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Abstract
Purpose of Review Genome-wide association studies
(GWAS) for type 2 diabetes (T2D) risk have identified a large
number of genetic loci associated with disease susceptibility.
However, progress moving from association signals through
causal genes to functional understanding has so far been slow,
hindering clinical translation. This review discusses the bene-
fits and limitations of emerging, unbiased approaches for
prioritising causal genes at T2D risk loci.
Recent Findings Candidate causal genes can be identified by
a number of different strategies that rely on genetic data, ge-
nomic annotations, and functional screening of selected genes.
To overcome the limitations of each particular method, inte-
gration of multiple data sets is proving essential for establish-
ing confidence in the prioritised genes. Previous studies have
also highlighted the need to support these efforts through iden-
tification of causal variants and disease-relevant tissues.
Summary Prioritisation of causal genes at T2D risk loci by
integrating complementary lines of evidence promises to ac-
celerate our understanding of disease pathology and promote
translation into new therapeutics.
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Abbreviations
CRISPR Clustered Regularly Interspaced Short

Palindromic Repeats
CRM Cis-regulatory modules
ENCODE Encyclopaedia of DNA elements
eQTLs Expression quantitative trait loci
GOF Gain of function
GWAS Genome-wide association studies
LD Linkage disequilibrium
lncRNAs Long non-coding RNAs
LOF Loss of function
MTNR1B Melatonin receptor 1B
PMCA Phylogenetic module complexity analysis
RNAi RNA interference
siRNA Small interfering RNA
SNP Single-nucleotide polymorphism
TFBS Transcription factor binding sites
T2D Type 2 diabetes

Introduction

In the last decade, genome-wide association studies (GWAS)
have evolved as a powerful tool for deciphering the genetic
component of type 2 diabetes (T2D) risk. By associating re-
gions of the genomewith disease susceptibility, more than 100
loci influencing T2D risk have been identified so far [1–6,
7••]. Moving on from an era of disease locus discovery,
post-GWASmethodologies are now advancing to functionally
characterise the underlying genes and to interrogate disease
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pathways. These comprehensive efforts promise to enable
subsequent translation into improved disease diagnostics,
treatment, and prevention. However, the progression from as-
sociation signals at T2D loci to causal genes and a functional
understanding of diabetes pathology has been limited. The
slow progress is due, in part, to problems arising from the
methodology itself and, in part, a consequence of the under-
lying nature of the association signals.

GWAS exploit the fact that single-nucleotide polymor-
phisms (SNP) tend to be located in linkage disequilibrium
(LD) with other variants [8]. By analysing SNPs that lie in
LD with non-genotyped variants, these can serve as represen-
tatives for their haplotype (‘tag SNPs’), and it is thus possible
to achieve reasonable genome-wide coverage of common var-
iation by analysing between 0.5–1million SNPs [9–12]. Thus,
the GWAS paradigm is designed to detect SNPs that act as a
proxy for disease-associated regions or loci, and not necessar-
ily the actual causal variants. Additionally, the majority of
association signals (~90%) are found in non-coding regions,
presumably influencing disease risk through effects on gene
regulation [13]. The detected SNPs in non-coding regions are
named after the nearest protein-coding gene, but proximity to
a gene does not imply causality.

The challenge for functional follow-up studies in elucidating
disease mechanisms lies therefore in finding both causal vari-
ants and the genes through which they impact on disease risk
for the corresponding SNPs. Here, we first discuss the benefits
of determining the causal variant(s) and affected tissue(s) as a
prerequisite for identifying effector transcripts. We review sev-
eral approaches for prioritising causal genes at T2D loci and
provide recent and prominent examples of likely effector tran-
scripts identified by these strategies. Finally, we highlight the
importance of triangulating from multiple datasets and discuss
the prospects for future integrative studies.

Prerequisites for Finding Causal Genes

Uncovering the underlying causal mechanisms of T2D risk
loci is not exclusively a matter of finding causal genes, since
these efforts are complicated by the need to identify both
causal variant(s) and the affected tissue(s) in order to obtain
a complete picture of disease pathology. Moreover, this addi-
tional information is often an inevitable requirement for
performing functional follow-up studies in an appropriate
model system.

Causal Variants

In GWAS, the variant most strongly associated with disease
risk is reported for each locus, though such ‘lead SNPs’ may
only serve as surrogate markers for other genetic perturbations
that directly contribute to disease pathology. Identifying the

true causal variants can provide a direct functional link be-
tween genotype and the observed disease phenotype, especial-
ly in cases where the variant is protein altering. To identify a
causal variant, or a set of likely causal variants, several strat-
egies have been developed, including fine-mapping of
disease-associated regions, experimental prioritisation, and
in silico prediction tools.

Fine-mapping of a locus involves analysing SNPs in a de-
fined region of the genome for disease association and is used
to refine a GWAS association signal from the surrogate lead
SNP to the actual causal variant(s). The SNPs are assayed by
deep sequencing, or custom array-genotyping based on
GWAS variants and imputation from extensive sequencing
efforts such as the 1000 Genomes Project [14, 15]. To achieve
sufficient statistical power to detect the association of the true
causal variant, large sample sizes are required and the studies
often include populations drawn from diverse ancestries to
exploit differences in LD patterns [16].

Even so, most fine-mapping efforts uncover a large number
of variants that, between them, are likely to be driving a partic-
ular association signal—a so-called credible set. In some excep-
tional cases, however, it is possible to narrow down the credible
set to a single variant, as is the case for the melatonin receptor
1B gene (MTNR1B) [17•]. The MTNR1B locus has previously
been implicated in T2D risk and the identification of the single
causal variant revealed a likely, direct functional link to the
causal gene [18]. The risk allele creates a binding site for the
transcription factor NEUROD1 and is associated with preferen-
tial binding in human pancreatic beta cells. This additional tran-
scription factor binding event also implicates increased
FOXA2-bound enhancer activity andMTNR1B expression.

Another way to approach the search for causal variants at
GWAS loci is by experimentally testing prioritised SNPs. This
strategy was, for example, pursued at the JAZF1 and CDC123/
CAMK1D loci [19–21]. Variants in high LD (r2 > 0.8) with the
lead GWAS SNPwere selected for functional analysis based on
maps of open chromatin. Effects on gene expression were test-
ed in luciferase reporter assays, and DNA binding capability
was analysed through electrophoretic mobility shift assays. The
identified potential causal variants at the JAZF1 and CDC123/
CAMK1D loci appear to act as part of cis-regulatory modules
(CRMs). These specific regions harbour combinatorial tran-
scription factor binding sites (TFBS), and the variants affect
binding of PDX1 and FOXA1/FOXA2, respectively.
However, due to practical limitations, this type of experimental
studies mostly analyses a subset of regional variants, opening
up the possibility of missing potential true causal variants.
Further, the evidence generated is only circumstantial, since
establishing functionality is necessary but not sufficient to
prove causation. The emergence of new experimental lines of
evidence may affect the prioritisation of the true causal variants
and should ideally involve integration of different types of anal-
yses (see section on “Integrative approach”).
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To overcome the practical limitations of functional ap-
proaches for identifying causal variants, in silico prediction
tools offer an alternative method based on specific assump-
tions regarding their properties. A recent study, for example,
leveraged phylogenetic conservation of TFBS within CRMs
to predict causal variants at the PPARG and FTO T2D risk loci
[22, 23•]. This computational approach, termed phylogenetic
module complexity analysis (PMCA), identified a clustering
of homeobox TFBS at T2D risk loci, and initially proposed a
potential causal variant at the PPARG locus, which allowed for
a subsequent functional interpretation [22]. The risk allele at
PPARG2 leads to enhanced binding of the repressive homeo-
box transcription factor PRRX1, and thus reduced PPARG2
expression, defective lipid handling, and insulin sensitivity.
PMCA was also successfully applied to identify the causal
variant and a potential disease mechanism at the obesity-
associated FTO locus, a region showing the strongest genetic
association in GWAS for obesity and body mass index traits
[24, 25]. The proposed causal allele was shown to alter an
ARID5B repressor motif, leading to activation of the distant
IRX3 and IRX5 in adipocyte precursor cells, and pro-obesity
consequences for adipocyte thermogenesis regulation [23•].
This work also highlights the additional complexity arising
from having multiple causal genes for disease-associated hap-
lotypes. Though post-GWAS efforts have tended to focus on
the idea of a single causal gene per locus, causal variant(s)
may influence any number of regional genes, and not neces-
sarily in the same manner across different contexts.

Causal Contexts

An important aspect of the prioritisation of causal genes and
variants at GWAS loci is to consider the appropriate tissue(s)
and developmental stage(s), which allow any functional
follow-up studies to be performed in a disease-relevant model.
As the majority of T2D association signals are located in non-
coding regions and exert regulatory effects, their influence on
gene expression may be subject to context-specific activity
[26]. Thus, studies analysing the implicated variants and
genes need to consider the surrounding genomic context and
expression patterns. A notable example is provided by work
on the PTF1A gene, where a disease-relevant model, human
pancreatic progenitor cells, was critical to elucidating a mech-
anism for isolated pancreatic agenesis [27•]. The identified
mutations were found to disrupt an enhancer region that is
selectively active in pancreatic progenitor cells and, impor-
tantly, show no activity in corresponding adult cell lines.

Strategies for Prioritising Causal Genes

The aim of translating genetic variants into molecular mecha-
nisms will ultimately centre on the identification of causal

genes. It is enhanced understanding at this level that holds
the key to discovering novel treatments, prevention targets,
and diagnostic markers. Several strategies to address this issue
are being pursued, including the interrogation of coding vari-
ants, establishing variant-gene links for non-coding variants,
and using high-throughput screens to prioritise candidate
genes.

Coding Variants

Recent GWAS endeavours have shifted attention towards
exome-arrays and exome-sequencing to enable identification
of rare and low-frequency variants with potentially larger ef-
fect sizes—and a more direct biological interpretation—than
common variants [7••, 28–30]. Missense variants in coding
regions have a protein-altering effect that can directly pinpoint
causal genes, offering the possibility of a straightforward and
rapid translation into the clinic (Fig. 1).

The importance of coding variants for ascertaining causal
mechanisms is illustrated by SLC30A8, which encodes a zinc
transporter (ZnT8) that is active in the secretory vesicles of
beta cells. SLC30A8 was initially identified as a T2D suscep-
tibility gene harbouring a common missense variant [2].
Contradictory to the supposed negative impact of this risk
allele, recent efforts to identify protein-truncating variants
leading to loss of function (LOF) in T2D genes discovered
several rare protein-truncating variants in SLC30A8 [31•].
Strikingly, the haploinsufficiency conferred by this class of
variants was found to be associated with a 65% reduction in
T2D risk. By discovering multiple independent coding vari-
ants at this GWAS locus, SLC30A8 has been validated with
high confidence as the causal gene. Furthermore, this study
highlights the importance of discovering an extended allelic
series to understand functional mechanisms. More broadly, it
has established reduced activity of ZnT8 as a protective dis-
ease mechanism in T2D and a potential treatment strategy
based on antagonism [32].

The power to detect causal genes through coding variants
can be further harnessed by performing genetic association
studies in isolated populations. These populations, founded
by a bottleneck event, show a higher degree of LD, less ge-
netic complexity, and higher allelic frequencies due to genetic
drift, which leads to fixation or extinction of specific alleles
over time [33]. Furthermore, these studies also benefit from
shared non-genetic backgrounds (e.g. common lifestyle and
cultural habits), which is a potential confounding factor in
larger outbred populations [34]. Exploiting these advantages
of studies in isolated populations, a nonsense coding variant in
TBC1D4 was discovered in the Greenlandic population with
the largest effect size for a common T2D risk allele (odds
ratio = 10.3) [35•]. The variant disrupts the full-length isoform
of TBC1D4, which is selectively expressed in skeletal muscle,
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thus exerting its influence on T2D risk through insulin
resistance.

Another recent study leveraging the advantages of isolated
populations detected a low-frequency coding variant in AKT2
in the Finnish population [36]. The allele confers T2D risk
through increased fasting plasma insulin levels and expands
the allelic spectrum from the previously known rare variants
in AKT2 that cause monogenic heterogeneous glycaemic dis-
eases [37, 38]. Collectively, these studies illustrate the impor-
tance of identifying coding variants—in isolated and outbred
populations—for straightforward translation into molecular
mechanisms. While harnessing coding variation can offer
powerful insights into causal mechanism, this approach is
fundamentally limited by the occurrence of natural variation
(in outbred and isolated populations) which necessitates ever-

larger association studies to detect rare, coding variation. In
addition, identification of a coding signal is not a guarantee for
causality, and conditional analysis is often required to estimate
the likelihood of a given variant being causal [39]. By design,
exome-based studies analyse coding regions only, and thus
require additional fine-mapping of non-coding regions to ex-
clude the contribution of non-coding variants as drivers of the
association signal.

Establishing Variant-Gene Links

In contrast to missense coding variants, associating GWAS
signals in non-coding regions with their downstream causal
gene is often a more complex challenge. To identify regulatory
effects, non-coding variants can be correlated with genomic

Fig. 1 Using genetic data, genomic annotations, and functional
screening for prioritising causal genes at T2D GWAS loci. GWAS for
T2D risk have identified more than 100 independent association signals
to date (Manhattan plot; top left), but the majority of causal genes driving
the effects on disease susceptibility remain unknown. Fine-mapping of
associated regions can aid the prioritisation efforts by narrowing down the
credible sets of causal variants (see main text). Emerging strategies for
prioritising causal genes are highlighted for a hypothetical T2D risk locus
(bottom left); the regional association plot shows a primary, non-coding
association signal located upstream of gene 2 and downstream of gene 3
(lead variant; red diamond). An independent, coding variant in gene 3
displays moderate (sub-significant) association with T2D risk, providing
evidence hinting at this gene as causal at this locus. Further, genomic
annotations for different cell types (A, B, and C, for illustration) reveal
the primary association signal to be located in a region that displays
tissue-specific activity in cell type B. This information provides
valuable information for two independent prioritisation strategies.

Firstly, functional genetic screening of all regional genes (e.g. genes 1–
3 [shown] and 4–5 [not shown]) can be performed in a disease-relevant
context, measuring a phenotype specific to cell type B. Further, variant-
gene links can be established through experimental studies in tissue B,
using, for example, cis-eQTL or chromatin confirmation capture
methodologies. Importantly, each of the methods outlined have their
own set of limitations (see main text), and integration is thus important
for establishing confidence in particular candidates. In this case (graph;
bottom right), gene 3, which was highlighted by genetic data (purple bar),
has also been found in a functional screen to cause defects in a disease-
relevant tissue, adding further evidence in support of this gene as causal
(red bar). Finally, variant-gene annotations have shown some degree of
evidence for associations between the non-coding signal and genes 1–4
(yellow bars), with gene 3 being the most significant target. Taken
together, the aggregate burden of priors provides a high degree of
confidence in gene 3 as the candidate causal gene at this locus, which
can be used to prioritise the gene for follow-up in-depth validation studies
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annotations to establish a functional link with their target gene
(Fig. 1). Expression quantitative trait loci (eQTLs), for exam-
ple, describe variants that influence gene expression in close
proximity (cis-eQTL) or over a long distance (trans-eQTL),
and provide an approach for directly linking a GWAS variant
to its causal gene through effects on expression levels [40].
Crucial for the success of eQTL studies is the interrogation of
the correct disease-relevant context(s), since gene expression
is often regulated in a cell-type specific manner [41].

For T2D, a large number of disease risk loci have been
found through physiological studies to affect insulin process-
ing or secretion in the beta cell, highlighting pancreatic islets
as a relevant starting point for annotation studies at these loci
[42]. Up to now, islet sample availability has been limiting for
large-scale studies, thereby reducing statistical power to detect
associations. Nonetheless, recent studies succeeded in map-
ping islet cis-eQTLs and overlapping these with variants driv-
ing T2D association signals [43, 44•]. One such coincident
locus is ZMIZ1, harbouring a gene that had been sparsely
characterised for its role in T2D risk [44•]. A recent study
confirmed ZMIZ1 as the likely causal gene at this T2D risk
locus, and functional follow-up work has established a role in
beta cell function for insulin secretion and exocytosis, thus
giving first insights into a potential mechanism [44•, 45].

Tissue availability has so far prevented any progress in
finding islet trans-eQTLs. Trans-eQTLs act over distance
and the entire genome is interrogated for any variant-gene
associations, thus further limiting power due to more stringent
multiple-testing correction [40]. Still, efforts in adipose tissue
have demonstrated the power of this approach by elucidating a
trans-regulatory network of KFL14, a gene linked with both
T2D and other metabolic traits [46]. As KLF14 is a transcrip-
tion factor, the aim of the study was to identify trans-genes
that are influenced by varied KLF14 levels through cis-eQTL
variants. Several genes with genome-wide significance were
discovered and the study not only connected GWAS, cis- and
trans-associations for the same set of variants, but also defined
important disease-related pathways.

The search for causal genes has been pushed ahead by
eQTL studies, but the ability to perform large-scale studies
containing correlated sets of genotype, phenotype and expres-
sion data are still limited by cost obstacles and sample avail-
ability. GWAS only measure genetic variation related to a
disease phenotype, and expression studies suffer from reduced
statistical power due to smaller sample sizes. Predicted ex-
pression association studies attempt to circumvent these limi-
tations by integrating existing GWAS and eQTL data [47–50].
This approach aims to identify disease associations based on
groups of variants that influence gene expression, directly
pinpointing the causal gene instead of tag SNPs. To combine
limited available expression sets with large-scale GWAS data,
these studies rely on predicted expression modelled from ref-
erence panels. The models then impute expression either for

publically available summary GWAS data (most large-scale
studies) or GWAS data with individual genotypes [47, 49].
This drastically increases power to detect genes that are pre-
dicted to show differences in genotype-dependent expression
patterns in T2D, and reduces potential confounding factors
like reverse causation, where the phenotype and environment
influence gene expression [50]. However, similar to cis-eQTL
studies, predicted expression association studies are unable to
detect context-dependent effects that are not captured by the
tissues and developmental stages included in the reference
panel used for modelling [48, 49]. It is also not possible to
exclude the possibility of pleiotropy caused by multiple, cor-
related effects of groups of variants on gene expression [48].
Despite such limitations, these methods offer a complementa-
ry and powerful approach for prioritisation of causal genes
and predicted directions of effect.

Genetic Screening of T2D Genes

A third way to identify genes involved in disease risk is
prioritisation based on known or observed functions that are
perceived to be relevant for disease pathogenesis. T2D risk
variants, for instance, would be expected to affect genes in-
volved in cellular processes relevant to disease susceptibility,
such as beta cell function and insulin resistance. A gene found
to regulate insulin secretion would thus have high prior odds
of being the downstream mediator for a nearby T2D associa-
tion signal known to impact on islet function. Though this is
an indirect approach for prioritisation, the strategy benefits
from focusing on the relevant processes that ultimately causes
effects on disease pathology (Fig. 1). For unbiased generation
of priors, all disease-relevant phenotypes should ideally be
comprehensively interrogated in a genome-wide fashion.
However, most post-GWAS approaches have previously fo-
cused on individual candidate genes, with experimental setups
that make them poorly suited for systematic assessment of
large numbers of genes across multiple tissues.

High-throughput functional genomic screening is an
emerging and increasingly powerful approach that allows for
highly parallel phenotypic screening to address this gap.
Several screening strategies have been established that differ
in their direction of modulated gene expression (gain of func-
tion (GOF) vs LOF), format (pooled vs arrayed), and gene
modulation techniques (RNA interference (RNAi) vs
CRISPR/Cas9 modulation) [51–56, 57•]. Screens can either
be performed genome-wide, representing an unbiased ap-
proach to detect genes that are involved in a specific pheno-
type, or based on selected genes of interest. A recent study by
Thomsen et al. successfully pursued a small interfering RNA
(siRNA) arrayed screening approach to systematically inter-
rogate positional candidate genes at T2D GWAS loci in a
human beta cell line [45]. Genes located within 1 Mb of 75
GWAS association signals were analysed for insulin secretion
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and cell proliferation to reflect beta cell dysfunction. This
strategic approach provided 300 genes for screening and iden-
tified 45 genes at 37 GWAS loci for having a role in beta cell
dysfunction, thus also pinpointing them as potential effector
transcripts at these disease loci. Several prioritised genes with
poorly characterised connection to beta cell function were
separately validated in functional follow-up work including
ARL15, THADA, and ZMIZ1. Independently of the previously
described cis-eQTL study, this work thus attributed a role to
ZMIZ1 in beta cell function, converging multiple lines of ev-
idence to enhance confidence in the candidacy of this gene as
causal. Importantly, the study also demonstrated a strong en-
richment for known regulators of insulin secretion among sig-
nificant hits, providing an internal validation that is an essen-
tial aspect of any screening strategy.

Taking a more inclusive approach, Pappalardo and col-
leagues recently pursued the first whole-genome siRNA
screen to identify genes involved in glucose homeostasis and
T2D [58]. While allowing for a more unbiased approach,
performing an arrayed, genome-wide screen restricts the com-
plexity of the phenotype(s) that can be practically measured.
This screen focused on a reporter gene readout for insulin
promoter activity in a rat beta cell line. The authors were able
to identify several novel regulators of insulin promoter activity
including Spry2, the gene in the closest proximity to a nearby
T2D GWAS association signal [59]. The work thus highlights
Spry2 as the likely causal gene at this locus, and follow-up
work in cellular and in vivo systems including beta cell spe-
cific knockout mice discovered a potential functional mecha-
nism. However, a link between the non-coding association
signal and Spry2 remains to be investigated, ideally through
integration with variant-to-gene approaches in human beta
cells. This screen also provided robust internal validation by
confirming the strongest hits to be known transcription factors
targeting the insulin promoter.

Medium-throughput screens and systematic analysis of se-
lected classes of genes represents a related strategy for
analysing candidate genes in more depth across a larger spec-
trum of possible disease phenotypes. This approach was pur-
sued by a recent study that investigated the function of 12 long
non-coding RNAs (lncRNAs) in beta cell gene regulation and
their potential role in T2D [60]. These lncRNA knockdown
targets were selected based on criteria that included expression
in a relevant model and an active chromatin profile. The study
showed that the beta cell specific lncRNAs jointly regulate
enhancer-cluster associated genes with known transcription
factors. The lncRNA named as PLUTO was established as a
regulator of its neighbouring gene PDX1, a transcription fac-
tor involved in pancreatic development and beta cell function
[61]. Based on this overlapping role of lncRNAs and islet
transcription factors, and the well-established involvement of
the latter in T2D, the work hints at a similarly important role of
lncRNAs in T2D pathology.

Future genetic screens hold the potential to play an impor-
tant role in identifying causal genes for T2D. Pooled ap-
proaches are able to extend the scale of arrayed screens in a
cost-effective manner and allow for simultaneous perturbation
of thousands of genes to promote unbiased interrogation of
candidate causal genes. The continuous development and im-
provement of the differentiation process of induced pluripo-
tent stem cells into beta cells will also allow for investigations
of disease-relevant phenotypes at various developmental
stages [62, 63]. High-throughput screens thus offer the oppor-
tunity to facilitate the transition from T2D GWAS association
signals to individual functional follow-up studies by
prioritising candidate causal genes based on functional data.

Integrative Approach

All of the above outlined strategies provide complementary
approaches for prioritising causal genes for association sig-
nals, each with individual advantages and drawbacks.
Coding variants are reliant upon large-scale association stud-
ies and naturally occurring variation, while variant-gene links
are limited by the availability of primary tissue and possible
pleiotropy, and gene-centric functional studies establish indi-
rect evidence in a manner that is strongly dependent on
context-dependent effects. As a result, one specific line of
evidence can only give limited insights into causal mecha-
nisms and is rarely sufficient to provide definitive evidence
for a particular mechanism. The true causal gene(s) can only
be identified with confidence through integration and conver-
gence of several complementing datasets [64].

The importance of taking an integrative approach is illus-
trated by the T2D susceptibility locus on chromosome 11q13,
which is located near the pro te in-coding genes
ARAP1(CENTD2) and STARD10 [3, 65]. Initial studies
highlighted ARAP1 as an effector transcript at the locus, but
recent findings contradict this assumption and instead propose
STARD10 as the causal gene [44, 66, 67••]. Fine-mapping,
functional annotation data, chromatin accessibility and con-
formation capture data, promoter-reporter assays in beta cell
models, cis-eQTL in islet samples, and global and selective
mice knockout models were all used to generate complemen-
tary data that attribute a role to STARD10 at this locus. The
comprehensive set of data makes it possible to infer causality
by triangulation from different results. This point is
emphasised by examining the chromatin confirmation capture
data in isolation. Physical interactions between both the
STARD10 and ARAP1 promoters and variants in the credible
causal set highlight the possibility of regulatory effects on
either gene. Thus, additional information was required to clar-
ify the roles of these genes in disease pathology.

Another recent study outlines how the integration of geno-
mic, expression and functional data can prioritise a potential
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causal gene and disease mechanism, and furthermore directly
propose a therapeutic hypothesis. The investigated T2D risk
allele is common in Mexicans and Latin Americans (~30%
allelic frequency) and located near SLC16A11 and SLC16A13
[68]. Fine-mapping identified a credible set of causal variants
including non-coding variants and missense coding variants in
SLC16A11. Liver expression data and chromatin modification
analysis showed reduced SLC16A11 expression and less-
activating histone modifications in samples from T2D risk
allele carriers, thus proposing SLC16A11 as the candidate
causal gene. Further studies into the function of SLC16A11,
an H+-coupled monocarboxylate transporter revealed that the
coding risk variants exert their effect through decreased chap-
erone interaction and SLC16A11 plasma membrane localiza-
tion. Rusu et al. were also able to show how decreased
SLC16A11 function might lead to increased T2D risk by hav-
ing an effect on cellular fatty acid and lipid metabolism, pro-
viding a possible therapeutic strategy.

Despite comprehensive integration of datasets, the evi-
dence in these studies still cannot exclude additional pleiotro-
py (e.g. regulatory effects that remain undetected due to insuf-
ficient power, or effects that manifest in cell types not studied).
Exhaustively addressing these gaps will require access to data
that enable interrogation of variant function in any context
(e.g. well-powered cis-eQTL studies across all disease-
relevant cell states), and is far from being a feasible aim for
current post-GWAS studies. The emergence of ever-greater,
publically available datasets of this nature will increasingly
facilitate integration with results of individual studies and
thereby guide interpretation. Large-scale projects such as
ENCODE, Genotype-Tissue Expression (GTEx) and the
NIH Epigenomics Roadmap have already generated enor-
mous functional annotation datasets that allow for intersection
with potentially causal variants across hundreds of cell types
[41, 69, 70]. However, in the case of tissue-specific annota-
tions for inaccessible tissues like islets, these datasets are often
lacking or immature. Future studies will expand the possibil-
ities of integrating datasets and improve the prospects for
identification of causal genes in T2D.

Conclusion

Connecting GWAS association signals to their corresponding
causal genes has proven a major experimental challenge and
bottleneck for therapeutic translation. As a consequence of
GWAS design and the genetic architecture of T2D, causal
variants and genes cannot be easily inferred from genetic as-
sociation studies, hindering functional interpretation. Thus,
prioritising causal genes at T2D loci to aid functional under-
standing is a central aspect of current studies. These studies
must be guided by parallel efforts to identify causal variants
and appropriate disease-relevant model systems. A number of

strategies have emerged for causal gene prioritisation based on
genetic data, genomic annotations, and functional screening,
each with limitations that render them insufficient in isolation.
Several lines of evidence and different experimental strategies
should thus be triangulated to validate the results and increase
confidence in a specific causal mechanism. Looking forward,
this era of gene prioritisation based on T2D GWAS loci and
functional understanding holds the promise to unlock the full
potential of genomic medicine and clinical translation.
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