associated kinase 1 and 4 (IRAK1/4). Drug
design strategies were able to identify small molecules simultaneously inhibiting FLT3 and IRAK1/4
kinases and ultimately eliminating the adaptive resistance generated by this activation [6].

2. Mechanisms of Therapeutic Resistance

2.1. Chemotherapeutic Agents

The “3 + 7” regimen combining daunorubicin (DNR) and cytarabine (Ara-C) is still the
backbone of induction treatment for adult patients with AML. However, primary refractory diseases
or induction failures (PIF), defined as the persistence of at least 5% blasts in the bone marrow
(BM) of patients receiving 1 or 2 cycles of induction therapy [7], still represent the outcomes of
one-third of AML cases and show an abysmal long and short-term prognosis. Moreover, patients
achieving a complete response (CR) in the early phases of therapy may subsequently relapse
later by acquiring a secondary resistance. Deep DNA and RNA-sequencing technologies have
demonstrated heterogeneity of causes leading to chemorefractoriness. Indeed, analysis of the genetic
and transcriptomic profiles of refractory subpopulations has shown a differential expression in several
pathways involved in transcription/translation, metabolism, microenvironment, DNA-damage and
cell cycle. Figure 1 highlights examples of two main mechanisms underlying chemorefractoriness:
the biology of the disease: (i) the occurrence of point mutations in FLT3 kinase domain, leading to
constitutive activation and triggering cell proliferation and (ii) the oncogenic activation resulted from
DNA damage activity on the phosphorylation of p53; host factors: (i) variation in alleles for specific
genes coding for enzymes involved in drug metabolism (Ara-C + DNR) and (ii) regulation of the tumor
microenvironment (leukemic stem cells, lymph nodes, spleen for AML) especially in the modulation of
the immune system following bone marrow transplantation. Herein, we comprehensively describe
both mechanisms.

2.1.1. Biology of the Disease: Genetic and Epigenetic Heterogeneity

Cytogenetic abnormalities have been traditionally used to prognostically stratify patients with
AML [8]. The third-millennium genomic scanning approach with new platforms for whole-genome
sequencing paved the way for a new AML classification taking into account, together with more
traditional cytogenetic data, also somatic mutations in newly discovered genes and epigenetic
patterns influencing patients’” outcomes and possibly therapeutic responsiveness [7,9]. Altogether
the incorporation of mutations and cytogenetics information in new risk scoring systems have
tremendously helped in the classification of entities of previous cytogenetics-based categorizations,
e.g., normal karyotype (NK)-AML accounting for about 45% of new cases and falling in the umbrella
of “intermediate risk” [10]. As a matter of fact and as a confirmation of the utility of integrated
conventional cytogenetics and mutational screening, the introduction of NPM1 mutation and FLT3
allelic ratio in the new AML guidelines ELN 2017 helped to better stratify some of the previously
considered “intermediate risk” patients. Approximately 40% of NK-AML patients harbour mutations
in class III receptor tyrosine kinase either as a result of internal tandem duplication (FLT3-ITD)
or substitution of the aspartic acid at position 835 with a tyrosine (FLT3-TKD) [11,12]. Both mutations
result in the upregulation of downstream signalling pathways creating a hyperproliferative phenotype.
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Studies have also clarified that although only the former has a clear impact on disease prognosis,
the latter has a not well-defined role in disease characteristics in terms of therapeutic response and
prognosis. The involvement of other gene networks representing downstream targets of FLT3 has been
investigated to understand chemoresistance. For example, it has been shown that RUNX3 expression
may influence Ara-C resistance in patients with FLT3-ITD mutations. Studies conducted in human
leukemic K562 transduced with FLT3-ITD and profiled by gene expression showed the transcriptional
induction of RUNXS3 in this model. Moreover, the downregulation of RUNX3 expression in these
cells increased the sensitivity to Ara-C [13]. In the recent years, many FLT3 inhibitors have been
approved to overcome the genetic disadvantage of this AML category. However, overexpression of
BCL-2 (oncogene B cell lymphoma 2) has been shown to confer resistance to FLT3-inhibitors [14].
Similarly, FLT3-ITD mutations are more resistant to venetoclax, a BCL-2 inhibitor, when used as a single
agent [15] while the combination with FLT3 inhibitors showed a more durable response in mouse
models [16]. Indeed, venetoclax alone shows no response in small subsets of FLT3-ITD patients. Usually,
FLT3-ITD mutations emerged at relapse following venetoclax monotherapy suggesting a possible
mechanism of resistance. In a patient-derived FLT3-ITD xenograft model, the combination of venetoclax
and quizartinib, a second-generation FLT3 inhibitor, had a greater anti-tumor activity compared to
quizartinib or venetoclax monotherapy. These studies also showed that to overcome this resistance,
three proteins (BCL-2, BCL-XL and MCL-1) should be targeted at the same time by synergistically
using quizartinib or venetoclax but not any other BCL-2 inhibitor (Table 1) [17].
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Figure 1. Mechanisms of chemoresistance in AML. Examples of the heterogeneity of mechanisms
causing chemoresistance in adult acute myeloid leukemia: (A) Biology of the disease: constitutive
activation of FLT3 leading to hyperproliferation and oncogenic activation of p53 through DNA damage
induction. (B) Host factors: allele polymorphism leading to resistance to daunorubicin and cytosine
arabinoside (Ara-C) and tumor microenvironment. Images were generated using BioRender.
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Table 1. Current ongoing clinical trials on AML targeting MDM2 and MCL-1 pathways.

Drug Clinical Trial Indication
MDM?2 inhibitors
Idasanutlin + cytarabme versus NCT02545283 R/R AML
cytarabine only
Venetoclax + Coblmetlnlb or NCT02670044 R/R AML Ineligible for Cytotoxic
Idasanutlin Therapy
MK-8242 + cytarabine NCT01451437 R/R AML
HDM201+ cytarabine/anthracyclines NCT03760445 R/R or Newly Diagnosed AML
MCL-1 inhibitors
564315 NCT02979366 AML and MDS
Venetoclax + 564315 NCT03672695 AML
AMG176 NCT02675452 R/R Multiple Myeloma and R/R AML
AMG397 NCT03465540 Multiple Myeloma, NHL, AML

R/R Hematologic Malignancies
including AML

R/R, relapsed/refractory; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; NHL, Non-Hodgkin lymphoma.

AZD5991 NCT03218683

The mechanisms of chemotherapeutic resistance seem to be quite variable across molecular
subtypes and/or age of the patients. In pediatric patients indeed genetic mechanisms seem to be the
drivers of chemoresistance. Of note is that, differently from the adult counterpart, in the pediatric
population, AML FLT3 gene mutations do not seem to be related to primary chemotherapeutic resistance
while a subset of mutations in other genes such as ASXL1, SETBP1 and WT1 define specific groups of
patients experiencing PIF [18]. In this study whole-genome DNA, transcriptome RNA and miRNA
sequencing analyses were performed on pediatric AML experiencing PIF as part of the TARGET Data
initiative. The authors pinpoint loss-of-function mutations of KMT2C, encoding a component of the
myeloid/lymphoid or mixed-lineage leukemia (MLL) chromatin remodelling complex, as a possible
marker of chemorefractoriness, phenocopying chromosome 7q deletion, frequently observed also in
adult higher-risk myelodysplastic syndromes (MDS) and secondary AML and found to be particularly
susceptible to epigenetic therapies [18,19]. The same genomic position of KMT2C (7q36.1) is shared with
the EZH2 gene, the histone methyltransferase enhancer of the Zeste Homolog 2, whose mutations are
observed in up to 9% of de novo and secondary AML [20]. Loss of activity of this gene and lower protein
levels have been linked to resistance to multiple drugs including Ara-C, for which EZH2 mutated
cell lines show a 5-fold decrease in sensitivity [21]. In fact, it has been demonstrated that in resistant
cell lines as well as in primary cells from relapsed AML patients, EZH2 is hyperphopshorylated at
Thr487 by the cyclin-dependent kinase 1 via heat shock protein 90 (HSP90) stabilization and ultimately
degraded by the proteasome. Of note, the use of proteasome inhibitors, such as bortezomib, is able to
restore Ara-C sensitivity in this context.

DNMT3A, mutated in approximately 30% of NK-AML and encoding a DNA methyltransferase
that catalyses 5-methylcytosine methylation, is another example of mutation affecting prognosis,
being related to anthracycline resistance and PIF [22]. The key function of DNMT3A resides in its
regulatory domains which allow the interactions with histone methyltransferases. These histones
modulate the expression of genes after therapies. The most common mutation in the DNMT3A gene
occurs at position 882 (R882H). R882H mutation acts in a dominant-negative fashion to disrupt the
de novo methyltransferase activity of normal homotetramer. Mutations in DNMT3A not only seem
to co-occur with genomic alterations in FLT3 and NPM1 to induce leukemogenesis in mice but also
to create DNR resistance through the blockage of DNA damage response mechanism initiated by
checkpoint kinase 1 (an event necessary for DNR mechanism of action) [23].

MLL (mixed-lineage leukemia, now renamed Lysine [K]-specific MethylTransferase 2A, KMT2A) on
chromosome 11923 is mutated in up to 10% of adult AML cases and represents another peculiar example
of gene defining an AML subtype with an exquisite chemorefractoriness [24]. MLL-rearrangements
generate various chimeric proteins which ultimately confer leukemia-initiating activity to hematopoietic
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stem and progenitor cells [25]. These cytogenetic abnormalities are present in both pediatric and adult
patients as well as therapy-related cases after topoisomerase II inhibitor exposure. MLL-rearranged
AML has long-term survival rates ranging from less than 10% to approximately 50%, depending on
the fusion partner gene, age at diagnosis and other risk factors. For example, the t(9;11)(p21.3;q23.3);
MLLT3-KMT2A translocation has been assigned to the intermediate-risk group as per the ELN 2017
AML guidelines [7]. However, this is only one of several known translocations. A seminal study
by Meyer et al. [26] provided a comprehensive analysis of the “MLL recombinome”, allowing the
classification of the different MLL rearrangements and the analysis of their clinical associations. Recent
studies have shown that CDKG6 is a cell-cycle regulator and critical effector of MLL fusions and it is
responsible for a myeloid differentiation block, making it an actionable target for overcoming the
traditional drug resistance typical of MLL-rearranged AML [27]/Together with CDK®, also DOT1L,
a histone methyltransferase involved in differentiation and proliferation of hematopoietic stem cells
(HSCs), has been recently identified as a putative target in this AML subtype [28,29]. A particular note
must be made also for the FLT3 gene whose overexpression may be responsible for the poor prognosis
of some MLL-rearranged AML cases, suitable for specific FLT3-inhibitors treatments [24].

Finally, TP53 mutations, accounting for 5-10% of de novo AML and up to 30% of therapy-related
cases, represent a model of aggressive disease because of treatment failure. TP53 mutated AML
patients show a characteristic genomic instability with a complex karyotype (CK) and various
patterns of co-mutations according to the TP53 allelic state, making this setting particularly prone to
chemoresistance [30,31]. However, even patients without CK show a dismal outcome and treatment
refractoriness, outlining the intrinsic potential of TP53 signalling disruption as a pillar in determining
leukemic cell survival and aggressiveness [32,33]. Although recent studies showed improved outcomes
with the use of decitabine in TP53 mutated AML and higher-risk MDS, responses are usually
short-lasting and even patients achieving a morphological CR had next-generation sequencing (NGS)
minimally residual disease (MRD) detectable clone(s) which later on were attributable to patients’
relapse [34]. Moreover, a recent study [35] demonstrated that a cohort of TCGA patients with
available DNA sequencing data had around 3% of patients with detectable low-frequency TP53
reads. These patients, characterized by lower levels of p21 expression, had also worse clinical
outcome if compared to wild-type counterparts. In this study, the authors modelled this condition
in vitro using two AML cell lines (OCI-AML2, MV4-11) bearing low-frequency single hotspot TP53
mutations. Resistant cells from both cell lines expressed TP53 mutations including the wild-type
counterparts manifesting chemoresistance. Leukemic cells with TP53 mutations at subclonal levels
had a survival advantage because of higher fractions of leukemic stem cells (LSC) (as shown in these
in vitro models) which ultimately led to chemoresistance. In particular, TP53 mutation impaired
GADD45A (growth arrest and DNA damage-inducible alpha) expression in resistant cells negatively
affecting Ara-C responsiveness. In the same study, the authors also showed how romidepsin, an histone
deacetylase inhibitor, may restore Ara-C sensitivity via elevation of p21/GADDA45A expression [35].

2.1.2. Host Factors

A large study conducted on 4601 patients with AML showed that age and performance status
of the patient (host) together with other disease variables such as white blood cells (WBC) counts,
disease ontogeny (primary vs. secondary), cytogenetics and FLT3 and NPM1 mutational status may
predict therapy resistance [36]. Apart from classical host-related factors like age, invariably associated
with the burden of comorbidities and the possibility of choice of more intensive treatments and
allogeneic hematopoietic stem cell transplant (aHCT), specific patients’ characteristics have been
related to chemorefractoriness [37]. Resistance to anthracyclines has been widely associated with
overexpression of drug efflux pumps or polymorphisms in drug metabolism responsible for decreasing
the therapeutic effect of chemotherapy agents. Multidrug resistance (MDR) efflux transporters of the
ABC (ATP-binding cassette) family comprehend the P glycoprotein (P-gp) pump, encoded by the
ABCBI gene, the multidrug resistance-associated protein 1 (MRP1, encoded by ABCCI) and the breast



Int. J. Mol. Sci. 2020, 21, 8505 60f16

cancer resistance protein (BCRP, encoded by ABCG?2) [38]. These ABC efflux pumps are able to extrude
endogenous uncharged molecules such as cyclic nucleotides or leukotrienes but also cytotoxic drugs
including Ara-C, Vinca alkaloids and epipodophyllotoxins, in the attempt to defend HSCs [39,40].
Differently from P-gp pumps, MRP1 is specific for organic anions while BCRPs efflux substances such
as mitoxantrone, methotrexate and others [41,42]. Studies conducted in murine models, in which EZH2
function was suppressed by using a mutant of EZH2 lacking the catalytic SET domain subsequently
transduced, showed that ABCG2 transporter family of gene was upregulated in EZH2-dSET-transduced
cells. ABCG2 was identified as a new target of the PRC2 complex. More importantly ABCG2 is a stem
cell marker and drug efflux transporter rendering cancer cells resistant to chemotherapeutic drugs [43].
Overexpression of ABC P-gp transporters, has also been shown to be related to FLT3-ITD and not
only to EZH2 mutations, possibly driving refractory to chemotherapeutic agents and depressing their
sensitivity several hundred times [21,44,45].

Although a recent study of the Spanish PETHEMA (Programa para el Tratamiento de Hemopatias
Malignas) group showed no differences in terms of single nucleotide polymorphism of ABCB1 gene
upon the efficacy of induction chemotherapy in AML, there was a significant association with
induction death and ABCBI triple variant haplotype [46]. Another study of the same group showed
instead how cytarabine pathway polymorphisms influence response to induction treatment [47].
In particular, the authors studied the impact of 10 different polymorphisms in Ara-C metabolic pathway
genes in a cohort of 225 adult patients with de novo AML showing the association of activating
(deoxycytidine kinase, DCK) and deactivating (cytidine deaminase, CDA) genes variants with PIF [47].
As a matter of fact, increased levels of CDA are associated with Ara-C resistance in AML [48,49].
Moreover, in vitro studies showed a higher level of CDA activity in Ara-C resistant AML cell lines
and demonstrated also the negative impact on the CDA A79C polymorphism [50]. Recently, EPHX1
(microsomal epoxide hydrolase 1), encoding for a genotoxic epoxides detoxifying enzyme, has been
linked to susceptibility of AML cells to anthracycline treatment via regulation of cytochrome P450
isophormes (CYP1A1) and other drug-metabolizing enzymes (such as glutathione S-transferase) and
apoptotic signaling (BCL-2) [51].

Finally, an important role in chemotherapy resistance is also played by the BM “niche”. Additionally
known as BM “microenvironment” and first proposed by Schofield in 1978 [52], the niche compartment
(divided into vascular and endosteal) contains all the mesenchymal stem and progenitor cells,
endothelial, osteolineage, neuronal, immune cells and adipocytes, responsible for a milieu of secretory
cytokines regulating all the biological functions of HSCs [53,54]. BM niche mediates chemoresistance
with various mechanisms either via soluble factors or via cell adhesion mediation. For example,
the vascular endothelial growth factor C (VEGF-C) rescues blasts from chemotherapeutic-induced
apoptosis [55]. Similarly, osteoblasts protect leukemic cells from CXCL12-induced death via secretion
of soluble factors [56] and also via cell adhesion mechanisms ensuring an “oasis in the desert” by
preserving leukemic cells from chemotherapeutic agents arriving from the bloodstream [57]. Recently,
it has been shown that AML cells are able to transform the BM niche into a leukemia growth-permissive
and normal hematopoiesis-suppressive microenvironment through various mechanisms including
exosome secretion via DKK1 expression (a suppressor of normal hematopoiesis and osteogenesis) and
subsequent osteoblast loss [58,59]. Moreover, AML cells are responsible for the remodeling of the
vasculature of central and endosteal BM regions via secretion of pro-inflammatory and anti-angiogenic
cytokines. This secretion tends to impoverish the BM niche of stromal and osteoblastic cells generating
a “pro-leukemic microenvironment” not able to support normal hematopoiesis [60].

Apart from soluble factors, also physical characteristics of BM niches such as hypoxia or acidic pH
provide a protective microenvironment for leukemic blasts [61]. While hypoxia maintains leukemic cells
quiescent reducing their drug sensitivity, which is oftentimes cell cycle phases dependent, higher levels
of hypoxia-inducible factor 1 a (HIF1a) decrease glucose metabolism and increase lactate production,
ultimately promoting blast survival [62,63]. This shift to aerobic glycolysis (responsible for the so-called
Warburg effect) is the main metabolic alteration in cancer cells. For instance, in AML FLT3-ITD
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mutations generate a microenvironment promoting the Warburg effect via activation of protein kinase
b (AKT) signaling. As a result, FOXO proteins translocate from nucleus to cytoplasm lowering cell
metabolic activities and generating an overexpression of various ABC family transporters [64—67].
Finally, it has also been reported that the inflammatory response and the ferritin levels of the individual
patients may play a role in predicting survival outcomes and in mediating chemorefractoriness in
AML [68,69]. In particular, Bertoli et al. demonstrated that the gene signature of hyperferritinemic
AML patients was enriched in genes of NF-kB, oxidative stress and iron and ferritin levels correlated
with Ara-C refractoriness [69].

2.1.3. Other Mechanisms

Several other mechanisms of chemoresistance are not related to gene mutations or polymorphisms
of detoxifying enzymes. In the last few years, new insights into cancer research paved the way for
alternative mechanisms of resistance to pharmacologic agents in AML biology.

Ubiquitin and SUMO proteins control a wide range of cellular functions at a posttranslational
level [70] and their altered expression has been related to cancers in general and hematological
malignancies [71,72]. Gatel and colleagues showed that the study of the proteomic signatures of
resistant AML, in particular the SUMOylation and ubiquitination of critical enzymes involved in cell
survival activities, may predict DNR and Ara-C sensitivity [73]. They selectively identified specific
enzymes in the SUMO/ubiquitin pathways found deregulated in chemoresistant AML cell lines, making
them suitable for becoming biomarkers of chemosensitivity.

Novel mechanisms of mediating resistance to anticancer drug activities have been introduced
by the combination of microarrays/RNA-sequencing and bioinformatics. Long non-coding RNA
(IncRNA) are unique RNA transcripts that play a pivotal role in cancer development and also in
conferring drug resistance [74,75]. Having a secondary and tertiary structure they can exert protein
functions [76] promoting chemoresistance through different mechanisms and by influencing splicing
and epigenetics. Several IncRNA have been identified as oncogenes (RUNXOR and TUG1 among
others) or tumor suppressors (CASC15, IRAIN) [77]. For instance, knockdown of IncHOXA-AS?2 is able
to re-sensitize AML cells to anthracyclines via the miR-520c-3p/S100A4 axis [78]. Moreover, IncRNA
TUGL is upregulated in anthracylines resistant AML cells via inhibition of miR-34a and recruitment of
EZH?2 or RUNXOR is upregulated in (8;21) AML and after ARA-C treatment [79,80]. Finally, IncRNA
UCAL1 has been related to chemorefractoriness in pediatric AML via inhibition of the Warburg effect
through miR-125a/hexokinase 2 (HK2) pathway [81].

2.1.4. New Formulations of Old Therapies Overcoming Chemoresistance: The Case of CPX-351 and
Nanoscale Delivery Systems

Targeting AML metabolism has been the most recent field of research in order to optimize
drug delivery systems. After the theorization of the “Combination Index”, initially proposed by
Chou-Talalay in order to quantitatively outline drug antagonism, synergism and additive effects,
many efforts have been made to specifically find drug formulations with the best pharmacokinetics
and pharmacodynamics properties [82]. In particular, liposomal formulations have been used to
potentially enhance efficacy maintaining a fixed drug ratio, a longer half-life and evading the first-pass
metabolism. CPX-351 is the fruit of a radiometric approach which is able to provide in a liposomal
formulation a fixed 5:1 molar ratio of Ara-C and DNR within 100-nm-diameter liposomes, containing
1 mg of Ara-C and 0.44 mg of DNR for each unit [83,84]. Mice studies showed that intracellular
concentrations of CPX-351 were maintained near the optimal ratio for as long as 1 day after infusion
and that the drug was preferentially accumulated in the blast cells, ultimately providing a higher
pharmacokinetic efficacy if compared to the standard “3+7” regimen [85-87]. During phase II studies,
CPX-351 demonstrated better response rates in higher-risk AML such as AML-MRC (MDS-related
changes) as well as secondary AML cases [88,89]. In particular, overall response rates (ORR) were
higher in patients with adverse cytogenetics (ORR, 77.3% vs. 38.5%; p = 0.03) and secondary AML
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(57.6% vs. 31.6%; p = 0.06) with also a better overall survival in the latter group (12.1 months vs.
6.1 months; p = 0.01) [90]. Nanoscale drug delivery systems have grown considerably, displaying
promising results in improving the delivery of biomolecules. More recently, studies have pointed out
the possible involvement of exosome as nanoplatforms in drug delivery. In the past decade, “smart”
drug delivery strategies have employed nano-technologies (nanoparticle-based drug-delivery systems)
to improve drug solubility, stability and bioavailability, toxicity by narrowing therapeutic index,
and more importantly chemoresistance. Polymeric nanoparticles (poly-D,L-lactadie-co-glycolide,
PLGA) were used to encapsulate ATRA (all-trans retinoic acid), folate and retinoic acid grafted/dextran
to deliver doxorubicin, or dendrimers to deliver cytarabine triphosphate [91].

Furthermore, exosomes are extracellular vesicles of 30-100 nm in diameter released from body
fluids with the function of delivering signaling molecules to distant cells. These vesicles serve as
natural nanocarriers given the possibility to manipulate their structure for clinical use. They have been
reported elevated in cancer [92] and reduced after chemotherapy in AML patients [93]. Being able
to create a cross-talk at a body level and to easily reach anatomic sanctuary like the central nervous
system, exosomes may be used for special scenarios of patients with refractory disease also at an
extramedullary level.

2.2. Hypomethylating Agents

Hypomethylating agents (HMA) such as 5-azacytidine (AZA) and decitabine (DEC) represent
a breakthrough in the treatment of patients with MDS and AML. However, despite their efficacy in
ameliorating transfusion dependency and survival outcomes, HMA alone cannot completely cure
the disease and their efficacy, even after achieving CR, sooner or later is lost if not consolidated
with other approaches such as aHCT [94,95]. Both AZA and DEC are pro-drugs processed by the
pyrimidine metabolism and then incorporated into the DNA during replication via degradation
of DNA methyltransferase enzymes (DNMTs), ultimately leading to termination of malignant cell
replication [96]. Therefore, it has begun imperative to better understand the mechanism of resistance
to HMA and ameliorate the response outcomes of this set of patients.

Recently, it has been shown that the continuous exposure to HMA, resulting in nucleotide
imbalances due to off-target inhibition of thymidylate synthase and ribonucleotide reductase by DEC
and AZA respectively, generates with time a weaker DNMT1-depletion [97]. Moreover, as for Ara-C,
also for DEC Qin et al. demonstrated that the efficacy is dependent on the alteration of transporters
or metabolizing enzymes such as CDA and DCK [98]. In particular, DEC resistance was related to
a heterozygous point mutation in codon 98 (ACA to AGA) in HL60 cell lines ultimately leading to lower
levels of DCK and thus refractoriness. To circumvent the aforementioned metabolic differences, a new
generation dinucleotide decitabine analog, guadecitabine, is now on study for its pharmacological
profile less dependent on inter-individual variability. Another mechanism shown to be related to DEC
resistance is the downregulation of miR-29¢c, whose expression was recently found deregulated in
high-risk AML [99].

Resistance to AZA may be caused by genomic predisposition such as mutations, which make the
clone intrinsically resistant, or epigenetic mechanisms. ASXL1 and EZH2 gene mutations do not rely on
methylation to drive leukemia evolution and may generate subclones regardless of AZA treatment as
well as some DNMT3A frameshift mutations [100]. Moreover, it has been shown that PU.1 expression is
decreased in high-risk MDS and that AZA is able to restore its normal level ultimately allowing cellular
differentiation [101]. Starting from the evidence of shorter OS and higher methylation levels in patients
undergoing AZA presenting low PU-1 expression, the authors linked AZA resistance to alterations in
PU.1 expression and thus cellular differentiation. Newer formulations of AZA, such as Acadesine,
are also under study and are showing promising results also in AZA-resistant MDS/AML [102].
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3. Conclusions and Future Perspectives

Patients achieving CR and subsequently relapsing after therapy or aHCT represent another difficult
clinical scenario where other mechanisms may play a major role. The genomic and transcriptomic
profile of AML has clarified that AML is a disease characterized by heterogeneity of factors where
molecular networks often interplay with the tumor microenvironment. Given this heterogeneity,
identified by the diverse subtypes of AML in the World Health Organization classification of AML and
myeloid neoplasms in general, it is conceivable that precision medicine is the frontier in AML treatment.
Individualized therapies are only possible to invent or re-discover, based on the consideration that
a unique therapy will not apply to all AML population or “one size does not fit all”. The current
rate of failure in conventional therapies or relapses and the high mortality rates of patients failing
those regimens instruct us to consider all avenues of drug-based research to reduce chemoresistance.
As a proof-of-concept of the variety of actionable roads of research attenuating chemoresistance and
new modalities and systems improving drug metabolisms and targeting, we created a picture in
Figure 2. Last but not least, the modulation of immunome and tumor microenvironment shows
tremendous power in many cancers. Of note, the evasion from immunological pressure via human
leukocyte antigen (HLA) machinery disruption or NK alloreactivity loss warrants future research and
may represent actionable mechanisms for newer therapeutic targets along with studies highlighting
the role of immunotherapy in combination with conventional treatments and their effects on the tumor
microenvironment (Table 2).
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Figure 2. Actionable mechanisms to overcome chemoresistance in AML. (A) Exosomes are extracellular
vesicles of 30-100 nm in diameter released from body fluids serving as natural nanocarriers with the
possibility to manipulate their structure for clinical use. (B) Nanomedicine comprehends a variety of different
nanoscale drug delivery systems possibly useful for better delivery of chemotherapy agents. (C) Human
leukocyte antigen (HLA) machinery disruption via genetic (mutations) or epigenetic (downmodulation of
the expression) mechanisms may lead to immune system evasion. (D) The study of gene regulation via
miRNA or IncRNA may represent a useful tool to identify biomarkers of chemosensitivity being promising
as also potential therapeutic targets. Images were generated using BioRender.
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Table 2. Current ongoing clinical trials on AML with the use of immunologic agents.

Immunotherapy
Drug Clinical Trial Indication
. R/R AML and Persistent/Recurrent Blastic
CD123 directed CAR-T cells NCT02159495 Plasmacytoid Dendritic Cell Neoplasm
CYAD-01 NCT03018405 Multiple Cancer Indications including AML
CAR-T NCT03190278 R/R AML
CD33 CAR NCT03126864 R/R CD33-Positive AML
Nivolumab + azacitidine NCT02532231 AML in Remission at High Risk for Relapse
Nivolumab + oral NCT03417154 R/R AML and high-risk MDS
cyclophosphamide
Pembrolizumab NCT02768792 R/R AML
Ipilimumab NCT02890329 R/R AML or MDS

R/R, relapsed/refractory; AML, acute myeloid leukemia; MDS, myelodysplastic syndrome.
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