SYSTEMATIC REVIEW

The nexus between improved water supply and water-borne

diseases in urban areas in Africa: a scoping review [version 1;

peer review: 2 approved]

Nyamai Mutono¹⁻³, Jim A Wright⁴, Henry Mutembei^{1,5}, Josphat Muema^{2,3,6}, Mair L.H Thomas⁴, Mumbua Mutunga^{3,6}, Samuel Mwangi Thumbi^{3,6-8}

¹Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, Nairobi, Kenya

²Washington State University Global Health Program - Kenya, Nairobi, Kenya

³Centre for Epidemiological Modelling and Analysis, University of Nairobi, Nairobi, Kenya

⁴Geography and Environmental Science, University of Southampton, Southampton, UK

⁵Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya

⁶Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya

⁷Paul G Allen School for Global Animal Health, Washington State University, Pullman, USA

⁸Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK

 First published: 28 May 2021, 4:27 https://doi.org/10.12688/aasopenres.13225.1
 Latest published: 28 May 2021, 4:27 https://doi.org/10.12688/aasopenres.13225.1

Abstract

Background: The sub-Saharan Africa has the fastest rate of urbanisation in the world. However, infrastructure growth in the region is slower than urbanisation rates, leading to inadequate provision and access to basic services such as piped safe drinking water. Lack of sufficient access to safe water has the potential to increase the burden of waterborne diseases among these urbanising populations. This scoping review assesses how the relationship between waterborne diseases and water sufficiency in Africa has been studied.

Methods: In April 2020, we searched the Web of Science, PubMed, Embase and Google Scholar databases for studies of African cities that examined the effect of insufficient piped water supply on selected waterborne disease and syndromes (cholera, typhoid, diarrhea, amoebiasis, dysentery, gastroneteritis, cryptosporidium, cyclosporiasis, giardiasis, rotavirus). Only studies conducted in cities that had more than half a million residents in 2014 were included. **Results:** A total of 32 studies in 24 cities from 17 countries were included in the study. Most studies used case-control, cross-sectional individual or ecological level study designs. Proportion of the study population with access to piped water was the common water availability metrics measured while amounts consumed per capita or water interruptions were seldom used in assessing sufficient water supply. Diarrhea, cholera and typhoid were the major diseases or syndromes used to understand the association between health and

1. Dickson W. Lwetoijera (D, Ifakara Health Institute, Ifakara, Tanzania

Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania

2. **Prince Antwi-Agyei** ^(D), University of Energy and Natural Resources, Sunyani, Ghana

Any reports and responses or comments on the article can be found at the end of the article.

water sufficiency in urban areas. There was weak correlation between the study designs used and the association with health outcomes and water sufficiency metrics. Very few studies looked at change in health outcomes and water sufficiency over time.

Conclusion: Surveillance of health outcomes and the trends in piped water quantity and mode of access should be prioritised in urban areas in Africa in order to implement interventions towards reducing the burden associated with waterborne diseases and syndromes.

Keywords

water sufficiency, waterborne diseases, urban Africa, review

Corresponding author: Nyamai Mutono (mutono.nyamai@wsu.edu)

Author roles: Mutono N: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Wright JA: Conceptualization, Formal Analysis, Investigation, Methodology, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Mutembei H: Methodology, Supervision, Writing – Review & Editing; Muema J: Data Curation, Methodology, Validation, Writing – Original Draft Preparation, Writing – Review & Editing; Thomas MLH: Investigation, Methodology, Validation, Writing – Review & Editing; Mutunga M: Data Curation, Investigation, Validation, Visualization, Writing – Review & Editing; Thumbi SM: Conceptualization, Formal Analysis, Investigation, Methodology, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2021 Mutono N *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Mutono N, Wright JA, Mutembei H *et al.* The nexus between improved water supply and water-borne diseases in urban areas in Africa: a scoping review [version 1; peer review: 2 approved] AAS Open Research 2021, 4:27 https://doi.org/10.12688/aasopenres.13225.1

First published: 28 May 2021, 4:27 https://doi.org/10.12688/aasopenres.13225.1

Introduction

The sub-Saharan Africa (SSA) has experienced the highest annual urban population growth rate (more than 3.5%) in the world¹. However, the growth of urban infrastructure has been slower, leading to populations without access to adequate resources including water services, health facilities, and housing^{2,3}.

Globally, it is estimated that one in every two people will be living in water stressed areas by 2025 increasing the challenge of water supply⁴. As of 2017, only half of the population residing in urban areas in SSA had access to improved water sources which included piped, boreholes, protected wells or springs, rainwater or packaged water⁵. However, going by The World Bank categorisation of piped water as the only major source of improved water in urban areas in SSA⁶, only 56% (230 million people) residing in urban areas in this region have access to clean water⁷.

More than half a million deaths in SSA have been attributed to diarrheal diseases, with water contamination being one of the key risk factors⁸. The global enteric multicenter study identified *Escherichia coli*, *Cryptosporidium*, *Aeromonas* spp, *Shigella* spp and *Entamoeba histolytica* to be associated with increased risk of death among children younger than 24 months with moderate-to-severe diarrhea⁹. Due to their high burden, several waterborne diseases including cholera, bloody diarrhea and typhoid are included in the Integrated Disease Surveillance Strategy used in most African countries to improve countries speed of detection and response to public health threats¹⁰.

The United Nations Sustainable Development Goals (SDGs) 3, 6 and 11 that focus on good health and wellbeing of populations; clean water and sanitation; and sustainable cities and communities directly or indirectly address this problem associated with rapid urbanisation in SSA¹¹. The African Union Agenda 2063 aspires to have an African continent that is based on inclusive growth and sustainable development¹². To reduce the burden of waterborne diseases in the context of an urbanising population, a good understanding of the relationship between water and these health outcomes is required.

Previous reviews have focused on water quality^{13,14}, water availability^{15,16} and the reallocation of water from rural to urban regions in Africa¹⁷. Other reviews have also focused on the environmental determinants of waterborne disease outbreaks in Africa¹⁸, the link between waterborne diseases and water resource development in Africa¹⁹ and climate change globally²⁰. To ensure a medium level of health concern, an access of at least 50 litres per person per day is required²¹. However, there is a gap on insufficient access to piped water (less than 50 litres per person per day) in urban areas in Africa and the association with waterborne diseases and syndromes in the African continent.

Here, we conduct a scoping review to assess the link between sufficient access to piped water supply and waterborne diseases and syndromes in African cities. Specifically, we answer the following questions: i) How has the relationship between waterborne diseases and piped water sufficiency been studied in Africa? ii) Are there under-utilised study designs, under-studied metrics of water sufficiency or under-studied syndromes or waterborne diseases?

Methods

Literature search methods

This scoping review was conducted following the Joanna Briggs Institute methodology guidance for scoping reviews²² and the preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension guidelines for conducting scoping reviews^{23,24}. Briefly, this approach involves: i) conducting a systematic literature search to identify articles that meet the inclusion criteria, ii) assessing the relevance of the articles to the study question(s), iii) assessment of the full text articles iv) data extraction and synthesis. The scoping review protocol for this study is published and available²⁵.

Information sources and search strategy

In April 2020, literature searches were undertaken in the following four electronic databases: Embase, MEDLINE, Web of Science and Google Scholar (first 500 papers). These have been identified as the optimal combination of databases that would guarantee adequate and efficient coverage of studies for literature searches²⁶. The exact dates when searches were conducted can be found in Table A1.

The search strategy consisted of a two-step process. The first step involved carrying out a limited search in MEDLINE, Embase and Web of Science databases to analyse the text words and index terms that are used to describe the articles. The second step included a keyword search in all four databases; index terms were also used. The search terms that were used in the study can be seen in Table 1. The search terms include a combination of names of all African cities that have a population of at least half a million residents as of 2014, as outlined in the protocol²⁵, and terms representing the exposure (insufficient piped water supply) and outcome (waterborne diseases and syndromes). The study focused on publications that were written in the English or French language.

Data screening

Once searches were complete, the title and abstracts were extracted from the articles. Duplicates were removed and three

Table A1. Exact dates when the searches were run in the databases.

Database	Date
Embase	13 th April, 2020
MEDLINE	9 th April, 2020
Web of Science	9 th April, 2020
Google Scholar (first 500)	10 th April,2020

Parameter	Search terms
Population	Huambo OR Luanda OR Cotonou OR "Abomey-Calavi" OR "Abomey Calavi" OR Ouagadougou OR Bobo-Dioulasso OR "Bobo Dioulasso" OR Bunjumbura OR Younde OR Yaounde OR Douala OR Bangui OR Ndjamena OR Brazaville OR Pointe-Noire OR "PointeNoire" OR Abidjan OR Bouake OR Kinsasha OR Cairo OR "Al Qahirah" OR Al-Qahirah OR Alexandria OR "Al-Iskandariyah" OR "Al Iskandariyah" OR "Port Said" OR "Bur Said" OR "Addis Ababa" OR Libreville OR Banjul OR Accra OR Kumasi OR Conakry OR Nairobi OR Mombasa OR Monrovia OR Antananarivo OR Lilongwe OR "Blantyre-Limbe" OR "Blantyre Limbe" OR Bamako OR Nouakchott OR Casablanca OR "Dar-el-Beida" OR "Dar el Beida" OR Rabat OR Nampula OR Tetouan OR Fes OR Marrakech OR Tangier OR Tanger OR Maknes OR Meknes OR Agadir OR Maputo OR Matola OR Niamey OR Lagos OR Kaduna OR Akure OR Kano OR Abuja OR Aba OR Kigali OR Dakar OR Freetown OR "Cape Town" OR Durban OR Pretoria OR "Port Elizabeth" OR Bloemfontein OR "Dar es Salaam" OR Arusha OR Mbeya OR Lome OR Kampala OR Kitwe OR Lusaka OR Harare OR Bluawayo OR "Benin City" OR Enugu OR Ibadan OR Ikorodu OR Ilorin OR Jos OR Maiduguri OR Nnewi OR Onitsha OR Oshogbo OR Owerri OR "Port Harcourt" OR Sokoto OR Umuahia OR Oyo OR Warri OR Zaria OR Hargeysa OR Merca OR Mogadishu OR Muqdisho OR Johannesburg OR Soshanguve OR Vereeniging OR Khartoum OR "Al-Khartum" OR "Al Khartum" OR Nyala OR Safaqis OR Tunis OR Mwanza OR Zanzibar OR Ndola OR Algiers OR "El Djazair" OR Wahran OR Oran OR Bukavu OR Kananga OR Kisangani OR Lubumbashi OR "Mbuji-Mayi" OR "Mbuji Mayi" OR Tshikapa OR Djibouti OR "Al-Mansurah" OR "Al Mansurah" OR "As Suways" OR "As Suways" OR Asmara OR "Sekondi Takoradi" OR Banghazi OR Misratah OR Tarabulus OR Tripoli
	AND
Exposure	water AND (scarc* OR intermittent OR break* OR ratio* OR deficit OR deficien* OR unavailab* OR availab* OR continu* OR interrupt* OR stress OR supply OR sufficien* OR insufficien*)
	AND
Outcome	"water borne" OR "water-borne" OR cholera OR typhoid OR diarrhea* OR diarrhoea OR amoebiasis OR dysentery OR gastroenteritis OR cryptosporidi* OR cyclosporiasis OR giardiasis OR rotavirus

Table 1. Search terms that were used to select studies from the different electronic databases.

reviewers (NM, JM, MM) independently screened the study titles and abstracts using the following criteria:

- 1) Studies that described the water sufficiency or water situation in cities with populations more than 500,000 in 2014
- Studies that focused on cholera, typhoid, amoebiasis, cyclosporiasis or giardiasis as diseases, dysentery, diarrhea or gastroenteritis as symptoms or cryptosporidium or rotavirus as etiological agents for diarrheal diseases^{27,28};
- 3) Studies published in international scientific indexing (ISI) listed journals

Any inconsistencies between the three reviewers were discussed and a consensus was reached on whether to include or remove articles from the study.

Study selection

Where available, the full text articles were obtained for all studies that met the inclusion criteria. Two reviewers (NM and MM) assessed and characterised the studies by analysing if they primarily targeted urban residents and had evaluated the relationship between a health outcome and a water sufficiency metric. The data extracted from this screening process were stored in an Excel spreadsheet.

Data extraction, synthesis and presentation

Variables on author(s), study period, source of funding, geographical scope, study design, population inclusion criteria, sample size and statistical methodology used, and whether or not the study investigated a disease outbreak were extracted from the studies.

To understand piped water access and quality reported by the studies, we extracted information on the nature of the piped water supply, mode of accessing this piped water, measurement of the unit cost of water, the per capita daily water consumption, proportion of the population without access to piped water and water quality indicators from water samples collected for testing. The reported coping mechanisms employed to supplement water needs were also extracted. Information on the health outcomes studied and how diagnoses was made (self-reported, clinically diagnosed or culture confirmed) was also extracted from the articles. Table 2 provides a list of the variables extracted from the articles during the screening process.

Assessment of the study quality

We used the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist to analyse the quality of the studies included in the scoping review²⁹. We assessed the studies based on whether the study objective was comprehensively stated, the study design, description of study location and dates of data collection were provided, provision of participant eligibility criteria and rationale given for sample size, explanation of how missing data was handled and how they controlled for confounders. No study was excluded based on it being poor quality.

Variable	Description/ Example
Study design	
Study period	Year(s)
Geographical scope of the study	City/ cities where the study was conducted
Source of funding	Government sponsored/ philanthropic foundation/ research institute/ not sponsored
Study design	Cross-sectional individual/ cross-sectional ecological/ case control/ case series/ cohort
Population inclusion criteria	Households/ women/children/confirmed cases etc.
Sample size (people)	Number of respondents / households
Sample size	Number of water/ stool/ soil samples for testing
Outbreak investigation	Yes/No
Statistical methodology used	
Bivariate methods	Chi-square tests, Fischer tests etc.
Multivariate methods and	Linear models, logistic models etc. and confounders/ alternative transmission pathways / effect modifiers assessed
Indicators of piped water sufficiency	
Nature of piped water supply	Continuous/ scheduled interruptions/unpredictable interruptions
Mode of water access	Inhouse piped connection, shared tap at yard, public tap/water kiosk
Unit cost of water reported	Yes/No
Measurement of per capita daily water consumption	Yes/No
Proportion of population without access to piped water	Metric
Water quality indicators from water samples collected for testing	
- Faecal indicator organism test	e.g., total coliforms, Escherichia coli
- Dosage test for chlorine	e.g., Free chlorine residual test
- Pathogen tested for	e.g., Klebsiella pneumoniae, Salmonella spp., Shigella spp., Pseudomonas aeruginosa
 Consumer reported organoleptic water characteristics 	e.g., smell, taste, visual appearance
- Laboratory or organoleptic field tests	e.g., electroconductivity, pH and turbidity
Coping mechanism employed to supplement water needs	
- Use of storage tanks	Yes/No
 Storage of water in households in containers, bottles etc. 	Yes/No
- Installation of pumps for piped water where water pressure is low	Yes/No
- Collecting water from rivers/streams, shallow wells, rainwater	Yes/No
- Drilling of wells/boreholes	Yes/No
- Installation of hand pumps/electric pumps for groundwater	Yes/No

Table 2. Description of variables that were extracted from the articles during full-text screening.

Variable	Description/ Example
- Water treatment	Yes/No
- Purchasing water from vendors	Yes/No
- Purchasing water from neighbors	Yes/No
- Water recycling	Yes/No
- Illegal water connections	Yes/No
Indicators of health	
- Cholera	Self-reported/Clinically diagnosed/ laboratory confirmed
- Typhoid	Self-reported/Clinically diagnosed/ laboratory confirmed
- Amoebiasis	Self-reported/Clinically diagnosed/ laboratory confirmed
- Cyclosporiasis	Self-reported/Clinically diagnosed/ laboratory confirmed
- Giardiasis	Self-reported/Clinically diagnosed/ laboratory confirmed
- Dysentery	Self-reported/Clinically diagnosed/ laboratory confirmed
- Diarrhea	Self-reported/Clinically diagnosed/ laboratory confirmed
- Gastroenteritis	Self-reported/Clinically diagnosed/ laboratory confirmed
- Cryptosporidium	Self-reported/Clinically diagnosed/ laboratory confirmed
- Rotavirus	Self-reported/Clinically diagnosed/ laboratory confirmed

Connectedness of the study designs of the associations between water sufficiency and health outcomes

To understand the connectedness of the different study designs with the health outcomes and water sufficiency metrics and water quality, we used the principal component techniques³⁰. The main categories of the study designs employed in the selected publications were evaluated together with the health outcomes (self reported, clinically or culture confirmed) and a binary coding of assessment of water quality. The water sufficiency metrics were coded into either water access (mode of access, proportion with access, time/distance to water points) or water quantity (scheduled/ unscheduled interruptions, litres person per day) categories. We carried out multiple factor analysis by grouping the study designs, health outcomes, water sufficiency metrics and whether water quality was assessed. We looked at the contributions of the first two axes and assessed the combinations of the variables that were connected, understudied and the outliers. The analysis was carried out using the FactomineR package in the statistical software R^{31,32}.

Results

Study selection

The initial database search revealed 3,099 articles. After removing duplicates, and assessing the abstracts for eligibility, 93 articles remained for full text review, with 32 of those studies meeting the inclusion criteria (Figure 1).

Quality of the studies

From our checklist, there were some strengths and weaknesses of the studies. All the studies had a clearly stated objective, study design and study location with date of data collection. The eligibility criteria of the study participants were also clearly stated by majority of the studies (n=31, 97%).

Three quarters of the studies reported on the statistical methods employed (n=24, 75%). Less than a third of the studies explained how the study size was calculated (n=8, 25%), the criteria used in choosing the quantitative variables (n=2, 6%) and how the studies controlled for confounders (n=9, 28%). None of the studies explained how they addressed missing data (Table 3).

Characteristics of the publications

A total of 32 articles that assessed the association of water sufficiency in urban areas and waterborne diseases and syndromes in SSA were published between 1998 and 2019. These studies focused on 24 cities in 17 countries across Western, Eastern and Southern Africa, with 22% (n=7) of the studies based in urban Nigeria (Figure 2). Seven of the articles (22%) were conducted in informal settlements^{33–40}. Nearly half the studies did not report the source of funding, with government and philanthropies supporting most of the studies that provided that information (Table 4).

Half of the studies (n=16, 50%) employed cross-sectional individual level study design, and only six percent (n=2) used cohort study designs, with the rest utilising case-control or cross-sectional ecological designs (Table 4). All these publications employed quantitative methods of data collection whereas only two publications (n=2, 6%) collected qualitative data to

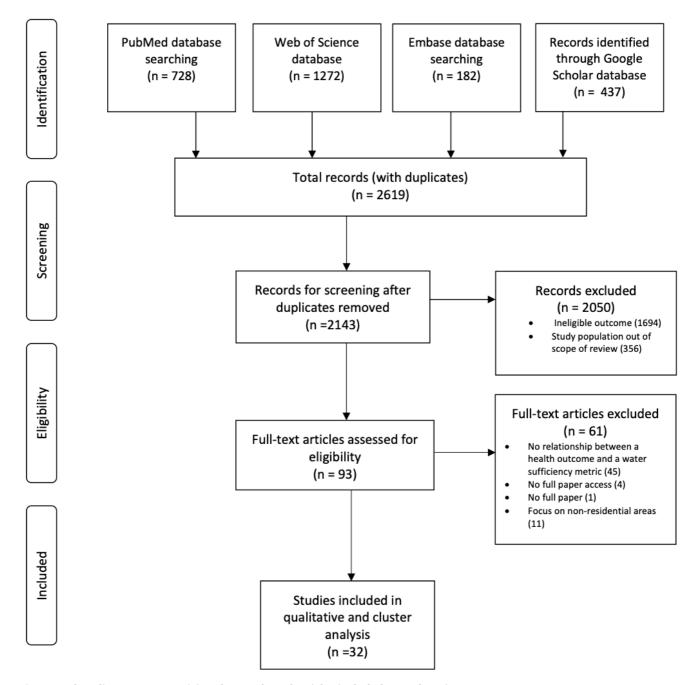


Figure 1. Flow diagram summarising the number of articles included at each review stage.

complement the quantitative data^{38,41}. The studies' target population included general households or respondents (n=17, 53%), confirmed cases or patients in hospitals being treated for waterborne diseases/syndromes (n=6, 19%), children below 10 years (n=6, 19%), women or mothers of infants (n=3, 9%) and HIV infected persons (n=3, 9%). The study subjects ranged from less than 100 (n=2, 6%) to more than 500 (n=11, 34%) and nearly a third of the articles (32%) were targeting outbreaks from cholera (n=9) or typhoid (n=1), which are epidemic-prone waterborne diseases (Table 4).

To understand the association between water and waterborne diseases and syndromes, the studies mainly used bivariate and multivariate methods of analysis. The common bivariate

Item	Parameter	Description	Criteria met N (% of studies)
1	Objective	Objective of the study comprehensively stated.	32 (100%)
2	Study design	The study design is clearly stated.	32 (100%)
3	Study setting	Study location and dates of data collection described.	32 (100%)
4	Participants	Eligibility criteria and selection method of participants declared.	31 (97%)
5	Sample size	Rational given for sample size.	8 (25%)
6	Statistical methods	All statistical methods are explicitly described.	24 (75%)
7	Variable justification	Explanation of the criteria used to choose the quantitative variables is included.	2 (6%)
8	Missing data	Explanation of how missing data was addressed is included.	0 (0%)
9	Controlling for confounders	Unadjusted estimates and confounder-adjusted estimates are provided.	9 (28%)

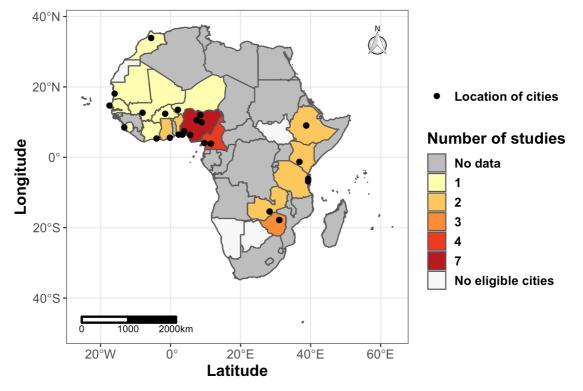


Figure 2. Geographical distribution of the studies and cities included in the scoping review Basemap source (shapefile): Database of Global Administrative Areas

analysis methods used included the chi-square tests, Fisher tests, Wald tests and the correlation coefficient methods while the multivariate analysis methods included regression models (linear, logistic, random effects) and ANOVA models. The multivariate analysis models controlled for confounders/ effect modifiers in the analysis using independent variables which included source of water, type of water storage container, presence of water treatment, household hygiene and sanitation conditions, household characteristics which included size, income, employment, and presence of children (Table 4). A study done by Machdar *et al* employed cost-effective analysis methods to assess the cost-effectiveness of interventions for reducing the disease burden from consumption of poor drinking water³⁸.
 Table 4. Characteristics of the 32 studies included in the scoping review.

Characteristic	No. of studies (% of included studies)	References
Study period [†]		
≤2005	12 (38%)	37,40,42-49
2006 – 2012	14 (43%)	34,35,38,39,42,44,50–59
≥2013	8 (25%)	33,36,41,60–64
Source of funding		
Not reported	15 (47%)	34,39,40,44-48,53,55,60,61,63-65
Government departments/ agencies	6 (19%)	35,36,38,43,58,59
Philanthropic foundations	5 (16%)	50,52,56,57,62
Research Institutes	4 (13%)	33,42,49,51
Not sponsored	2 (6%)	41,54
Study design		
Cross- sectional individual-level	16 (50%)	34-36,38,40-42,49-51,53,57,60,62
Case-control	9 (28%)	33,39,46,55,56,58,59,64
Cross-sectional ecological	7 (22%)	37,44,47,48,52,54
Cohort	2 (6%)	43,61
Cross-sectional ecological and individual level	1 (3%)	45
Cross-sectional individual-level and case control	1 (3%)	63
Population inclusion criteria [†]		
Households/ respondents	17 (53%)	34,38-41,43-45,49, 52,53,55,57,59,62-64
Confirmed cases/ people visiting health facilities for treatment of waterborne diseases	6 (19%)	37,45,47,48,54,61
Children/ infants	6 (19%)	33,35,42,49,51,56
Women or mothers of infants	3 (9%)	35,36,60
HIV positive persons	3 (9%)	43,46,58
Study population sample size		
100	2 (6%)	34,41
101–200	7 (22%)	37,38,40,46,54,59,62
201–300	7 (22%)	39,43,44,53,55,60,64
301-400	4 (13%)	45,49,57,61
400-500	1 (3%)	58
>500	11 (34%)	33,35,36,42,47,48,50-52,56,63
Study investigating an outbreak	10 (31%)	34,37,39,47,55,57,59,61,63,64
Statistical methodologies used (n=25) [†]		
Bivariate methods (chi-square tests, Fischer tests etc.)	17 (68%)	34-36,42,43,45,50,52-54,56-59,60-62,64
Multivariate methods (Linear models, logistic models etc.)	12 (48%)	33,35,36,39,40,45,51,55,56,59,62,63
Nature of piped water supply [†]		
Proportion with access to piped water	23 (72%)	34-40,42-46,48,50-53,56,58-62

Characteristic	No. of studies (% of included studies)	References
Water interruptions (scheduled/unpredictable)	8 (25%)	33-35,38,39,46,53,59
Per capita daily water availability	5 (16%)	33,49,51–53
Cost / affordability of water metric	4 (13%)	35,41,52,53
Time used/distance to water point	3 (9%)	51,53,56
Samples collected [†]		
Water	19 (59%)	33,34,38,41-49,54-56
Stool	5 (16%)	55,58,59,63,64
Soil	1 (3%)	62
Hand rinse	1 (3%)	62
Water quality indicators (n=19) ⁺		
Faecal indicator organism test	17 (89%)	33,34,38,41,42,44-49,52,54-56,62,63
Free chlorine residual test	7 (37%)	34,44,46,48,55,56,63
Laboratory/field tests organoleptic water characteristics	5 (26%)	41,43,44,48,59
Pathogen tests	5 (26%)	38,42,45,49,54
Coping mechanisms employed [†]		
Collecting rainwater/ from rivers, streams, shallow wells etc.	22 (69%)	36-42,44,45,47-49,50-56,58,60,61,64
Purchasing water from vendors	16 (50%)	34-38,43,45,46,50-53,56,59,60,64
Storing water in the households	11 (34%)	33-35,38,43,46,51,55,56,59,62
Water treatment	8 (25%)	34,40,43,45,46,50,53,55
Drilling wells/boreholes	3 (9%)	41,48,54
Purchasing water from neighbors	1 (3%)	41
Installing storage tanks in households	1 (3%)	41
Purchasing pumps for ground water	1 (3%)	41
Illegal water connections	1 (3%)	59
Health outcomes- Self reported [†]		
Diarrhea	15 (47%)	33,35,36,39-43,46,50,51,55,58,60,62
Cholera	4 (13%)	34,53,57,63
Dysentery	3 (9%)	41,50,53
Typhoid	3 (9%)	41,50,53
Clinically diagnosed [†]		
Cholera	8 (25%)	37,39,45,47,48,54,59,61
Typhoid	4 (13%)	44,45,54,61
Cryptosporidium	1 (3%)	38
Amoebiasis	1 (4%)	54
Diarrhea (uncategorised)	3 (9%)	44,52,54
Moderate to severe diarrhea	1 (3%)	56
Gastroenteritis	3 (9%)	44,45,54

Characteristic	No. of studies (% of included studies)	References
Dysentery	3 (9%)	44,45,54
Rotavirus	1 (3%)	38
Culture confirmed		
Typhoid	1 (3%)	55
Cholera	1 (3%)	64
Cryptosporidium	1 (3%)	58

†A study appeared in more than one category

Piped water was mainly supplied by the utility companies to residents through inhouse connections, shared taps at compound or public taps/ water kiosks^{33,36,42,50,51,60}. However, the publications reported piped water insufficiency through proportion of the study population that had access to piped water (n=23, 72%), scheduled/ unpredictable water interruptions (n=8, 25%), per capita daily water availability (n=5, 16%) and time used/ distance to the water point (n=3, 9%). Four articles reported piped water inequality through the mode of access (n=3, 9%)^{42,50,52}, quantity (n=2, 6%)^{38,52}, cost (n=1, 3%)⁵² and the scheduled water interruptions (n=1, 3%)³⁸.

The objective assessment of water safety was assessed by the studies via testing water samples (n=19, 59%). The water samples were collected from the dominant water points of the study population (n=9, 47%), water stored in the households (n=7, 37%), both dominant water points and stored water in the households (n=3, 16%) or hand rinse samples (n=1, 3%). Several studies assessed water contamination by testing for coliforms (n=17, 89%), effectiveness of measures of protecting water from contamination through testing for free residual chlorine (n=7, 37%), organoleptic characteristics of water by assessing turbidity and pH (32%, n=6) and presence of pathogens which included *klebsiella pneumoniae, staphylococcus aureus, pseudomonas aeruginosa*, among others (26%, n=5).

To complement their water needs, the study population employed coping mechanisms which included collecting rainwater/ water from rivers, streams or shallow wells (n=22, 69%), purchasing water either from vendors (n=16, 50%) or neighbors (n=1, 3%), storing water in the households (n=11, 34%), water treatment (n=8, 25%), drilling wells/ boreholes (n=3, 9%), installing storage tanks in households (n=1, 3%) and having illegal water connections (n=1, 3%) (Table 4). Four of the studies reported a relatively higher cost in the purchased water as compared to the cost of water supplied by the utility companies^{35,41,52,53}.

The publications focused on cholera (n=12, 38%), typhoid (n=8, 25%) and amoebiasis (n=2, 6%) as waterborne diseases, diarrhea (n=20, 32%), dysentery (n=7, 22%) and gastroenteritis (n=3, 9%) as symptoms and cryptosporidium (n=2, 6%) and

rotavirus (n=1, 3%) as etiological agents of diarrheal diseases. The health outcomes were either self-reported, clinically confirmed or objectively assessed through collecting and culturing stool samples.

The most common self-reported waterborne diseases/ syndromes included diarrhea (n=15, 47%), cholera (n=4, 13%), dysentery (n=3, 9%) and typhoid (n=3, 9%). The clinically confirmed health outcomes were cholera (n=8,25%), typhoid (n=4, 13%), cryptosporidium (n=1, 3%), amoebiasis (n=1, 3%), diarrhea (n=3,9%),moderate to severe diarrhea (n=1, 3%), gastroenteritis (n=3, 9%), dysentery (n=3, 9%) and rotavirus (n=1, 3%) while the culture confirmed health outcomes were typhoid (n=1, 3%), cholera (n=1, 3%) and cryptosporidium (n=1, 3%) (Table 4). One study reported mortality as well as morbidity of waterborne diseases and syndromes⁶¹. A comprehensive table containing the study characteristics can be found in Table B1.

Connectedness of the study designs used

We assessed the connectedness in the study design methods used by the articles to understand the nexus between water sufficiency and health outcomes, as shown in Figure 3. The axes in the biplot represented the first two principal components of the input data which explained 27% of the total variability, showing weak correlation among the study designs.

The black triangle markers in Figure 3 represent the mean centres for the health outcomes and the characteristics of piped water supply that were studied by the articles. The correlation circle is portrayed by the uncolored hollow black circle. The colored confidence ellipses, which are plotted around the group mean points, represent the study design methods employed by the studies and the size of the ellipses are based on the variance of each group. The numbers represent each publication included in our study.

From this analysis, we observed that cross-sectional individuallevel, cross-sectional ecological level and case control studies had a high variance and were the three commonly used study designs. Cross-sectional individual study designs were generally used in self-reported health outcomes while cross-sectional

Confounders/ effect modifiers/ other transmission pathways included in andveis		Faecal indicator organism test result for soil, handwashing water, handwashing water, hands before washing diarrhea niddence, number of assets owned, anitation (presence of animes, toilet deanimes, toilet activat, presence of frash, puesence anity of stored quality of stored quality of stored of water storage container	Quality of water, incidence of waterborne disease/ syndrome	Contact with a person with cholera, consumption of untreated water, gender		Age, level of education, employed, has children, level of household income, typer of noite used during the day and ar night e day and ar night e source of water, toilet hygiene and accessibility, WMSH knowledge and practices	
Analysis methods	Bivariate (Pearson chi-square tests; Fischer exact tests)	Multivariate (multipariate regression models), bivariate (Pearato correlation correlation coefficients)	Bivariate (Correlation coefficient)	Multivariate (NR)	Ř	Bivariate Pearson chi-square tests) multivariate (logistic regression)	Ř
Outbreak investigation	o Z	Ŝ	0 N	Yes	o Z	Ž	° Z
Water muality tests		Organoleptic water quality; Faecal indicator organism test	Faecal indicator organism test	Faecal indicator organism test, free chlorine residual	Faecal indicator organism test, organoleptic water quality, free chlorine residual	A/A	organoleptic water quality, Faecal indicator organism test
Type of water tested	Water points	In household	Water points	Water points	Water points	N/A	Water points
Disease/ Syndrome studied (method of measurinu) ¹	Cholera (O, typhoid (C), amobiasis (O, dysentery(C), diarrhea (C), gastroenteritis (C)	Diarrhea (SR)	Diarrhea (C)	Cholera (SR)	Typhoid (C), diarrhea (C), amoebic dysentery (C), gastroenteritis (C)	Diarrhea (SR)	Typhoid (SR), diarrhea (SR), dysentery (SR)
Coping mechanism emuloved	lls, ative	Water storage in household	Purchasing water, Collecting water from alternative sources	ĸ	Collecting water from alternative sources	Purchasing water Collecting water from avater from sources sources	Drilling boreholes, collecting water from alternative sources, purchasing water, storage tanks
Water insufficiency metric	К	Proportion with running tap water	Proportion with access to piped water, L/P/D	Ж	Proportion with access to piped water	Proportion with access to piped water	۳
Sample type and size	Water-110	Soil from outdoor location closest to the house entrance 142; Water- 244 Hand frink Samples- 142 samples- 142	Water- 150	Water-220, stool-4	Water-10	¥/Z	Water-3
Rationale given for sample size	0 N	Yes	0 Z	0 Z	0 Z	°Z	°Z
Study population sample size		142	13,705	267,205	300	220	32
Target population	Patients visiting health facilities	Households	municipalities	Households	Households	nemow	households
Study design	Cross- sectional ecological	Cross- sectional individual	Cross- sectional ecological	Cross- sectional individual - KAP, Case- control	Cross- sectional ecological	Cross- sectional individual	Cross- sectional individual
Study nariod	2008-2009	2016	2008-2009	2017-2018	1995-2006	2016	2018
author(s)	Degbey et al.(2011)	Navab Daneshmand et al. (2018)	Traore et al. (2013)	Sinyange et al. (2018)	Ako et <i>al.</i> (2009)	Winter <i>et al.</i> (2019)	Sakijege (2019)
2 Z	-	Ν	m	4	ы	Q	~

Table B1. List of studies included in the review.

Confounders/ effect modifiers/ other transmission pathways included in analysis	Burst sewer pipe within 500 metres from home, typhoid contact at home, water from an alternative source, type of storage water container, boil drinking water	Water treatment, level of income, household size	Main source of drinking water, time sport in water collection, per capita water watel abile, type of water storage container, handwashing before eating, sex of household head, level of education of household head, level of education household head, household household			Collecting water, continuous access to water, time taken to collect water, breastfeeding, both parents living at pome, water aker's level index, caretaker's level of education	Contact with a diarrheal patient, experiencing unpredictable water interruptions, level of drinking water. of drinking water. consuming od food, having received health duration on cholera
Analysis methods	Multivariate (NR)	Bivariate (correlation coefficient) Multivariate (simple linear regression model)	Multivariate (logistic regression model)	Bivariate (Wald Test)	Bivariate (Wilcoxon's Signed Ranked test; Wilcoxon's Ranked Sums test)	Bivariate (Pearson chi-square tests, Fischer exact test, T-tests), Multivariate (logistic regression model)	Multivariate (logistic regression models)
Outbreak investigation	Yes	° Z	2	Yes	° Z	° Z	Yes
Water quality tests	Free chlorine residual, faecal indicator organism test	faecal indicator organism test, pathogen test	¥ Z	N/A	organoleptic water quality,	faecal indicator organism test, free residual chlorine	Ч.Ч.
Type of water tested	Water points	Stored water in household	ΥN N	N/A	Stored water in household	Water points and stored water in household	NA
Disease/ Syndrome studied (method of measuring) ¹	Typhoid (CC), diarrhea (SR)	Cholera (C), typhoid (C), dysentery (C), gastroenteritis (C)	Diarrhea (SR)	Typhoid (C)	Diarrhea (SR)	Diarrhea (C)	Cholera (C) diarrhea (SR)
Coping mechanism employed	Water storage in households, water treatment, collecting water from alternative sources	Collecting water from alternative sources, purchasing water, water treatment, rainwater harvesting	Purchasing water, water norage in household, harvesting harvesting	Collecting water from alternative sources	water storage at households, water treatment purchasing water	Purchasing water, Collecting water from alternative sources, water storage in households	Collecting water from alternative sources
Water insufficiency metric	X	Availability of piped water	L/P/D, Proportion with access to with access to spent to collect water	Proportion with access to piped water	Proportion with an improved water supply	Time taken in fetching water, access to piped water	Unpredictable proportion with access to piped water
Sample type and size	Water-25 Stool-NR	Water-NR	K Z	N/A	Water (baseline-242, followup visits- 187)	Water-63	Υ.Υ.
Rationale given for sample size	Ž	Ž	ž	Yes	Yes	Yes	Yes
Study population sample size	230	350	702	322	242 baseline and 187 followup visits	4,096	280
Target population	respondents	Patients visiting health facilities, households	children under 10 years	Typhoid confirmed cases	HIV positive women	children <5 years	households
Study design	Case- control individual	Cross- sectional ecological, cross- sectional individual	cross- sectional individual	Cohort	Cohort	Case- control	Case- control
Study period	2011	1999-2004	2012	2013-2016	2005	2007-2010	2008
author(s)	Muti et al. (2014)	Oguntoke et al. (2009)	Dos Santos et al. (2015)	Essayagh et al. (2019)	Barzilay et al. (2011)	Baker <i>et al.</i> (2013)	Kone- Coulibaly et al. (2010)
Ŷ	00	σ	9	11	12	ς.	۲ 4

Confounders/ effect modifiers/ other transmission pathways included in analysis	Family size, Number of children in the household, educational status of household head, household head, household head, Domestic source of water, water treatment					Source of water consumed, water treatment, level of hyglenseanitation, type offood consumed, attended a gathering	Exclusive breastfeeding, piped water supply		
Analysis methods	Multivariate (logistic regression model)	Bivariate (Wilcoxon test, Kruskal- Wallis test, Pearson chi-square test, Fischer exact test)	ĸ	Cost effective analysis		Bivariate (Pearson chi-square test)	Bivariate (Pearson correlation coefficients, Chi-square test)	Bivariate (T-tests, Pearson chi-square tests, Wilcoxon rank-sum tests)	Bivariate (Kruskal Wallis H- test)
Outbreak investigation	° Z	Yes	°N N	° Z	Yes	Yes	°.	Yes	°.
Water quality tests	N/N	N/A	faecal indicator organism test, free residual chlorine	faecal indicator organism test, pathogen tests	faecal indicator organism test,	¥/N	N/A	faecal indicator organism test, free chlorine residual	N/A
Type of water tested	Υ/Υ	₹ Z	Stored water in household	Stored water in household	Water points	¥ N	N/A	Water points and stored water in household	NA
Disease/ Syndrome studied (method of measuring) ¹	Diarrhea (SR)	Cholera (SR)	Diarrhea (SR)	rotavirus (SR), cryptosporidium (SR), diarrhea (SR)	Cholera (C)	Cholera (CC)	Diarrhea (SR)	Cholera (SR)	Dysentery (SR), diarrhea (SR), typhoid (SR)
Coping mechanism employed	Water treatment, collecting water from alternative sources	х х	water storage in household, purchasing water, water treatment	water storage in household, purchasing water from alternative sources	Collecting water from alternative sources	Collecting water from alternative sources, purchasing water	Collecting water from alternative sources, purchasing water	Water storage in household, purchasing water, water treatment	Collecting water from alternative sources, water treatment, purchasing water
Water insufficiency metric	Proportion with access to piped water	N	Proportion with access to piped water, unpredictable interruptions	Proportion with access to piped water, unpredictable interruptions	ĸ	N	Proportion with access to piped water	Proportion with access to piped water, scheduled water interruptions	Proportion with access to piped water
Sample type and size	N/A	¥N	Water-120	Water-NR	Water-NR	Stool-NR	N/A	Water-398	N/A
Rationale given for sample size	Ž	2	°Z	°Z	0 N	Yes	°Z	Ž	°Z
Study population sample size	200	356	120	10	6,165	000	202	б.	1,397
Target population	households	respondents	Cases- households of women who attended HIV clinic	Households	Patients visiting health facilities	households	Mothers of infants <6 months	households	households
Study design	Cross- sectional individual	Cross- sectional individual	Case- control	Cross- sectional individual	Cross- sectional ecological	Case- control	Cross- sectional individual	Cross- sectional individual	Cross- sectional individual
Study period	2005	2008	1999	2010	1995-2001	2016	2018	2010	2007
author(s)	Yilgwan <i>et al.</i> (2010)	Schaetti <i>et al.</i> (2013)	Dunne <i>et al.</i> (2001)	Machdar et al. (2013)	Usman <i>et al.</i> (2005)	Endris et al. (2019)	Ubosi (2018)	Blanton <i>et al.</i> (2015)	Kuitcha <i>et al.</i> (2008)
۶	τ. Ω	16	17	20	19	20	21	22	23

4 Under state Und	g	author(s)	Study period	Study design	Target population	Study population sample size	Rationale given for sample size	Sample type and size	Water insufficiency metric	Coping mechanism employed	Disease/ Syndrome studied (method of measuring) ¹	Type of water tested	Water quality tests	Outbreak investigation	Analysis methods	Confounders/ effect modifiers/ other transmission pathways included in analysis
Were the <b< td=""><td></td><td>Yongsi (2010)</td><td>Survey: 2002; Microbiological & Medical Investigation: 2005 & 2008</td><td>Cross- sectional individual</td><td>children between 6-59 months</td><td>3,034</td><td></td><td>Water-508</td><td>Proportion with access to piped water</td><td>Collecting water from alternative sources</td><td>Diarrhea (SR)</td><td>Water points and Stored water in household</td><td>faecal indicator organism test, pathogen tests</td><td>° Z</td><td>Bivariate (Chi-square test,), spatial analysis</td><td></td></b<>		Yongsi (2010)	Survey: 2002; Microbiological & Medical Investigation: 2005 & 2008	Cross- sectional individual	children between 6-59 months	3,034		Water-508	Proportion with access to piped water	Collecting water from alternative sources	Diarrhea (SR)	Water points and Stored water in household	faecal indicator organism test, pathogen tests	° Z	Bivariate (Chi-square test,), spatial analysis	
Were the 	25	Abaje et al. (2009)	2008	Cross- sectional individual	households	220		¥/N	Proportion with access to piped water, scheduled interruptions, distance to the water source, <i>L/P/D</i>	Collecting water from altermative sources, purchasing water water treatment	Cholera (SR), Typhoid (SR), Dysentery (SR)	¥/N	N/A	N/A	Bivariate (Chi-square tests)	
Were the 	26	Nkhuwa (2003)	Chemical and bacteriological analysis from water utility company; 1995-1997, 1997, 8 Heath 2000; Heath 1997 & data: 1997 &	Cross- sectional ecological	Patients visiting health facilities	1,864 in 1997, 6,219 in 1999		Water-14	Proportion with access to piped water	Collecting water from alternative sources, drilling boreholes	Cholera (C)	Water points	faecal indicator organism test, free chlorine residual, organoleptic water quality,	Ŷ	х Х	
WorkWo	27	Sow et al. (1999)	1995-1996	Cross- sectional ecological	Cholera cases in health facilities	141 in 1995, 182 in 1996		N/A	Proportion with access to piped water	Purchasing water, collecting water from alternative sources	Cholera (C)	N/A	N/A	Yes	щ	
WatterJothGateUseWatterWatterStatuterCateWatterWWatterWatterWatterWatterWatterWatterWatterWatterWatterWatterWatterWatterWatterWatterWatterWa	28	Julvez et al. (1998)	1995 (human samples), 1996 (water samples)	Cross- sectional individual	Households, children <10 years	322 people, 161 children		Water-15	UP/D	Collecting water from alternative sources	Amoebiasis (SR)	Water points	faecal indicator organism test, pathogen test	0 Z	R	
Wohole (000)Gosto (000)Boolo (00	29	Adane <i>et al.</i> (2017)	2014	Case- control	Children <5 years	760		Water- 192	scheduled interruptions, L/P/D,	water storage in households	Diarrhea (SR)	Stored water in household	faecal indicator organism test	° Z	Multivariate (Multiple logistic regression models)	
Noyvertorl2012GaeIntrodust147NoNet-RodustNet-Rod	30	Akinbo <i>et al.</i> (2010)	2008-2009	Case- control	HIV-infected persons	500		Stool-500	Proportion with access to piped water	Collecting water from alternative sources	Cryptosporidium (CC), diarrhea (SR)	N/A	N/A	0 N	Bivariate (Pearson chi-square test)	
Soleretad. Zoog-2010 Coss-scional Women, 2033 Ves NA	31	Nguyen <i>et al.</i> (2014)	2012	Case- control	Individuals >= 5 years	147			Proportion with access to an improved source of water, scheduled interruptions	Water storage in households, purchasing water, illegal connections	Cholera (C)	Stored water in household	organoleptic water quality	Yes	Multivariate (Multiple logistic regression models), Bivariate (Wald Test)	Vended water, unsafe water, education level of household head, consuming tot food, consuming okra
	32	Stoler <i>et al.</i> (2011)	2009-2010	Cross- sectional individual	Women, children	2093 women, 810 children			Scheduled water interruptions, access to piped water	Purchasing water, water storage in households	Diarrhea (SR)	Υ/Υ Υ	к и	Ŝ	Multivariate (multiple logistic regression models, models, models, Marriate (ANOVA, Chi-square test)	Mother's self-reported overall health, purchalabed water as purchargo source of drinking water, daily bathrom expense, darys of water rationing

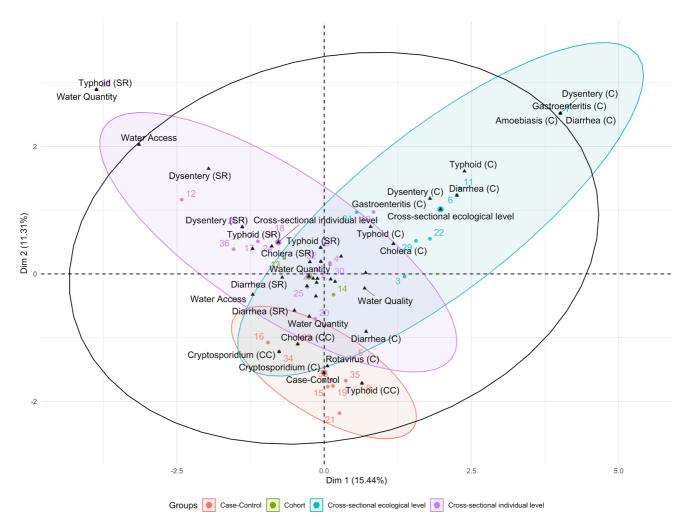


Figure 3. Included studies and study design types, plotted against the first two principal components derived from study design characteristics.

ecological and case control study designs were used in assessing clinically confirmed and culture confirmed health outcomes respectively. Water quantity and quality were mainly assessed using cross-sectional individual and ecological level study designs, whereas water access was mainly assessed using crosssectional individual-level study designs. An unusual combination of self-reported typhoid and water quantity was observed as an outlier (Figure 3). Use of cohort study designs in assessing the association between waterborne diseases and syndromes and water sufficiency was under-utilised.

Discussion

Our study presents the results of a scoping review on associations between water supply and waterborne diseases and syndromes in large cities across Africa. We find that majority of the studies have been published since 2005. The relationship between piped water sufficiency and waterborne diseases/ syndromes has mainly been studied using cross-sectional individual level study designs employing bivariate statistical methods. The main measures of water sufficiency used are access levels to piped water and water quality assessments while the health indicators mainly used are self-reported or clinically confirmed health outcomes. Cohort study design methods, measure of availability of piped water using quantifiable measures that include either per capita daily water consumption or water interruptions, cryptosporidium, cyclosporiasis, amoebiasis, rotavirus water borne diseases and culture confirmed assessment of health outcomes have been underutilised. Similarly, multivariate methods which are important in assessing the confounders or alternative transmission pathways have been seldomly used.

Piped water has been listed as the primary source of improved water in this region⁶⁶, however results from this review contest to this with no evidence of sufficient piped water supply in the urban areas. Daily per capita water consumption and mode of

The use of alternative or secondary water sources, that are often unimproved (as classified by the Joint Monitoring Programme (JMP) of the World Health Organisation (WHO) and United Nation's International Children's Emergency Fund (UNICEF)), have been listed as one of the prevalent transmission pathways for water-related pathogens, due to high exposure to faecal contamination^{13,67}. Adequate water treatment has the potential to reduce contamination of these water supplies by half⁴³. The studies included in this review reported use of alternative water sources as a key coping mechanism for poor or intermittent water supply while only a small proportion reported use of water treatment. Water contamination tests were a common assessment of water quality, contributing to the increased evidence of contamination in the predominant coping mechanisms employed by residents in urban areas.

Water storage, which was the second major coping mechanisms employed by the residents in urban areas, was observed as having the potential to increase the burden associated with waterborne diseases and syndromes. Low income earners, who account for 61% of the population in Africa, regularly practice poor water storage^{68,69}. On the other hand, residents with a high income mainly invest in large storage tanks to ensure they enjoy safe storage and adequate water consumption even during periods of irregular water supply⁷⁰. The in-depth qualitative assessment of poor water storage practices and their association with waterborne diseases was under-studied. None of the studies focused on user reported organoleptic characteristics of stored water in their households.

Diarrhea and cholera were the majorly self-reported and clinically confirmed health outcomes respectively while cryptosporidium, cyclosporiasis, amoebiasis, rotavirus water borne diseases were under-studied. These four waterborne diseases are among the major etiological agents associated with moderate to severe diarrhea in children below five years^{9,71}. Additionally, clinically and culture confirmed health outcomes are the two main approaches used in case definition of diseases of public health concern, with cases confirmed through objective assessment of samples at the laboratory⁷². However, culturally confirmed health outcomes were seldomly employed in these studies, making it difficult to assess the public health burden associated with waterborne diseases.

Cross-sectional ecological and individual-level studies and case control studies were the main study designs used to understand the association between water sufficiency and health. Cohort study designs and multivariate statistical methods were under-utilised, limiting the detection of hotspots.

One of the limitations of our study was a lack of studies in Luanda, Kinshasa, Cairo, Johannesburg, Khartoum cities that had a population of more than 5 million people as at 2014 and are expected to be mega-cities by 203073. Furthermore, there were no studies on cyclopsoriasis which was one of the waterborne diseases under our study criteria. Another limitation of our study was potential bias introduced through the choice of databases to conduct the search. Furthermore, we did not omit any studies based on the quality appraisal conducted on the included publications. These limitations have also been reported in other scoping reviews74. The use of a nonconventional analysis method in our review may have also been a limitation assessing the connectedness of the study designs, health outcomes, water sufficiency and assessment of water quality. Similarly, our analysis methods deviated from the published protocol found here²⁵ where we had proposed to conduct cluster analysis to differentiate self-reported diarrheal diseases with etiological agents. This was not possible due to the diverging water sufficiency characteristics reported by the studies. We also did not present digital maps which overlayed the study locations and the water scarcity peer reviewed maps, as stated in the scoping review protocol. This is because the main outcome of our study was depicting under utilised study designs, health outcomes and water sufficiency metrics.

Conclusion

Monitoring of health outcomes and the trends in availability and mode of access of piped water should be prioritised in urban areas in Africa in order to implement interventions towards reducing the burden associated with waterborne diseases and syndromes. This will contribute towards understanding the exposure pathways. Similarly, this is an area that can be used to assess the strategies of Africa being closer to achieving the United Nations SDGs regarding sustainable cities, adequate water, good health and wellbeing of its citizens and the Africa Union aspiration of having an African continent that is based on growth and sustainable development while coping with water insufficiency.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Reporting guidelines

Open Science Framework. PRISMA-ScR reporting checklist for 'The nexus between improved water supply and waterborne diseases in urban areas in Africa: a scoping review" DOI: https://doi.org/10.17605/OSF.IO/8TKSR⁷⁵

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

References

- 1. World Bank: Population growth (% annual). 2019; (accessed Jul. 06, 2020). Reference Source
- Zhang XQ: The trends, promises and challenges of urbanisation in the world. *Habitat Int*. 2016; 54(13): 241–252.
 Publisher Full Text
- Dos Santos S, Adams AE, Neville G, et al.: Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Sci Total Environ. 2017; 607–608: 497–508. PubMed Abstract | Publisher Full Text
- WHO: Water. 2020; (accessed Jul. 07, 2020). Reference Source
- UNICEF and WHO: JMP Ladder chart. 2017. (accessed Sep. 29, 2020). Reference Source
- Vivien F, Briceno-Garmendia C: Africa's Infrastructure: A Time for Transformation. World Bank, 2010. Reference Source
- UNICEF and WHO: Progress on household drinking water, sanitation and hygiene 2000-2017. Special focus on inequalities. 2019. Reference Source
- GBD 2016 Diarrhoeal Disease Collaborators: Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018; 18(11): 1211–1228. PubMed Abstract | Publisher Full Text | Free Full Text
- Levine MM, Nasrin D, Acácio S, et al.: Diarrhoeal disease and subsequent risk of death in infants and children residing in low-income and middle-income countries: analysis of the GEMS case-control study and 12-month GEMS-1A follow-on study. Lancet Glob Health. 2020; 8(2): e204–e214.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Fall IS, Rajatonirina S, Yahaya AA, et al.: Integrated Disease Surveillance and Response (IDSR) strategy: Current status, challenges and perspectives for the future in Africa. *BMJ Glob Health*. 2019; 4(4): e001427.
 PubMed Abstract | Publisher Full Text | Free Full Text
- United Nations: Sustainable Development Goals: 17 Goals to Transform our world. United Nations. 2015; (accessed Jan. 02, 2018). Reference Source
- 12. African Union: Agenda 2063: The Africa we want. 2015. Publisher Full Text
- Bain R, Cronk R, Hossain R, et al.: Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop Med Int Health. 2014; 19(8): 917–927.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Wright J, Gundry S, Conroy R: Household drinking water in developing countries: A systematic review of microbiological contamination between source and point-of-use. Trop Med Int Heal. 2004; 9(1): 106–117. PubMed Abstract | Publisher Full Text
- Rebaudet S, Sudre B, Faucher B, et al.: Environmental determinants of cholera outbreaks in inland africa: A systematic review of main transmission foci and propagation routes. J Infect Dis. 2013; 208 Suppl 1: S46–54.
 PubMed Abstract | Publisher Full Text
- Thomas MLH, Channon AA, Bain RES, et al.: Household-reported availability of drinking water in Africa: A systematic review. Water (Switzerland). 2020; 12(9): 1–28.
 Publisher Full Text
- Garrick D, De Stefano L, Yu W, et al.: Rural water for thirsty cities: A systematic review of water reallocation from rural to urban regions. Environ Res Lett. 2019; 14(4): 043003.
 Publisher Full Text
- Rebaudet S, Sudre B, Faucher B, et al.: Cholera in Coastal Africa: A systematic review of its heterogeneous environmental determinants. J Infect Dis. 2013; 208 Suppl 1: 598-106.
 PubMed Abstract | Publisher Full Text
- Steinmann P, Keiser J, Bos R, et al.: Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. J Infect Dis. 2006; 6(7): 411–425. PubMed Abstract | Publisher Full Text
- Levy K, Woster AP, Goldstein RS, et al.: Untangling the Impacts of Climate Change on Waterborne Diseases: A Systematic Review of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. Environ Sci Technol. 2016; 50(10): 4905–4922.
 PubMed Abstract | Publisher Full Text | Free Full Text
- WHO: Domestic Water Quantity, Service Level and Health. second edition. 2020.
 Reference Source
- Peters M, Godfrey C, McInerney P, et al.: Chapter 11:Scoping Reviews (2020 version), Joanna Briggs Institute Reviewer's Manual. Aromataris E, Munn Z (Editors), 2020.
 Reference Source
- 23. Tricco AC, Lillie E, Zarin W, et al.: A scoping review on the conduct and

reporting of scoping reviews. BMC Med Res Methodol. 2016; 16(1): 15. PubMed Abstract | Publisher Full Text | Free Full Text

- Khalil H, Peters M, Godfrey CM, et al.: An Evidence-Based Approach to Scoping Reviews. Worldviews Evid Based Nurs. 2016; 13(2): 118–123. PubMed Abstract | Publisher Full Text
- Mutono N, Wright J, Mutembei H, et al.: The nexus between improved water supply and water-borne diseases in urban areas in Africa: a scoping review protocol [version 2; peer review: 2 approved]. AdS Open Res. 2020; 3: 12. PubMed Abstract | Publisher Full Text | Free Full Text
- Bramer WM, Rethlefsen ML, Kleijnen J, et al.: Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Syst Rev. 2017; 6(1): 245.
- PubMed Abstract | Publisher Full Text | Free Full Text
 Ashbolt NJ: Microbial contamination of drinking water and disease
 outcomes in developing regions. *Toxicology*. 2004; **198**(1–3): 229–238
- outcomes in developing regions. *Toxicology*. 2004; **198**(1–3): 229–238. **PubMed Abstract | Publisher Full Text | Free Full Text** 28. Sharma S, Kumari N: **Dynamics of a waterborne pathogen model under the**
- influence of environmental pollution. Appl Math Comput. 2019; 346: 219–243. Publisher Full Text
- von Elm E, Altman DG, Egger M, et al.: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007; 4(10): e296.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Collins RM, Spake R, Brown KA, et al.: A systematic map of research exploring the effect of greenspace on mental health. Landsc Urban Plan. 2020; 201: 103823.
 Publisher Full Text
- Josse SLJ, Husson F: FactoMineR: An R package for multivariate analysis. *J Stat Softw.* 2008; 25(1): 1–18. Publisher Full Text
- R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017. Reference Source
- Adane M, Mengistie B, Medhin G, et al.: Piped water supply interruptions and acute diarrhea among under-five children in Addis Ababa slums, Ethiopia: A matched case-control study. PLoS One. 2017; 12(7): e0181516. PubMed Abstract | Publisher Full Text | Free Full Text
- Blanton E, Wilhelm N, O'Reilly C, et al.: A rapid assessment of drinking water quality in informal settlements after a cholera outbreak in Nairobi, Kenya. J Water Health. 2015; 13(3): 714–725.
 PubMed Abstract | Publisher Full Text
- Stoler J, Fink G, Weeks JR, et al.: When urban taps run dry: Sachet water consumption and health effects in low income neighborhoods of Accra, Ghana. Heal Place. 2012; 18(2): 250–262.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Winter S, Dzombo MN, Barchi F: Exploring the complex relationship between women's sanitation practices and household diarrhea in the slums of Nairobi: A cross-sectional study. *BMC Infect Dis*. 2019; 19(1): 242.
 PubMed Abstract | Publisher Full Text | Free Full Text
- 37. S. P.S, et al.: The 1995-1996 cholera epidemics in Dakar (Senegal). Med Mal Infect. 1999.
- Machdar E, van der Steen NP, Raschid-Sally L, et al.: Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana. Sci Total Environ. 2013; 449: 134–142.
 PubMed Abstract | Publisher Full Text
- Kone-Coulibaly A, Tshimanga M, Shambira G, et al.: Risk factors associated with cholera in Harare City, Zimbabwe, 2008. East Afr J Public Health. 2010; 7(4): 311–317.
 PubMed Abstract | Publisher Full Text
- Yilgwan C, Yilgwan G, Ishaya AI: Domestic water sourcing and the risk of diarrhea: a cross-sectional survey of a peri-urban community in Jos, Nigeria. Jos J Med. 2010; 5(1): 34–37. Publisher Full Text
- Sakijege T: Private water distribution as a potential everyday risk: The case of Goba, Dar es Salaam. Jamba. 2019; 11(1): 775.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Yongsi HBN: Suffering for water, suffering from water: Access to drinkingwater and associated health risks in Cameroon. J Heal Popul Nutr. 2010; 28(5): 424-435.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Barzilay EJ, Aghoghovbia TS, Blanton EM, et al.: Diarrhea prevention in people living with HIV: An evaluation of a point-of-use water quality intervention in Lagos, Nigeria. AIDS Care. 2011; 23(3): 330–339.
 PubMed Abstract | Publisher Full Text
- Ako AA, Nkeng GE, Takem GEE: Water quality and occurrence of water-borne diseases in the Douala 4th District, Cameroon. Water Sci Technol. 2009; 59(12): 2321–2329.

PubMed Abstract | Publisher Full Text

45. Oguntoke O, Aboderin OJ, Bankole AM: Association of water-borne diseases

morbidity pattern and water quality in parts of Ibadan City, Nigeria. Tanzan J Health Res. 2009; 11(4): 189–195. PubMed Abstract | Publisher Full Text

 Dunne EF, Angoran-Bénié H, Kamelan-Tano A, et al.: Is Drinking Water in Abidjan, Côte d'Ivoire, safe for Infant Formula? J Acquir Immune Defic Syndr. 2001; 28(4): 393–398.

PubMed Abstract | Publisher Full Text

- Usman A, Sarkinfada F, Mufunda J, et al.: Recurrent cholera epidemics in Kano--northern Nigeria. Cent Afr J Med. 2005; 51(3–4): 34–38.
 PubMed Abstract
- Nkhuwa DCW: Human activities and threats of chronic epidemics in a fragile geologic environment. Phys Chem Earth. 2003; 28(20–27): 1139–1145. Publisher Full Text
- Julvez J, Badé MA, Mathieu L, et al.: Les parasitoses intestinales dans l'environnement urbain au Sahel. Étude dans un quartier de Niamey, Niger. Bull la Soc Pathol Exot. 1998; 91(5): 424–427. Reference Source
- Dorice K, Kabeyene K, Véronique B, et al.: Water supply, sanitation and health risks in Yaounde, Cameroon. Sci Technol. 2008; 2(11): 379–386. Reference Source
- Dos Santos S, De Charles Ouédraogo F, Soura AB: Water-related factors and childhood diarrhoea in African informal settlements. A cross-sectional study in Ouagadougou (Burkina Faso). J Water Health. 2015; 13(2): 562–574. PubMed Abstract | Publisher Full Text
- Traoré D, Sy I, Utzinger J, et al.: Water quality and health in a Sahelian semiarid urban context: An integrated geographical approach in Nouakchott, Mauritania. Geospat Health. 2013; 8(1): 53–63.
 PubMed Abstract | Publisher Full Text
- Abaje IB, Ati OF, Ishaya S: Nature of Potable Water Supply and Demand in Jema 'a Local Government Area of Kaduna State, Nigeria. Res J Environ Earth Sci. 2009; 1(1): 16–21. Reference Source
- Degbey C, Makoutode M, Agueh V, et al.: [Factors associated with the quality of well water and the prevalence of waterborne diseases in the municipality of Abomey-Calavi in Benin]. Sante. 2011; 21(1): 47–55. PubMed Abstract | Publisher Full Text
- Muti M, Gombe N, Tshimanga M, et al.: Typhoid outbreak investigation in Dzivaresekwa, suburb of Harare City, Zimbabwe, 2011. Pan Afr Med J. 2014; 18: 309.

PubMed Abstract | Publisher Full Text | Free Full Text

- Baker KK, Sow SO, Kotloff KL, et al.: Quality of piped and stored water in households with children under five years of age enrolled in the Mali site of the Global Enteric Multi-Center Study (GEMS). Am J Trop Med Hyg. 2013; 89(2): 214–222.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Schaetti C, Sundaram N, Merten S, *et al.*: Comparing sociocultural features of cholera in three endemic African settings. *BMC Med.* 2013; 11(1): 206. PubMed Abstract | Publisher Full Text | Free Full Text
- Akinbo FO, Okaka CE, Omoregie R, *et al.*: Molecular Characterization of Cryptosporidium spp. in HIV-infected Persons in Benin City, Edo State, Nigeria. Fooyin J Heal Sci. 2010; 2(3–4): 85–89.
 Publisher Full Text
- 59. Von Nguyen D, Sreenivasan N, Lam E, *et al.*: Cholera epidemic associated with consumption of unsafe drinking water and street-vended water--Eastern

Freetown, Sierra Leone, 2012. Am J Trop Med Hyg. 2014; 90(3): 518–523. PubMed Abstract | Publisher Full Text | Free Full Text

- Ubosi NI: Prevalence of diarrhoea among infants of child welfare clinics at two teaching hospitals in Lagos, Nigeria. J Appl Sci Environ Manag. 2018; 22(10): 1707.
 Publisher Full Text
- Essayagh M, El Rhaffouli A, Essayagh S, et al.: Epidemiology profil of fever typhoid in Meknes (Morocco) 2013-2016. Rev Epidemiol Sante Publique. 2019; 68(1): 45–49.
 PubMed Abstract | Publisher Full Text
- 62. Navab-Daneshmand T, Friedrich MND, Gächter M, et al.: Escherichia coli contamination across multiple environmental compartments (soil, hands, drinking water, and handwashing water) in urban Harare: Correlations and risk factors. Am J Trop Med Hyg. 2018; 98(3): 803–813. PubMed Abstract | Publisher Full Text | Free Full Text
- Sinyange N, Brunkard JM, Kapata N, et al.: Cholera Epidemic Lusaka , Zambia , October 2017 - May 2018. MMWR Morb Mortal Wkly Rep. 2018; 67(19): 556–559. PubMed Abstract | Publisher Full Text | Free Full Text
- Endris AA, Tadesse M, Alemu E, et al.: A case-control study to assess risk factors related to cholera outbreak in addis ababa, ethiopia, july 2016. Pan Afr Med J. 2019; 34: 128.
 PubMed Abstract | Publisher Full Text | Free Full Text
- Sow PS, Diop BM, Maynart-Badiane M, et al.: L'épidémie de choléra de 1995-1996 à Dakar The 1995-1996 cholera epidemics in Dakar (Senegal). Med Mal Infect. 1999; 29(2): 105-109.
 Publisher Full Text
- World Bank and Infrastructure Consortium for Africa: Africa's Infrastructure: A Time for Transformation. 2010; 1–28. Reference Source
- 67. WHO: Guidelines for drinking-water quality. Water Supply. 1993; 11(3-4): 1-16.
- African Development Bank: The Middle of the Pyramid: Dynamics of the Middle Class in Africa. 2011; 316(5822): 179d. Reference Source
- Amrose S, Burt Z, Ray I: Safe Drinking Water for Low-Income Regions. Annu Rev Environ Resour. 2015; 40: 203–231.
 Publisher Full Text
- Ledant M: Water in Nairobi: Unveiling inequalities and its causes. Les Cah. d'Outre-Mer. 2013; 66(263): 335–348.
 Publisher Full Text
- World Gastroenterology Organisation: Acute diarrhea in adults and children: A global perspective. World Gastroenterology Organisation Global Guidelines. / Clin Gastroenterol. 2012; 47(1): 12–20.
- 72. WHO and CDC: Integrated Disease Surveillance and Response in the African Region. 2010; 373.
- 73. UN-DESA: World Urbanization Prospects. United Nations. 2014; 12: 32. Reference Source
- Pham MT, Rajić A, Greig JD, et al.: A scoping review of scoping reviews: Advancing the approach and enhancing the consistency. Res Synth Methods. 2014; 5(4): 371-385. PubMed Abstract | Publisher Full Text | Free Full Text
- Nyamai M, Wright JA, Mutembei H, et al.: The nexus between improved water supply and water-borne diseases in urban areas in Africa: a scoping review. 2021.

http://www.doi.org/10.17605/OSF.IO/8TKSR

Open Peer Review

Current Peer Review Status:

Version 1

Reviewer Report 20 July 2021

https://doi.org/10.21956/aasopenres.14345.r28652

© **2021 Antwi-Agyei P.** This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Prince Antwi-Agyei 匝

University of Energy and Natural Resources, Sunyani, Ghana

Introduction:

1. "The sub-Saharan Africa (SSA) has experienced the highest annual urban population growth rate (more than 3.5%) in the world". *Which year or period is the growth rate being referenced to?*

Methodology:

- 1. Any justification why authors used 2014 as the baseline year for the literature search? Meanwhile, the results section presented studies which were conducted before 2014. Some clarity is needed on this.
- 2. Also, any reason why the authors selected cities with population more than 500,000 as of 2014 as part of the inclusion criteria? This has also been stated in the abstract.
- 3. Table 1: The study focuses on urban African cities and there are over 50 countries in Africa and so what informed the choice of the 'search terms' for the cities listed under population? More explanation is needed to clarify this.

Results and discussion:

- 1. "A total of 32 articles that assessed the association of water sufficiency in urban areas and waterborne diseases and syndromes in SSA were published between 1998 and 2019". *Probably, the authors should provide some clarity because my understanding was that only studies from 2014 were included as part of the inclusion criteria in the methods section.*
- 2. Figure 1 shows that a total of 2619 articles were recorded from the search which is different from what was stated in the main text under study selection of the results section (3099). Try and reconcile the two.
- 3. It is unclear why authors did not consider the quality of the published studies as one of their inclusion criteria. This seems important and would have influenced the outcome of the

scoping review and it is unclear how many of the final 32 studies were of poor quality. It would have been good for the authors to discuss the quality of the paper and link it to the strength of evidence these studies provided in terms of any associations between improved drinking water and water-borne diseases.

Are the rationale for, and objectives of, the Systematic Review clearly stated? Yes

Are sufficient details of the methods and analysis provided to allow replication by others? $\ensuremath{\mathsf{Yes}}$

Is the statistical analysis and its interpretation appropriate?

Yes

Are the conclusions drawn adequately supported by the results presented in the review? Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Environmental Engineering, WASH, Solid waste management, faecal sludge management, Water quality, health risk assessment

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 12 July 2021

https://doi.org/10.21956/aasopenres.14345.r28712

© **2021 Lwetoijera D.** This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dickson W. Lwetoijera 匝

¹ Environmental Health and Ecological Science Department, Ifakara Health Institute, Ifakara, Tanzania

² School of Life Sciences, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania

The reported scoping review is very detailed, and the provided methodology description is very detailed to allow replication. I do applaud the authors for jotting down a number of limitations that are important to consider, and they contextualized these finding across different cities in Africa.

In the review studies, the authors noted that only 8 out of 32 studies provided details on sample size calculation; owing to the importance of this variable, especially when studies focus on quantitative data collection; it is important for the authors to recognize this as one of the

limitations. This is because the recorded findings/conclusion from included studies without sample size calculation details might have been either overstated or understated.

Are the rationale for, and objectives of, the Systematic Review clearly stated? $\ensuremath{\mathsf{Yes}}$

Are sufficient details of the methods and analysis provided to allow replication by others? $\ensuremath{\mathsf{Yes}}$

Is the statistical analysis and its interpretation appropriate? $\ensuremath{\mathsf{Yes}}$

Are the conclusions drawn adequately supported by the results presented in the review? Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Environmental Health Scientists, Medical entomologists,

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.