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Background: Electroconvulsive therapy (ECT) is arguably the most effective available 
treatment for severe depression. Recent studies have used MRI data to predict clinical 
outcome to ECT and other antidepressant therapies. One challenge facing such studies 
is selecting from among the many available metrics, which characterize complementary 
and sometimes non-overlapping aspects of brain function and connectomics. Here, we 
assessed the ability of aggregated, functional MRI metrics of basal brain activity and 
connectivity to predict antidepressant response to ECT using machine learning.

Methods: A radial support vector machine was trained using arterial spin labeling (ASL) 
and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging 
(fMRI) metrics from n = 46 (26 female, mean age 42) depressed patients prior to ECT 
(majority right-unilateral stimulation). Image preprocessing was applied using standard 
procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, 
fractional amplitude of low-frequency modulations, and graph theory metrics (strength, 
local efficiency, and clustering) in BOLD data. A 5-repeated 5-fold cross-validation pro-
cedure with nested feature-selection validated model performance. Linear regressions 
were applied post hoc to aid interpretation of discriminative features.

results: The range of balanced accuracy in models performing statistically above 
chance was 58–68%. Here, prediction of non-responders was slightly higher than for 
responders (maximum performance 74 and 64%, respectively). Several features were 
consistently selected across cross-validation folds, mostly within frontal and temporal 
regions. Among these were connectivity strength among: a fronto-parietal network 
[including left dorsolateral prefrontal cortex (DLPFC)], motor and temporal networks 
(near ECT electrodes), and/or subgenual anterior cingulate cortex (sgACC).

conclusion: Our data indicate that pattern classification of multimodal fMRI metrics 
can successfully predict ECT outcome, particularly for individuals who will not respond 
to treatment. Notably, connectivity with networks highly relevant to ECT and depression 
were consistently selected as important predictive features. These included the left DLPFC 
and the sgACC, which are both targets of other neurostimulation therapies for depression, 
as well as connectivity between motor and right temporal cortices near electrode sites. 
Future studies that probe additional functional and structural MRI metrics and other patient 
characteristics may further improve the predictive power of these and similar models.

Keywords: major depressive disorder, electroconvulsive therapy, pattern classification, connectomics, functional 
magnetic resonance imaging
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inTrODUcTiOn

Electroconvulsive therapy (ECT) remains the “gold standard” treat-
ment for severe, treatment-resistant depression, with response 
rates (50–80%), and response times (<1 month) superior to other 
currently available treatments (1–3). However, although ECT is 
generally well-tolerated, the potential for acute (e.g., body aches, 
confusion) and more protracted (e.g., memory complaints) 
side effects may impact the decision to initiate or complete 
ECT treatment. Therefore, identifying prospective biomarkers 
of antidepressant response to ECT may help patients and their 
clinicians weigh the potential costs and benefits of ECT, while 
also contributing to our understanding of the neurobiological 
mechanisms of this treatment.

During ECT, carefully titrated electrical stimulation is deliv-
ered to induce generalized seizures in patients, approximately 
three times a week for about a month. One might suspect that 
the lasting effects of repeated generalized seizures on the brain 
would be widespread and even nonspecific; however, a growing 
literature suggests that ECT induces plasticity in specific brain 
regions, including the hippocampus, basal ganglia, anterior 
cingulate, and prefrontal cortex (4–10). Prospective prediction 
of ECT response is less studied, but subgenual anterior cingulate 
cortex (sgACC) gray matter (GM) volume (11) and medial 
frontal cortex functional connectivity (12) have been recently 
implicated using machine learning methods. These studies have 
made important contributions, though several challenges exist in 
this line of research, including small sample sizes and optimizing 
selection of statistical models and candidate features (e.g., MRI, 
demographic, ECT parameters, etc.)

Selecting from among the many available MRI metrics is 
particularly problematic, because many different kinds of met-
rics can be derived from the same kind of data that characterize 
complementary and sometimes non-overlapping aspects of brain 
function, structure, and/or connectivity. Functional connectom-
ics, for example, can be measured with functional magnetic 
resonance imaging (fMRI) between two regions, among regions 
comprising functional networks, or within a single region to char-
acterize local connectivity. Regions and networks can be defined 
a  priori based on anatomical location or functional localizers, 
or can be defined in a data-driven approaches like independ-
ent component analysis (ICA) to define resting-state networks 
(RSNs). Furthermore, calculation of connectivity metrics can 
be based on similarity of the fMRI timecourse, more complex 
aspects of network dynamics measured with graph theory, or in 
the frequency content of the signal (power spectra). Many studies 
focus on a single approach, though it is likely that a combination 
of these metrics may relate to clinical response to ECT, and it is 
unclear whether one or all of them would be most effective in 
creating prospective predictions of response.

In the current study, we assessed the ability of aggregated, 
multimodal functional MRI metrics to predict antidepressant 
response to ECT using a data-driven approach. We applied 
a variety of functional and connectomic analyses to blood-
oxygenation-level-dependent (BOLD) and arterial spin labeled 
(ASL) fMRI data acquired prior to ECT, to create a large set of 
features that reflected multiple aspects of brain function and 

connectivity. Structural MRI was also used to derive GM volume 
for comparison. Depressive symptoms were measured before and 
after a naturalistic course of ECT, and pattern classification using 
a radial basis function kernel support vector machine (radial 
SVM) was applied to predict antidepressant response to ECT. 
Model predictions and feature selection were validated within 
a nested 5-fold 5-repeated cross-validation paradigm to ensure 
consistent performance for our modest sample size (n  =  46). 
We hypothesized that a specific subset of these features would 
be optimally predictive of antidepressant response; therefore, we 
applied a series of feature reduction and selection techniques in an 
attempt to identify the most informative functional and connec-
tomic biomarkers of antidepressant response to ECT (Figure 1).

MaTerials anD MeThODs

Participants
Patients (n = 46) were assessed twice: before ECT and after index 
ECT (~4 weeks later). All patients were defined as treatment resis-
tant (failing 2+ prior medication trials) and currently experiencing 
a DSM-IV-TR-defined major depressive episode. Symptoms of 
depression were assessed using the Hamilton Depression Rating 
Scale (17 item) (13), Montgomery Åsberg Depression Rating Scale 
(14), and Quick Inventory of Depressive Symptoms (15). All pro-
cedures were approved by the UCLA Institutional Review Board.

electroconvulsive Therapy
Patients volunteered for this research study before initiating 
a clinically prescribed course of ECT at the UCLA Resnick 
Neuropsychiatric Hospital. Right-unilateral (RUL) ECT was 
administered using standard protocols (16) after patients were 
tapered off all psychotropic medications for a minimum of 
48–72 h prior to and for the duration of the ~4-week index series. 
Some patients who did not respond initially to RUL ECT were 
transitioned to bitemporal ECT if indicated clinically.

image acquisition
Structural and functional MRI data were acquired using a 3T 
Siemens Allegra scanner. Continuous ASL images were acquired: 
60 volumes (30 label, 30 control), 4  mm  ×  4  mm  ×  7.5  mm 
resolution, 18 axial slices, repetition time 4,000  ms, echo time 
16 ms, label time 2,100 ms, post-label delay 1,000 ms, and 95% 
duty cycle. Blood-oxygenation-level-dependent (BOLD) fMRI 
images were acquired: 180 volumes, 3.4 mm × 3.4 mm × 5 mm 
resolution, 34 axial slices, repetition time 2.0  s, echo time 
30  ms, flip angle  =  70°. During both ASL- and BOLD-fMRI 
sequences, subjects were resting with eyes closed. A T1-weighted 
anatomical scan (MPRAGE) was also collected with real-time 
motion correction (17): (echo times/repetition time = 1.74, 3.6, 
5.46, 7.32/2,530 ms, inversion time = 1,260 ms, flip angle = 7°, 
field of view  =  256  mm  ×  256  mm, 192 sagittal slices, voxel 
resolution = 1.3 mm × 1.0 mm × 1.0 mm).

image Preprocessing: Overview
Arterial spin labeled-fMRI, BOLD-fMRI, and structural-MRI 
data were preprocessed using standard procedures and target 
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FigUre 1 | Classification analysis design. (a) Functional and structural data were first preprocessed using standard protocols, and metrics were derived to reflect 
various aspects of brain-network connectivity [blood-oxygenation-level-dependent-functional magnetic resonance imaging (fMRI)], basal activity levels [arterial spin 
labeled (ASL)-fMRI], and gray-matter volume (structural MRI). (B) Next, feature reduction steps derived the average metric for each region of interest (defined by the 
Craddock atlas), and removed features with near-zero variance and high collinearity. (c) Remaining data were split into training and test Sets. (D–F) The training set 
was submitted to feature selection using recursive feature elimination (RFE, radial SVM) to select the 25 most consistently selected multimodal MRI features, 
validated with 5-repeated 5-fold splits of the training set (resulting in 25 iterations through RFE per each outer cross-validation split). (g) A radial SVM classifier was 
then trained using the training set and the top 25 features ranked by selection consistency. These models included several feature-set sizes, including the top 2 
features, top 3, top 4, through top 25 features. (h) Finally, each model’s ability to predict electroconvulsive therapy outcome was assessed using the test set. The 
process was validated across 5-repeated 5-fold cross-validation splits [i.e., (c)] for 25 total model predictions for each feature-set size (2–25 features).
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metrics were derived using standard procedures, as described 
further below. All data were co-registered to MNI space. 
Voxelwise metrics were averaged within GM regions defined 
using the Craddock atlas [210 clusters; 202 regions of interest 
(ROIs) after applying GM mask] (18), separately for each sub-
ject. The Craddock atlas is based on a meta-analysis of several 
functional MRI studies, and offers an independently defined set 
of ROIs for analysis. Derivation of voxelwise metrics is described 
below, and included cerebral blood flow (CBF), regional homoge-
neity (ReHo), fractional amplitude of low-frequency fluctuations 
(fALFF), GM volume, and BOLD-timecourses used for calcula-
tion of graph theory metrics.

image Preprocessing: asl-fMri
Arterial spin labeled-fMRI images were first corrected for motion 
(FSL; FMRIB), and then CBF was quantified using the simple 
subtraction method in ASLtoolbox (19) and averaged across all 
volumes to yield a single mean CBF image. Mean CBF images 
were registered to T1-weighted anatomical scans and MNI tem-
plates including interpolation to 2 mm × 2 mm × 2 mm voxel size 
using SPM9 (Wellcome Trust Centre for Neuroimaging) and then 
smoothed with a 6 mm FWHM Gaussian kernel using FSL. Mean 
voxelwise CBF was averaged within ROIs in the Craddock atlas to 
yield 202 features per subject.

image Preprocessing: BOlD-fMri
Blood-oxygenation-level-dependent-fMRI images were first 
preprocessed in FSL, including slice-time correction, motion 
correction, and high-pass filter (0.01 Hz). Two leading volumes 
were discarded prior to preprocessing. Spin-history artifacts 
resulting from interleaved slice acquisition [often correlated with 
head motion (20)] were removed from voxel timecourses using 
ICA-based denoising. In brief, ICA was performed for each sub-
ject’s BOLD-fMRI data, noise components were labeled manually 
based on their spatio-temporal profiles, and noise-component 
timeseries were regressed from the BOLD timecourse using FSL’s 
regfilt command (20, 21). Finally, preprocessed and denoised 
images were aligned to each subject’s MPRAGE using FSL, and 
normalized to MNI standard space including interpolation to 
2 mm × 2 mm × 2 mm voxel size using SPM9 and then smoothed 
with a 6 mm FWHM Gaussian kernel (FSL).

Several functional-connectivity metrics were derived using 
MNI-normalized BOLD-fMRI data. The REST Toolkit (22) 
was used to calculate ReHo and fALFF for each voxel, which 
reflect local connectivity and neurobiologically relevant spectral 
content of the BOLD timecourse (0.01–0.1  Hz), respectively. 
Voxelwise ReHo and fALFF metrics were averaged within ROIs 
of the Craddock Atlas to yield 202 features for each subject 
(for both ReHo and fALFF). Group ICA was also applied using 
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standard procedures using FSL to derive RSNs in each subject 
using dual regression. Timecourses of these RSNs were used in 
calculations of connectivity strength as described below. Graph 
theory metrics (strength, clustering, and local efficiency) were 
calculated using the Brain Connectivity Toolbox (23), using both 
ROIs and ICA-defined RSNs as nodes. “In brief ”, “connectivity 
strength” reflects the correlation between the BOLD-fMRI 
time courses of two nodes, and was calculated between pairs of 
ROIs (ROI-to-ROI connectivity strength), between each ROI 
and RSN (ROI-to-RSN), and between pairs of RSNs (RSN-to-
RSN). “Local efficiency” reflects network integration, and was 
calculated for each ROI as the average shortest path length (i.e., 
# of contiguously connected nodes) between a given ROI and 
the thresholded whole-brain network. “Clustering” reflects the 
degree of separation within a network and was calculated for each 
ROI. A detailed description of the mathematical derivations and 
possible interpretations of these and other graph theory metrics 
can be found in existing methodological literature (23, 24).

image Preprocessing: structural Mri
Structural images were preprocessed in SPM9, as part of the stand-
ard tissue segmentation procedure use for MNI-normalization in 
this package. In brief, images were first corrected for intensity 
inhomogeneities, and segmented by tissue type (GM, white mat-
ter, and CSF) using SPM templates. GM images were then warped 
to MNI templates, corrected for the amount of deformation 
applied during normalizing (i.e., Jacobian scaling), and smoothed 
with a 6 mm FWHM Gaussain kernel (FSL). Final images were 
thresholded at 0.20 probability of tissue classification as per 
standard protocols. The resulting voxelwise GM volume metrics 
were averaged within each of the Craddock Atlas ROIs to yield 
202 features per subject.

initial Data reduction and Filtering
After preprocessing and calculation of functional and structural-
MRI metrics as described above, our dataset was comprised of 
25,311 total features per subject: CBF (202), ReHo (202), fALFF 
(202), ROI-to-ROI strength (20,301), ROI-to-RSN strength 
(3,131), RSN-to-RSN strength (465), local efficiency (202), clus-
tering (202), and GM volume (202). In order to simplify inter-
pretation and reduce processing time, we took additional steps to 
measure and remove redundant features in this dataset, beyond 
application of the Craddock Atlas as described above (Figure 1A). 
These data reduction steps and classification analyses (described 
further below) were applied using standard procedures with the 
caret Package (25) in R v3.3.2 (www.R-project.org).

First, we removed features with near-zero inter-subject vari-
ance. This procedure calculated the frequency ratio for each fea-
ture, specifically the frequency of the most prevalent value over 
the second most frequent value (25). Features with abnormally 
large ratios were identified as having low variance and removed.

Next, we applied a collinearity filter. In this step, the similarity 
of features was assessed pairwise, and feature-pairs with Pearson’s 
r > 0.70 were identified as highly collinear. Among these feature-
pairs identified as collinear, the feature with least average overall 
correlation with all other remaining features was retained. These 
initial feature reduction steps were anticipated to omit redundant 

and uninformative data not relevant for ECT response (e.g., high 
collinearity due to neuro-anatomical and/or neuro-functional 
proximity); therefore, these procedures were not verified using 
cross-validation.

Feature selection and classification 
analyses
After initial data reduction procedures described above, the 
remaining features were analyzed using the radial SVM algo-
rithm to classify patient participants as ECT responders and 
non-responders based on patterns in multivariate functional and 
structural MRI metrics. Using a radial basis function kernel allows 
fitting of non-linear boundaries (hyperplanes) to separate fea-
tures, and a strict cross-validation procedure was chosen to avoid 
over-fitting, which can sometimes be an issue with radial SVM 
classification. Model performance was robustly validated using a 
nested 5-repeated 5-fold cross-validation framework, including 
feature selection using recursive feature elimination (RFE). This 
process is described in detail below and depicted in Figure 1.

Data reduction steps (described above) yielded 1,844 features 
each for 46 total patient volunteers. First, patients were evenly 
divided into “responders” or “non-responders” to ECT, based on 
the average percent improvement in HAMD-17, MADRS, and 
QIDS depression scores (even split point was 42.2% reduction 
in symptoms). This ensured an equally balanced sample for 
subsequent pattern classification analyses (i.e., n = 23 respond-
ers and n =  23 non-responders), giving a chance classification 
performance level of 50%.

Next, at the first 5-fold split (cross-validation split, Figure 1C), 
data were randomly divided into a training set (n ≈ 37) and test 
set (n ≈ 9). The training set was submitted to feature selection, to 
determine the optimal set of predictive features with RFE (26). In 
RFE, features were ranked according to their estimated predictive 
value using radial SVMs (and internal 5-repeated 5-fold cross-
validation), and the feature set with the best classification per-
formance (area under the receiver operating curve) was chosen. 
This was repeated for each feature-selection split (Figure 1D), for 
5 folds and 5 repeats yielding 25 total feature sets.

The features comprising these RFE-selected feature sets were 
then ranked based on the consistency with which they were 
chosen across feature-selection splits, where 100% consistency 
for a given feature would indicate that it was chosen 25 times 
(Figure  1F). The top 25 features were then passed to the next 
step, where the SVMs were trained on the entire training set using 
these features (Figure  1G). Feature-set sizes were varied, such 
that model feature-sets included either the top 2 features, top 
3, top 4, and so on, resulting in 24 total models. The predictive 
accuracy of these models were tested on the test set (Figure 1H), 
and balanced accuracy, sensitivity (to predict response), and 
specificity [to predict non-responders (NR)] were derived. We 
chose balanced accuracy (i.e., the average of sensitivity and 
specificity) to avoid inflating our reported model performance 
(e.g., if prediction of non-responders was more accurate than for 
responders). Note that in all cases radial SVM parameters were 
optimized using the area under the receiver operating charac-
teristic curve metric to maximize balanced prediction of both 
response and non-response to ECT. This entire procedure was 
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TaBle 1 | Sample characteristics.

Sample size 46
Age, mean (SD) 41.74 (6.78)
Sex, females/males 26/21
Diagnosis, unipolar/bipolar 38/8
Age of diagnosis, mean (SD) 25.07 (6.78)
ECT leads, only RUL/other 29/17
Responder/non-responder 20/26
Number of tx, mean (SD) 11.59 (6.78)

Pre-ECT Post-ECT index

HAM-17, mean (SD) 24.02 (6.78) 13.21 (7.66)*
MADRS, mean (SD) 37.50 (6.78) 18.60 (11.37)*
QIDS-SR, mean (SD) 19.74 (6.78) 11.00 (5.91)*

*Significant change from pre-ECT values (paired t-test).

FigUre 2 | Classification performance across sets of best features. Plots of pattern classification performance are displayed for balanced accuracy (left panel), 
sensitivity [to predict electroconvulsive therapy (ECT) responders, R; middle panel], and specificity [to predict ECT non-responders, NR; right panel] and all 
feature-set sizes (i.e., number of ranked features used in each model). Performance is averaged over all 25 outer cross-validation loops; error bars reflect standard 
error. Blue lines indicate model performances for veridical datasets, and gray lines mark performance for random datasets where responder/non-responder labels 
were randomly assigned. Red-dashed line marks chance performance (50%). The results of Welch’s t-tests comparing veridical and random data are given; 
asterisks mark one-tailed false discovery rate-corrected p < 0.05 and daggers mark one-tailed uncorrected p < 0.05.
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repeated for each cross-validation split (Figure 1C) to yield 25 
total sets of final models and associated predictions.

This entire procedure (Figures  1C–H, feature selection and 
model estimation), including cross-validation and feature-
selection splits, was applied both to true “veridical” data to 
address our hypotheses of interest, and again on identical data 
paired with randomly shuffled responder/non-responder labels 
to estimate chance performance. Veridical and random-label data 
were compared with Welch’s t tests, assuming unequal variance 
and estimating one-tailed p-value to address the hypothesis that 
veridical data would outperform randomly sampled class data. 
These t-tests were performed for all predictions across the 25 
cross-validation splits, separately for each feature-set size (i.e., 
2–25 features) for balanced accuracy, sensitivity, and specificity. 
p-values were corrected for multiple comparisons using the false 
discovery rate.

Post Hoc analyses
Features that were selected with high consistency across cross-
validation splits were targeted in univariate analyses post  hoc 
to assess each of their relationships with ECT outcome. Linear 
regression analyses tested for correlations between each feature 

and mean percent change in depression scores (averaged across 
HAMD, MADRS, and QIDS), with age as an additional nuisance 
covariate. Note that results were similar with and without age 
included in these models. Uncorrected p-values are reported for 
these tests.

resUlTs

Demographic and clinical Variables
Depression scores improved significantly after ECT (p < 0.00001 
for all scales), with 22 of 42 of patients exhibiting at least a 50% 
reduction in depression scores and 16 of 43 patients meeting 
criteria for remission on any of our symptom inventories after the 
ECT index treatment series. These measures and other clinical 
variables are displayed in Table 1.

classifier Performance
Performance metrics are displayed for veridical and random data 
and all models (i.e., feature sets) in Figure 2. Balanced accuracy 
for veridical data was consistently higher than for identical data 
with randomly shuffled class labels (responder/non-responder). 
When considering model performance across feature-set sizes, 
average balanced accuracy was statistically higher than perfor-
mance for random-label data, with minimum and maximum 
averaged performance for veridical data at 58 and 68%, respec-
tively. Sensitivity (i.e., prediction of responders) was slightly 
lower than specificity (i.e., prediction of non-responders), though 
both were above chance in a number of model parameterizations 
(pFDR < 0.05). Range of averaged sensitivity across model param-
eterizations (i.e., across feature-set sizes) was 54–64%; range of 
average specificity was 55–74%.

Feature-selection results
Features that were selected with high consistency across cross-
validation splits were targeted for further analysis. The top 10 
most consistently selected features are displayed in Figure  3, 
and the top 25 are given in Table 2. Two features were selected 
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TaBle 2 | Top-ranked features (most consistently selected across cross-validation splits).

rank % select Metric region/network 1 region/network 2

index Description index Description

1 100 Connectivity strength NET1 L Fronto-Parietal Network NET2 Supplementary Motor Network

2 100 Connectivity strength NET3 Superior Temporal Network ROI1 L Lateral Occipital Cortex 

3 92 Connectivity strength ROI2 Subgenual Anterior Cingulate Cortex ROI3 R Superior Temporal Cortex

4 76 Connectivity strength NET4 Motor Network ROI4 R Inferior Frontal Gyrus

5 76 Connectivity strength NET1 L Fronto-Parietal Network ROI5 L Inferior Frontal Gyrus

6 64 Connectivity strength NET1 L Fronto-Parietal Network NET3 Superior Temporal Network

7 60 Regional homogeneity ROI6 L Superior Temporal Cortex n/a n/a

8 56 Connectivity strength ROI7 R Orbitofrontal Cortex NET4 Motor Network

9 56 Connectivity strength NET1 L Fronto-Parietal Network ROI8 L Temporal Pole

10 56 Connectivity strength ROI1 R Superior Temporal Cortex ROI9 R Inferior Temporal Cortex

11 56 Connectivity strength NET1 L Fronto-Parietal Network ROI10 R Superior Parietal Cortex

12 52 Connectivity strength ROI11 R Rostral Inferior Temporal Cortex NET4 Motor Network

13 44 Connectivity strength ROI12 L Dorsolateral Prefrontal Cortex ROI11 L Superior Parietal Cortex

14 44 Connectivity strength NET1 L Fronto-Parietal Network ROI11 L Superior Parietal Cortex

15 44 Connectivity strength NET4 Motor Network ROI3 R Superior Temporal Cortex

16 44 Connectivity strength ROI13 L Suppl. Motor Cortex ROI14 L Dorsal Premotor Cortex

17 40 Connectivity strength ROI11 L Lateral Parietal ROI15 L Lateral Occipital Cortex

18 36 Connectivity strength NET1 L Fronto-Parietal Network ROI16 L Superior Temporal Cortex

19 36 Connectivity strength ROI2 Subgenual Anterior Cingulate Cortex NET3 Superior Temporal Network

20 32 Connectivity strength ROI17 Dorsomedial Prefrontal Cortex ROI18 R Rostral Sup. Frontal Sulcus

21 32 Connectivity strength ROI5 L Inferior Frontal Gyrus NET5 Fronto-Temporal Network

22 32 Connectivity strength ROI15 L Lateral Occipital Cortex NET6 Anterior Temporal Network

23 28 Regional homogeneity ROI19 R Inferior Temporal Cortex n/a n/a

24 28 Connectivity strength ROI20 L Rostral Superior Frontal Gyrus NET7 Medial Occipital Network

25 28 Connectivity strength NET4 Motor Network ROI21 L Post. Sup. Temporal Cortex

R, right; L, left; Sup., superior.
Note that “Index” indicates the identity of each network (NET) or region of interest (ROI) comprising the given feature; identical indices indicate identical regions or networks.

FigUre 3 | The ten “best” multimodal functional magnetic resonance imaging features. The top 10 features that were most consistently selected across all outer 
cross-validation splits are displayed. All top features related to functional-connectivity strength among networks (orange and blue regions) and/or single brain areas 
(red regions) as indicated by blue arrows. A single feature reflected local connectivity strength (i.e., regional homogeneity). Feature rank is displayed next to blue 
arrows (see also Table 2) and MNI coordinates are given for each slice displayed. L, left; R, right; ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal 
cortex; suppl., supplementary; Inf., inferior.
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FigUre 4 | Correlations between top features and mean change in depression scores. Statistical tests post hoc confirmed relationships between highly robust 
features (x-axes) and improvement in depression scores (y-axes). Feature rank was determined by the consistency of feature selection across cross-validation splits. 
Pearson’s r values are given for each respective regression line, and p-values reflect the results of regression analyses with age as a nuisance factor. L, left; R, right; 
FPN, fronto-parietal network; SPN, supplementary motor network; STN, superior temporal network; sgACC, subgenual anterior cingulate cortex; inf., inferior sup., 
superior; STC, superior temporal cortex; OFC, orbitofrontal cortex; ITC, inferior temporal cortex; ReHo, regional homogeneity.
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on every cross-validation split (i.e., with 100% frequency) and 
included (1) connectivity strength between a left fronto-parietal 
network and the supplementary motor network and (2) con-
nectivity between a superior temporal network and left lateral 
occipital cortex. A third feature was selected in all but two 
cross-validation splits (i.e., with 92% frequency), which was 
connectivity between sgACC and a right temporal cortex region. 
Notably, of the top 25 most consistently selected features across 
cross-validation splits (Table 2), 56% involved temporal regions 
or networks, 28% involved the left fronto-parietal network and 

56% involved prefrontal networks or regions more generally, 
32% involved motor or supplementary motor networks or 
regions near the ECT vertex electrode, and 8% involved sgACC.

Post hoc analyses estimated correlations between each of 
these features and changes in depression scores after ECT. All 
features exhibited positive correlations between connectivity 
strength and change in depression scores, such that volunteers 
who responded to ECT were more likely to have increased con-
nectivity (all but one p < 0.05). Corresponding scatter plots are 
displayed in Figure 4.
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FigUre 5 | Feature-selection consistency. (a) The average consistency within each round of recursive feature elimination (RFE) feature selection is plotted on the 
y-axis for veridical data in blue and for randomly assigned responder/non-responder labels in gray. Here, a value of 25 indicates that the top-selected feature (e.g., 
rank 1) was selected with 100% consistency within RFE feature selection (Figure 1D) for all cross-validation splits (Figure 1c). (B) The frequency with which 
top-ranked features (Figure 1F) were selected across cross-validation splits is plotted on the y-axis for each of the most consistently selected features on the x-axis 
(ranked by number of times selected across cross-validation splits).
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Finally, we performed post hoc analyses comparing feature-
selection consistency for veridical and random-label data. 
Within each round of feature-selection splits (Figures 1D–F), 
there was a high degree of feature-selection consistency for both 
veridical and random-label data sets. In other words, the RFE 
procedure was consistently choosing feature sets that best pre-
dicted class labels within each training set regardless of whether 
those labels were randomly shuffled (Figure  5A). However, 
across cross-validation splits, feature-selection consistency was 
only high for veridical data, and was correspondingly quite low 
for data with randomly shuffled labels (Figure 5B). This suggests 
that although the RFE feature-selection procedure characterized 
each single training set well, the predictive power of the features 
selected only generalized well to the test set for veridical data, 
not random data. This speaks to the robustness of our nested-
cross-validation design to enhance the potential for generaliz-
ability of our models.

DiscUssiOn

In this study, we provide evidence that functional connectiv-
ity of specific frontal and temporal regions measured prior to 
treatment can predict antidepressant outcome of RUL ECT in 
patients with severe, recurrent depression. These results were 
robust across 5-repeated 5-fold cross-validation, and against 
randomly shuffled data as well. Notably, connectivity strength 
in networks including two regions highly relevant to depression, 
the left dorsolateral prefrontal cortex (DLPFC) and sgACC, were 
consistently identified as informative features in our models. 
The left DLPFC and sgACC are targets of other neurostimula-
tion treatments for depression (TMS and DBS, respectively); 
our data indicate that pretreatment connectivity of these regions 
may be important in determining the success of ECT. Taken 
together, our results indicate that the strength of pretreatment 
functional connectivity between depression-relevant regions and  

RUL-electrode-adjacent regions may strongly influence the pro-
bability of positive ECT outcome. In the following sections, we 
discuss our results with respect to existing literature and their 
potential impact on future research.

Pretreatment Fronto-Temporal 
connectivity Predicts ecT Outcome
In RUL ECT, alternating current is passed between two electrodes, 
one at the vertex (top) of the head and another at the right temple 
(27). This alternating current elicits highly coordinated brain 
activity, which ultimately results in a generalized seizure where 
seizure activity occurs in all (or most of) the brain. Although 
the end result is a generalized seizure, presumably the highly 
coordinated brain activity that results in that seizure occurs, at 
least initially, in regions along the path of electrical current that 
travels between the vertex and right-temple electrodes. Indeed, 
our results indicate that the functional state of brain regions near 
these electrodes prior to treatment, particularly with respect to 
their connections with depression-relevant regions like sgACC 
and left DLPFC, may determine whether ECT is successful in 
reducing the symptoms of depression.

Networks involving motor and supplementary motor corticies 
were consistently chosen as predictive features by our models. 
Both these motor networks were comprised of lateral and medial 
motor cortical regions located near the vertex RUL electrode. 
These findings support previous ECT studies, which have 
implicated an RSN similar to our supplementary motor network 
[van Waarde et al. (12)] and GM near motor and supplementary 
motor cortex [Jiang et al. (28)] in prospective prediction of ECT 
outcome using machine learning. Cortical thickness near motor 
cortex was also found to predict ECT relapse in a recent report as 
well [Wade et al., in press (29)]. Notably, however, connectivity 
between these motor networks and brain regions strongly linked 
to depression and antidepressant response in previous studies 
were most influential in our models, for example, the left DLPFC 
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and right inferior frontal gyrus (IFG) (30–32). Indeed, functional 
connectivity strength measured between the Supplementary 
Motor Network and the Left Fronto-Parietal Network (including 
left DLPFC and right IFG) was consistently selected as an impor-
tant predictive feature in 100% of cross-validation splits. This 
indicates that RUL ECT may work, at least in part, by influencing 
depression-relevant prefrontal regions through coordinated/
seizure activity in motor regions near the vertex electrode. 
Alternatively, involvement of supplementary motor regions in 
particular could reflect links to motor planning (33, 34), which is 
a core deficit of major depression.

A large number of features consistently selected in our models 
were also comprised of temporal cortex regions and/or networks, 
located near the temporal RUL electrode. This corresponds nicely 
with existing literature pointing to a particular role for medial 
temporal (e.g., the hippocampus) and other temporal regions in 
ECT and ECT outcome (5, 7, 10, 35, 36). Structural plasticity of 
the hippocampus and surrounding medial temporal lobe struc-
tures after treatment is a common finding in ECT research (7, 10, 
11, 35, 36), and previous reports also indicate that ECT may alter 
connectivity between temporal cortex and the hippocampus (36). 
Our data add to these results by indicating that functional con-
nectivity within temporal cortex regions prior to treatment may 
influence ECT outcome.

Fronto-temporal connectivity was also consistently identi-
fied as an important feature in our study. Strength of functional 
connectivity between temporal cortex and sgACC was selected 
with a high degree of consistency (92% of cross-validation 
splits), and connectivity between temporal regions and the 
Left Fronto-Parietal Network was identified in two separate 
top-ranked features. Again, this suggests that pretreatment 
connectivity between electrode-adjacent regions in temporal 
cortex and depression-relevant regions like sgACC, DLFPC, and 
other prefrontal regions may influence how patients respond to 
ECT. This also corresponds well with previous studies linking 
sgACC with ECT outcome. For example, Redlich et  al. (11) 
recently demonstrated that sgACC GM volume may predict 
ECT outcome using machine learning (11), and Argyelan et al. 
(37) reported that functional connectivity (fALFF) in sgACC 
was correlated with ECT outcome at baseline (37). It may seem 
counter-intuitive that pretreatment connectivity within frontal 
regions relatively far from ECT electrodes should influence 
ECT outcome. However, we propose that, taken together, our 
results indicate that pretreatment connectivity between these 
depression-relevant regions and electrode-adjacent regions may 
indeed influence ECT outcome.

interpreting classification Performance 
and Potential clinical impact
Interpreting the translational value of complex multimodal 
MRI analyses like these can be challenging, particularly because 
there are several different metrics that can be used to describe 
classifier performance. Our highest performing model param-
eterization had a mean balanced accuracy of 68% (SD: 14.53%; 
range: 38–100%; feature-set size  =  5), sensitivity to predict 
response of 62% (SD: 23.71%; range 25–100%), and specificity 
to predict non-response of 74% (SD: 20.34%; range 20–100%). 

We chose these metrics because we felt it important to focus on 
models that performed optimally for both responders and non-
responders. However, performance can also be interpreted using 
positive and negative predictive values, which may have more 
direct clinical value. For example, performance for our “best” 
model parameterization corresponded with an average positive 
predictive value of 0.73, meaning that if these models labeled 
a patient as a “responder” prior to treatment, the probability 
that patient would respond to ECT improves from 50 to 73%. 
Similarly, negative predictive value was 0.67, which means that 
if these models predicted that a patient would not respond to 
ECT, this would decrease the probability of response from 50 to 
33% (i.e., one minus negative predictive value). Note that 50% 
response rate here was derived based on an even split of our data 
into equal numbers of responders and non-responders; response 
rates calculated by more traditional means were higher (Table 1). 
Taken together, these numbers are promising; however, cross-
site validation is needed to determine the generalizability of the 
predictive value of the connectomic features the current analyses 
have identified. Multi-site studies on a larger scale that also 
leverage additional MRI and other metrics (e.g., demographics, 
clinical features, gene expression, etc.) (28, 29), including fused 
multimodal features (38), are likely to be even more successful in 
prospectively predicting treatment outcome, and perhaps even 
using pretreatment measures to optimize ECT parameters.

limitations and additional Methodological 
considerations
A major challenge when applying machine learning in MRI 
research is that the number of features used to define a predictive 
model is often several orders of magnitude larger than the sample 
used, which leads to over-fitting of the current dataset and, cor-
respondingly, a decreased likelihood of generalization to new 
patient cohorts. We addressed this issue in several ways. First, we 
applied feature reduction and selection procedures to minimize 
the number of features used in our predictive models. Second, 
we applied nested cross-validation to attempt to minimize over-
fitting our models to our current dataset. Indeed, comparing 
Figures  5A,B demonstrate the success of some aspects of our 
approach: although feature-selection consistency was high for 
both random and veridical data within the RFE feature-selection 
procedure, this consistency only generalized to the test set when 
analyzing veridical, non-random data. This speaks to the potential 
utility of nested cross-validation when using this feature-selection 
approach with MRI data to minimize over-fitting.

Note too that our data reduction procedure transformed vox-
elwise metrics to larger ROIs. In part, this was done to mitigate 
computational burden, which can be significant. However, this 
procedure also achieved reduction in noise due through averag-
ing feature metrics across voxels within the ROI, and also saved 
us from a scenario where single voxels (e.g., at tissue boundaries 
or other potentially uninformative regions) could be chosen by 
the classifier as influential predictive features [e.g., as in Redlich 
et al. (11) or van Waarde et al. (12)]. On the other hand, by using 
a single ROI size, we made an implicit assumption a priori that 
relevant features would be of a certain size, perhaps limiting con-
tributions of smaller regions, thereby reducing specificity. Future 
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models targeting ROIs in a range of sizes may be better able to 
capture, for example, hippocampal or basal ganglia contributions 
that were not selected by our models as being predictive of ECT 
outcome.

conclusion
Here, we make a case for the use of aggregated, multimodal 
fMRI features in predicting antidepressant response to RUL 
ECT in severe, recurrent depression using pattern classifica-
tion. The overall performance of our models was above chance 
performance (i.e., compared to random-label data) for classifi-
cation of both responders and non-responders, and was robust 
to cross-validation procedures. In top-performing models, 
probability of response increases from 50 to 73% if a patient is 
classified as responder, and probability of response decreases 
from 50 to 33% if classified as a non-responder by these models 
(i.e., positive and negative predictive values). Although models 
with higher accuracy have been reported previously (11, 12), we 
would argue that a reduction in probability of response of 17% 
may be useful to patients and physicians when weighing treat-
ment options. The most consistently selected features in our 
models encompassing fronto-temporal regions near RUL ECT 
electrodes; connectivity between these regions and depression-
relevant regions like sgACC and left DLPFC were also identified 
as important. Thus, in addition to the potential clinical utility 
of these predictive models, the top-ranked features identified 
also contributed to our knowledge of ECT mechanisms. Going 

forward, multi-site studies with larger and varied cohorts, 
targeting responsibly preprocessed MRI and other data will 
be in an even better position to determine the extent to which 
these kinds of analyses can further elucidate the mechanisms of 
ECT and perhaps be used to make more accuracy prospective 
prediction of successful antidepressant response to ECT.
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