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Abstract

Stem cells, with their capacity to self-renew and to differentiate to more specialized cell

types, play a key role to maintain homeostasis in adult tissues. To investigate how, in the

dynamic stochastic environment of a tissue, non-genetic diversity and the precise balance

between proliferation and differentiation are achieved, it is necessary to understand the

molecular mechanisms of the stem cells in decision making process. By focusing on the

impact of stochasticity, we proposed a computational model describing the regulatory cir-

cuitry as a tri-stable dynamical system to reveal the mechanism which orchestrate this bal-

ance. Our model explains how the distribution of noise in genes, linked to the cell regulatory

networks, affects cell decision-making to maintain homeostatic state. The noise effect on tis-

sue homeostasis is achieved by regulating the probability of differentiation and self-renewal

through symmetric and/or asymmetric cell divisions. Our model reveals, when mutations

due to the replication of DNA in stem cell division, are inevitable, how mutations contribute

to either aging gradually or the development of cancer in a short period of time. Furthermore,

our model sheds some light on the impact of more complex regulatory networks on the sys-

tem robustness against perturbations.

Introduction

Throughout development, stem cells play a key role during multiple morphogenetic processes,

such as tissue growth, regeneration, and repair. Stem cells are characterized by their capacity

to self-renew and to differentiate to more specialized cell types [1, 2] and a balance between

these two processes is necessary to maintain homeostasis in adult tissues [3–6]. Abnormalities

in the differentiation or imbalance between proliferation rate and tissue demand can lead to

dysfunctional tissues or tumorigenesis. On the other hand, to develop a tissue with hundreds

of different cell types from a single stem cell, a non-genetic diversifying mechanism is required.

Hence, understanding the underlying mechanisms which regulate the non-genetic diversity

and orchestrate the stem cell proliferation/differentiation balance in the dynamic stochastic

environment of a tissue is a central challenge in adult stem cell biology [7].
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Stochasticity is an inevitable part of most cellular processes (including cell division) and

arises from a plenitude of sources such as variation in gene expression, metabolic activities,

protein and RNA degradation, etc [8–10, 11]. This stochsticity, also called intrinsic noise,

which results from the probabilistic nature of any biochemical system with a low number of

reacting molecules, can lead to cell-to-cell variability during development [11]. Despite the

presence of noise, a precise and robust regulation of key reactions in the cell is required for

survival and functionality. An increasing number of theoretical and experimental studies are

aimed at unraveling the importance of noise in such robust biological processes [11–13]. It is

known that biological systems can utilize and regulate this stochasticity to improve their fitness

via phenotypic variations [14, 15] and population heterogeneity [10, 16, 17, 11]. During divi-

sion process, a stem cell utilizes a stochastic cell-fate decision making process, to divide either

symmetrically to two differentiated (DD-division) or two new stem cells (SS-division), or

asymmetrically to one differentiated and one stem cell (SD-division) [18, 19]. In an adult tis-

sue, in homeostasis state, a perturbation leading to a dominant rate of any of the symmetric

division types causes imbalance between proliferation and differentiation, which consequently

diminishes the phenotypic diversity. Therefore, a robustly regulated stochastic decision-mak-

ing process enhances morphogenetic processes by maintaining both proliferation/differentia-

tion balance to avoid tissue depletion or abnormal growth [2, 5, 6] and a non-genetic diversity

which is critical to the survival of living systems in noisy environments [20–25]. Cellular regu-

latory networks are known to play a crucial role in adjusting the decision-making mechanism

by considering the effects from permanent intrinsic noise associated with living cells. Such

regulatory networks have been studied extensively in a variety of organisms spanning from

viruses to mammals [20]. These networks are known to control decision making from viruses

[26–28] to bacteria [29–32], yeast [33] and human embryonic stem cells [34–38].s

Taking into account the noisy dynamics of a small number of contributing determinants

associated with intracellular processes, it is necessary to utilize a stochastic model to gain a

better understanding of the behaviour of such regulatory networks. In this model, the system

state is described as quantized fractions of full capacity of each determinant and can evolve

stochastically over time [39]. Therefore, the probability of the system being in a given state

changes with time, and cell character cannot be predicted deterministically as it is influenced

by the intrinsic noise [39, 11]. To simulate the time evolution, it is suitable to use Gillespie

algorithm which is proven effective for describing the trajectory of systems including a small

number of determinants driven by inherent fluctuations [40, 11]. Averaging over enough sim-

ulation runs can provide us with an asymptotic approximation to the exact numerical solution

of the master equation without having to deal with intractable mathematical solutions.

By focusing on the impact of stochasticity during cell-fate decision-making process, here,

we propose a computational model to reveal the mechanism which regulates the proliferation/

differentiation balance in a hypothetical adult tissue. In the most simple model, it is assumed

that a developing tissue, consisting of stem cells and two differentiated cell types, has the ten-

dency to maintain a homeostatic state. The proposed model is defined based on five material

principles which has been discussed in [10] to study biofilm formation and they are reconsid-

ered as follows i) stochasticity due to an intrinsic noise is a fundamental part of any living cell

[10, 17, 41–46]. ii) the non-deterministic position of the cell division plane and nonuniform

distribution of determinants in the cell imply that the cytoplasmic molecules are distributed

randomly among daughter cells during cell division [10, 47–53]. iii) determination of cell fate

by an internal switch upon the completion of cell division [20, 54]. Cell fate is assumed fixed

during cell life cycle [10]. iv) the decision bias in the internal switch is determined by model

parameters representing interactions between the switch elements [10]. v) a switch with more

contributing components would be more stable against environmental fluctuations [10, 36]. In
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terms of Waddington landscape, it means that more complex switches lead to deeper valleys

from where cells could not easily leave in the presence of stochastic fluctuations.

Inspired by previous studies that revealed the impact of regulatory networks on the stabil-

ity of biological systems [14, 27, 33, 41, 55–58, 11], here, we introduce a tristable switch

described by a set of ordinary differential equations (ODEs) which is a formal framework to

study the regulatory circuitries [36, 59, 60–63]. The three stable steady states of the system

represent one stem cell, and two bifurcated lineages as two distinct cell types differentiated

from a common ancestor. The evolution of our inherently stochastic system is simulated by

the Gillespie algorithm.

The overall outcome of our model implies that the presence of controlled noise in a popula-

tion of genetically similar cells with the same environmental condition is necessary to develop

population heterogeneity and also homeostasis. Furthermore, by changing the parameters in

cell regulatory switches, we investigate cellular decision-making bias emanating from the sto-

chastic environmental factors. We show that, by having enough information about the noise,

predicting the cell fate after cell division is possible and that, the offspring inherit these infor-

mation. Finally, to further illustrate how a transition from homeostasis to tissue depletion or

abnormal growth occur in our model, we explore the behaviour of the populations consisting

of cells with mutated internal switches. We show that the switches with more contributing ele-

ments are more robust against mutations. Although mutations in the stem cell usually triggers

differentiation and consequently rapid depletion of stem cell population over time, accumula-

tion of mutations leads to rapid proliferation of stem cells which is a potential indication of

cancer initiation.

Materials and methods

Cell growth and division in the population

To study the regulatory mechanism which provides the proliferation/differentiation balance in

homeostatic state, we proposed a computational model described by a set of ordinary differen-

tial equations (ODEs) which was previously used in several studies to model the regulatory cir-

cuitries as tri-stable dynamical systems [36, 59]. The following set of ODEs are employed to

describe a two-element regulatory switch in our model:
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In this model, It is assumed that the cell type is controlled by the relative amount of two

cytoplasmic cell fate determinants, namely X1 and Y1 whose interactions can be described in a

form of a tri-stable regulatory switch (see Fig 1A). The dynamical behavior of the determinants

X1 and Y1 is studied by considering their mutual repression and self-activation effects which

are modeled in the form of a Hill function [10, 27], and their degradation rate. Here, n is the

Hill coefficient, β is the effective rate of determinnats synthesis, aAX1
and aAY1

are self-activation

rates, aIX1
and aIY1

are inhibition rates, and gamma is the degradation rate.

Fig 2A illustrates the described system dynamics which is visualized in the representation of

the vector field along the nullclines. The grid point dimensions represent the number of deter-

minants X1 and Y1 and each arrow represents the derivative of the determinants showing the

most probable direction which the number of determinants tends to be updated to, in each
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time step and based on Eq 1. The red (black) curve represents the x− (y-) nullcline, which are

the set of points in phase plane where dX1

dt ¼ 0 (dY1

dt ¼ 0). The circles represent five fixed points

occuring where the nullclines intersect. The direction of the vector field along the nullclines

indicate that the white filled circles are unstabe, while the black filled ones are stable represent-

ing three attractors of the system.

Fig 2B shows the Waddington’s epigenetic landscape which was first described in [64]. It

is derived from Eq 1, using the algorithm which is poroposed in [65]. It governs the dynamic

behavior of the regulatory switch of our model. The Waddington’s landscape portrays branch-

ing ridges and valleys which represent the either-or situations which a dividing cell deal with.

The cell decisions lead to one of the attractors of the regulatory switch which determines the

cell final fate. When a daughter cell is born, it can be represented by a point on the surface, as

the quantitative view of the cell, of Fig 2B. The coordinates of the point demonstrate the value

of determinants X1 and Y1 in the new born cell and determines which path should be followed

to reach the final fate (one of the three attractors).

The parameters of Eq 1 are set in such a way that there would be three stable steady states,

as it is shown in Fig 2A, corresponding to three different cell fates, stem cell type C (middle

attractor) and differentiated cell types A (bottom right attarctor) and B (top left attarctor).

The number of determinants of X1 (Y1) involved in attractor A (B) is much larger than those

of Y1 (X1). In attractor C, however, both determinants X1 and Y1 are involved in balance. Fig

2C represents the domains of the three attractors, A, B, and C, with three different colors,

green, orange, and yellow, respectively. Each daughter cell with specific value of X1 and Y1,

right after birth, can be shown as a point in Fig 2C. The value of X1 and Y1 determines which

attractor the cell would be absorbed to, and based on that it defines the domains of three

attractors. In other word, each cell fate can be determined and fixed exactly after division

based on the number of determinants X1 and Y1 in the daughter cell.

The determinant fluctuations are captured by the Gillespie algorithm [10, 40] which is

known as the gold standard for simulating models whose stochasticty arises from the small

discrete number of reactant molecules [66]. In each time step, two main processes can occur,

cell division and the cell determinants interactions. Therefore, five different reactions can

Fig 1. Tri-stable regulatory networks. (A) Two-element switch. (B) Four-element switch. (C) Six-element switch.

https://doi.org/10.1371/journal.pone.0236519.g001
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potentially happen in each step, division and increasing/decresing of X1 value, increasing/

decreasing of Y1 value. In each iteration, one of the above-mentioned processes occurs, time is

updated. The simulation continues for a whole cell cycle time T, where T = log(N) � 1.1 and

N = 184 (N = 368, or N = 554), the maximum number of cell determinants in the steady state

corresponding to two-element switch (four-, or six-element switch). Hence, one can be sure

that each cell can reach an attarctor in this period and it can not easily get out of that [67].

In our model, four reactions, production/degradation of determinant X1, and production/

degradation of determinant Y1 has been studied for each cell. In the deterministic manner, the

ODE in Eq 1 provides the exact description of these four reactions in our tristable system. The

propensity function of the division process would be equal to 1/T (Eq 2). In addition, as it is

shown in Eqs 3, 4, 5 and 6, four propensity functions are defined corresponding to above-

mentioned reactions, respectively. It is worth noting that, Eqs 3, 4, 5 and 6 representing high

order reactions could be used only as an approximation with Gillespie algorithm [68]. The

Fig 2. The behaviour of the tri-stable dynamical system. The system represents a regulatory switch consisting of two cell fate

determinants, namely X and Y, with self-activation and mutual-repression interactions. (A) Force-field representation of the tri-stable

dynamical system, as well as X and Y nullclines drawn in red and black. (B) Potential landscape representation of the tri-stable dynamical

system. (C) Three attractors domains corresponding to the initial values of determinants in a daughter cell.

https://doi.org/10.1371/journal.pone.0236519.g002
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probability of an occurrence of each reaction is proportional to the corresponding propensity

function [39, 11, 69].

w1 ¼ 1=T; ð2Þ
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At each time step, the Gillespie algorithm determines which reaction occurs. The simula-

tion starts with a population of 50 stem cells, and the number of determinants X1 and Y1 are

initialized randomly from the middle attractor region (Fig 2A). As the number of determinants

in the cell are updating, their corresponding trajectory in the phase plane is changing and

finally reaches the domain of their attractor. As mentioned before, for each cell four reactions

and one division can potentially happen. As a result, at each time step, 4 × ]cells = 4 × 50 = 200

updating reactions and 1 × ]cells = 1 × 50 = 50 division processes can potentially occur. Let us

define wi as the propensity function of reaction i, where i 2 {1, 2, . . ., 250} (the first 200 indices

corresponding to updating reactions, and the rest corresponding to division processes). The

probability of occurrence of reaction r is

Pr ¼
wr

SR
; ð7Þ

where R = 250, and

Sr ¼
Xr

k¼1

wk; ð8Þ

and the reaction r will take place if

Sr� 1

SR
< u1 <

Sr
SR
: ð9Þ

The time to the next reaction, Δt, is computed as

Dt ¼
1

PR
i¼1

wi

ln
1

u2

¼
1

SR
ln

1

u2

; ð10Þ

where, u1, and u2 are two random numbers between 0 and 1 from a uniform distribution

(�U(0, 1)).

Due to the random distribution of mother cell cytoplasmic molecules between daughter

cells as well as the non-deterministic position of the division plane [10, 47–53], we assumed

that the distribution of determinants in each daughter cell is binomial [70] with parameters

specified according to the whole number of determinants in the mother cell, and probability

of success for each trial, p ¼ 1

2
(� B ]X1;

1

2

� �
, or� B ]Y1;

1

2

� �
respectively). At the time of birth,
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each offspring phenotype is determined based on the number of determinants, which is corre-

sponding to a coordinate in the three-region phase plane which is demonstrated in Fig 2C.

Based on the off-springs fate right after division, there are two types of cell division, sym-

metric and asymmetric (Fig 3). The symmetric division leads to the birth of two stem cells (SS

division) or two differentiated cells (DD division), while the asymmetric division generates

one stem cell and one differentiated cell (SD division) [19]. In other word, stochastic partition-

ing of cytoplasm during cell division and the random distribution of molecules in the cyto-

plasm determines the division types which play a key role in maintaining the proliferation/

differentiation balance in homeostatic state.

The aim of this project is understanding the stem cell mechanism in maintaining the prolif-

eration/differentiation balance. Besides, we assume that A, and B cell types are fully differenti-

ated cells which do not proliferate in the tissue. They are replenished by stem cells, perform

some functions, and finally are removed from the population by death. It is assumed that they

could not influence the stem cells’ mechanism. Therefore, here, we have not studied differenti-

ated cells in details. We only observe them as the stem cells’ offsprings upon the completion of

the cell division and remove them from the simulations without following their fate after that.

In other words, in our model, differentiated cells die exactly after their birth. It is worth men-

tioning here, for the sake of simplicity, we have not studied the apoptosis of stem cells directly.

They can be eliminated from the population through differentiation process.

More complex switches

It is assumed that the interactions between two determinants X1 and Y1 determine the cell

fate right after cell division. The dynamics of the system is described as it is presented in Eq 1.

This type of regulatory switches (Fig 1A) are so sensitive to mutations and perturbations that

directly affect the cell fate in the population. It suggests designing more complex regulatory

networks consisting of a pair of clusters, with multiple elements in each, to determine the final

cell fate [36]. These hypothesized clusters have been found in biological regulatory circuitries

such as the extended regulatory circuitry of genes associated with PE and EPI cell types (PE

markers Gata4, Gata6, Sox17, and Sox7 in one cluster, and EPI markers Nanog, Sox2, and

Oct4 in the other cluster) and also TE and ICM cell types (GATA3, CDX2 and EMOES in one

cluster and NANOG, SOX2, SALL4, and POU5F1 in the other cluster) during early develop-

ment in mouse blastocysts [36, 71–84].

The extended switch results in more robustness against perturbations. The buffering effect is

achieved by presence of more elements and the positive feed-backs in each cluster [36]. It is

expected that this effect would be even stronger in more complex switches, which is in agree-

ment with the Waddington’s idea of “canalisation” in [85]: “canalisations are more likely to
appear when there are many cross links between the various processes, that is to say when the rate
of change of any one variable is affected by the concentrations of many of the other variables”.

Fig 3. Two different types of divisions, known as symmetric and asymmetric.

https://doi.org/10.1371/journal.pone.0236519.g003
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In our proposed model, each element in a cluster can have a master or supportive role in

cell fate decision making. This model is in contrast with the computational model studied in

[36], where all elements of the same group have identical effects in determining cell final fate.

In our extended regulatory switch (Fig 1B and 1C), it is supposed that there is a master cell

fate indicator in each cluster, and that all other elements support and regulate its effects. In

other words, the different elements of the same cluster have different effects on final cell fate,

which is supported by experimental observations [38]. It is worth mentioning that, as we are

dealing with a symmetric extended regulatory switch, without loss of generality, all of the pairs

(X,Y), where X and Y belong to different clusters, could be a potential candidate for master

indicators. In spite of identical role of all the elements in the same cluster, it could be assumed

that elements of X1 and Y1 are the ones which determine the final fate of the daughter cells.

To check the robustness of the extended model, two other ODE systems are designed in

Eqs 11 and 12. In Eq 11 (Eq 12) it is assumed that there are two clusters involving in cell fate

decision making where they interact with each other in a four-element switch (six-element

switch). Besides, clearly the elements in the extended switches can be divided in two groups

(x−group and y−group). Determinants in the same group activate each other while they have a

negative mutual interaction with the opposite group components.
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The four- and six-element switches resemble the former switch in representing a tri-stable

system. The number of all elements in the x−group (y−group) involved in attractor A (B) is
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much larger than those in the y−group (x−group). In attractor C, all the elements of both

groups are involved in balance. However, without loss of generality, we assume that the ele-

ments of X1 and Y1 are the master indicators which determine the daughter cell fate after divi-

sion. As it was mentioned before, all other elements in the same cluster (of the switch) only

play a key role in buffering the perturbation effects on master determinants. As it is impossible

to represent four/six-dimensional plots, the corresponding phase planes of four/six-element

switches are plotted in two-dimensional plane. Therefore, both phase planes resemble the one

of the two-element switch in Fig 2A, presenting only x1 and y1 on x and y axis, respectively.

Results

The homeostatic state in our model

In the homeostatic state, a balance between two processes of differentiation and proliferation

is necessary to maintain a fixed number of stem cells in an adult tissue [4, 5]. In our model the

parameters in Eqs 1, 11 and 12 are set to the values provided in Table 1. A tri-stable system is

obtained with this set of parameters, where, in average, the rate of symmetric division of type

DD is equal to that of the SS type, meaning that, in each division, the probability of generating

a daughter stem cell is’ 0.50. In other words, the parameters in Table 1 determine a distribu-

tion of determinants, around the middle attractor, which guarantees the proliferation/differen-

tiation balance. By this defined distribution, after each cell division, half of the daughter cells

remain in yellow region of Fig 2C (as stem cells), while the other half are born in the green or

orange regions of Fig 2C (as differentiated cells). As a result, the number of stem cells in the tis-

sue remains fixed to contribute in future self-renewal and replacement of dead or damaged

non-dividing differentiated cells [86].

The parameters of our ODE model (Eq 1) are set through a grid search. It is assumed that

aAX1
¼ aIX1

¼ aAY1
¼ aIY1

. The simulation starts with 1000 populations, each containing of 50

cells, at t = t0, each cell with a two-element regulatory switch, and stops at t = T. To compute

the time evolution of the cell populations through stochastic simulations, we used the Gillespie

algorithm [40]. The stem cell birth (SCB) rate, the probability of generating stem cells in each

cell division, is computed at the end of the simulation and represented in Table 1, the first row,

the last column. As seen, with this parameter setting, one-half of the daughter cells remain as

stem cells and the other half differentiates and maintains the proliferation/differentiation bal-

ance. The simulation is repeated on other populations of cells with four- and six-element inter-

nal switches (Eqs 11 and 12) and the corresponding parameters are represented in Table 1, the

second and third row, respectively.

The perturbation effect in the model

Although a two-element switches could account for describing the interactions between deter-

minants in a cell, it is too sensitive to perturbations which arise from genetic mutations. To be

specific, a perturbation in a cell internal switch affects the number of determinants in the cell

that could influence the bias of the daughter cells fate toward cell proliferation or differentiation.

Table 1. The parameters set of the model in Homeostasis.

aAX=Y
aIX=Y β γ n SCB

two-element switch 35 35 45 0.38 4 0.5

four-element switch 35 35 47.3 0.38 4 0.5

six-element switch 35 35 48.5 0.38 4 0.5

https://doi.org/10.1371/journal.pone.0236519.t001
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As a result, it affects the the functionality of tissues and organs in replacing damaged or dead

cells. A mutation in the system may follows an imbalance in SS and DD division rates which can

lead to two different scenarios. First, if the SS division rate surpasses the DD division rate, the

stem cells increase in number exponentially. Second, in contrast if the DD division rate sur-

passes the SS division rate, as time passes, the number of stem cells decreases and there will not

be enough number of them to supply the differentiated cells and maintain the functionality of

tissues.

To study the model behaviour in the face of perturbations, we examined the effect of muta-

tions in the system. To this purpose, the fluctuations of 1000 populations, each population con-

taining of 50 cells, are simulated by an eleven-phase simulation as it is presented in Fig 4. The

mutations occur only in certain number of cells, not in every cell in an adult tissue. Therefor,

in the simulations it is assumed that we only study the population of the cells (50 cells in a

hypothetical adult tissue) with the chance for mutations in the genes linked to the their inter-

nal switch.

Phase 0 starts at t = t0 and each population cell contains an internal two-element regulatory

switch shown in Fig 1A. The model parameters are chosen from Table 1, the first row. To com-

pute the time evolution of the cell populations, a stochastic simulation, using Gillespie algo-

rithm, is applied. In phase 0, the state of the system in t = t1, when all the cells have gone

through at least two divisions, is stored. Then, phase 1 starts at t = t1, the time point at which

the first mutation occurs to the parameters of the cells’ internal switches. In the same manner,

in phase k (k = 2, 3, . . ., 10) the state of the system in t = tk+1, when all of the cells have gone

Fig 4. An eleven-phase simulation to study the effect of mutations in the model. Phase 0 starts at t = t0 with 1000

populations, each population containing of 50 cells. In phase k (k = 1, 3, . . ., 9) the state of the system in t = tk+1, when

all of the cells have gone through at least k � 2 divisions, is stored. Phase k + 1 starts at t = tk+1, the time point at which

the kth mutation with the probability value of p occurs to the parameters of the cells’ internal switches. All phases finish

at t = T.

https://doi.org/10.1371/journal.pone.0236519.g004
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through at least k � 2 divisions, is stored. Then, phase k + 1 starts at t = tk+1, the time point at

which the kth mutation occurs to the parameters of the cells’ internal switches.

All eleven phases finish at t = T. Similar simulations are performed for four- and six-ele-

ment internal switches (shown in Fig 1B and 1C) with corresponding parameters set in

Table 1, the second and third row.

In our model, mutations are represented with a random change, �, in the value of the switch

parameters, as following:

anew ¼ maxf aold þ � ; 0 g; ð13Þ

where,

� ¼

(
� e if 0 � r � p;

e o:w:;
ð14Þ

with r� U(0, 1).

Studying the mutation effects on protein structures reveals that the majority of mutations

which result in amino acid substitutions, disturb the proper functionality of the proteins and

lead to the malfunction of cellular processes [87–91]. Therefore, we assume that mutations in

the cell internal switches rarely change the interaction to be stronger (positive-value muta-

tions), while the majority of them either cause no significant changes in the cell functionality

[92] or lead to weaken the interactions (negative-value mutations). Considering these assump-

tions, in our model, e � Exp 1

l

� �
, where λ is the mean of the Exponential distribution, and the

probability of negative-value mutations, p, is chosen from the set {0.85, 0.90, 0.95, 0.99}. At

time t = tk (k = 2, 3, . . ., 10), in each population cell, one of the parameters aAX1
, aIX1

, aAY1
, and

aIY1
(αold) is randomly chosen and mutated (αnew) based on Eq 13. It is also worth mentioning

here that as the system behavior in the time interval [t0, tk] is similar in phase 1 and k (k = 2,

3, . . ., 10), without loss of generality, one can say that all phases start from t = t0.

At the end of each phase, we computed the number of populations resisting the perturba-

tions (Fig 5), as well as the probability of generating a stem daughter cell per cell division (Fig

6). Both figures contain four subplots corresponding to the probability values of p = 0.85,

p = 0.90, p = 0.95, and p = 0.99. Each subplot demonstrates three curves for two-, four-, and

six-element switches. The results show that by increasing the number of mutations, the num-

ber of populations which last to the end of the simulation decreases, while the average stem

cell birth rate (SCB) increases.

In our model, randomly chosen mutations values could be categorized in two groups, nega-

tive- and positive-value mutations (Eqs 13 and 14), with two completely different effects on

the populations. Figs 5 and 6 reveals that negative mutation value causes the population extinc-

tion, whereas the positive one results in fast growth rate in the population. In other words, in

the face of randomly chosen mutation values, two scenarios are possible for the populations.

First, in the presence of negative-value mutations occurring with high probability, the

mutated stem cells are located close to the boundaries of the three-region force-field represen-

tation of Fig 2C. Therefore, in the next generation, their daughter cells are more probable

to be born in the green or orange regions (as differentiated cells). In the other word, it shifts

the differentiation/proliferation balance toward differentiation and increases the population

extinction probability. This explains why the number of populations declines in the face of

mutations (Fig 5).

In the second scenario, in some of the populations a positive-value mutation occurs with

small probability. As a result, the corresponding mutated stem cell would be placed far from
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the boundaries and the original middle attractor. Therefore, in the next generation, the daugh-

ter cells are more likely to remain in the yellow region of Fig 2C (as stem cells). In contrast

with the first scenario, it shifts the differentiation/proliferation balance toward proliferation

and increases the population growth rate (SCB rate). This is compatible with the system behav-

ior in the face of mutations shown in Fig 6.

In each subplot of Figs 5 and 6, it is obvious that four- and six-element switches could better

buffer the perturbations effects compared to the two-element switches. It is in agreement with

the great idea of Waddington, “canalisation” in [85]. Besides, the curves in Fig 5 show that the

perturbation effect on the number of populations surviving to the end of simulations is more

pronounced when the value of p is relatively large. In contrast, the model perturbation effect

on SCB rate is weaker for the large values of p (Fig 6).

To analyze the effect of mutations on the number of populations last to the end of phase 10

(Fig 5) and on the SCB rate (Fig 6), it is necessary to study the dynamics of our model through

Fig 7, S1–S11 Figs.

The force-field representations of our tristable model corresponding to each of the six sim-

ulation phases (phase 0, 2, 4, 6, 8, 10) with two-, four-, and six-element switches are demon-

strated in Fig 7, S1 and S2 Figs, respectively. For these figures, it is assumed that p = 0.85 and

λ = 5.

In each subplot, each circle represents the middle attractor of one of the cells in the popula-

tion. The representative cell is the one which produces the highest proportion of stem daughter

cells at the end of each phase. It is clear that the number of circles in each subplot is equal to

the number of populations last to the end of each phase. To be more specific, the number of

Fig 5. Number of populations survived in the face of mutations through the eleven phases of the simulation with λ = 5, and the

probability value of p = 0.85, p = 0.90, p = 0.95, and p = 0.99 corresponding to subplots (A), (B), (C), and (D), respectively.

https://doi.org/10.1371/journal.pone.0236519.g005
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circles in subplots A-F in Fig 7/S1 Fig/S2 Fig correspond to the number of survived popula-

tions in phases 0, 2, 4, 6, 8, 10 in Fig 5A as yellow/red/green curve, respectively. In the same

manner, S3–S11 Figs, respectively demonstrate the dynamics of our model for the probability

value of p = 0.90, p = 0.95, p = 0.99.

Each mutation in the internal switch could easily affect the middle attractor position of the

corresponding cell in the phase plane. By a single mutation with a positive (negative) value of �

(Eq 14), the corresponding middle attractor tends toward the upper(lower) triangular portion

of force-field representation (subplot A in Fig 7, S1–S11 Figs). As mentioned previously, the

growth rate of a single cell increases when its corresponding middle attractor is far from the

boundaries and the original middle attractor. Since for the larger values of p (p = 0.95, and

p = 0.99), positive-value mutations are less probable, most of the mutated cells attractors are

located close to the boundaries and the original middle attractor (S6–S11 Figs). Therefore,

most of the populations vanish in the face of mutations (Fig 5). In contrast, for the smaller val-

ues of p (p = 0.85, and p = 0.90), positive-value mutations are more probable, and most of the

mutated cells attractors are located far from the boundaries and the original middle attractor

in the direction of the minor diagonal of the force-field representation (Fig 7, S1–S5 Figs).

Therefore, the growth rate is easily affected by mutations for the smaller values of p (Fig 6).

Studying the dynamics of our model through six subplots of each of the Fig 7, S1–S11 Figs

reveal how populations facing a single mutation behave differently from the ones facing the

accumulation of mutations. For the ease in discussion, since there is a one-to-one correspon-

dence between the cells and their middle attractor, we assume that each circle represent the

cell which produces the highest proportion of stem daughter cells in the population.

Fig 6. SCB rate in the face of mutations through the eleven phases of the simulation with λ = 5, and the probability

value of p = 0.85, p = 0.90, p = 0.95, and p = 0.99 corresponding to subplots (A), (B), (C), and (D), respectively.

https://doi.org/10.1371/journal.pone.0236519.g006

PLOS ONE Stem cell and tissue homeostasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0236519 July 30, 2020 13 / 25

https://doi.org/10.1371/journal.pone.0236519.g006
https://doi.org/10.1371/journal.pone.0236519


When a single mutation occurs in a cell, either the cell would be located close to the

boundaries and dies through the next division or it would be located far from the boundaries

with a higher growth rate and remains in the population. In the same manner, in the next

generation, when a single mutation occurs in a survived cell, either the cell would be located

close to the boundaries and dies through the next division or it would be located far from the

boundaries with a higher growth rate and remains in the population (Clearly, it is possible

that for a specific cell, the growth rate is not increased by occurring the second mutation.

However, in this case the cell dies in the next generation with a great chance. Therefore,

without loss of generality we assume that we are studying the cells with increasing growth

rate.) This process is repeated for all future mutations. One can say, if a cell remains in the

population and receives the 10th mutation, it is a cell with a high growth rate (with a great

chance), i.e. a cell which is far from the boundaries in the direction of the minor diagonal of

the force-field representation.

Each subplot in Fig 8 (see also S12 Fig) shows the rate of stem cell birth in 50 cells with the

highest growth rate, 50 cells among all the populations cells resisting the perturbations to the

end of each phase. Fig 8 illustrates that accumulation of mutations could give rise to the birth

of cells which always divides symmetrically to produce two daughter stem cells, cells with

the SCB rate value of’100%. In other words, mutation accumulation results in the birth of

“immortal cells” which pass through several symmetric divisions which lead to exponemtially

growth in population number (see S13 Fig).

Fig 7. Six phases of the simulation with the probability value of p = 0.85, and λ = 5. The internal regulatory networks of cells are assumed to be two-

element switches. (A-F) Phases 0, 2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle attractor of one of the cells in

the population, with the representative cell being the one which produces the highest proportion of stem daughter cells at the end of each phase.

https://doi.org/10.1371/journal.pone.0236519.g007
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In Fig 8, and S12 Fig it is clearly seen again that more complex switches provide more

robustness, and that for the larger values of p, cells with the high rate of SCB are less probable

while the great number of cell populations undergo a decline contrasting with the smaller val-

ues of p.

We have designed two eleven-phase simulations corresponding to two different values, λ =

2, and λ = 10 (Eqs 13 and 14). Similar to the simulation which was described previously (Fig

4), simulations start at t = t0 and stop at t = T, with 1000 populations with 50 cells, where each

cell contains a two-element internal switch, and p = 0.95. Fig 9 (also see S14 Fig) shows how

our model behaviour is influenced by the values of the parameter λ (λ = 2, λ = 5, and λ = 10).

The dynamics of our system through ten phases of the simulations is shown in S15 and S16

Figs for λ = 2, and λ = 10, respectively. Analyzing Fig 9, S15 and S16 Figs reveals that perturba-

tions with λ = 2 merely can affect the system behaviour, while perturbations with λ = 10 exhibit

high random variation in the system behaviour.

Changing the bias of switch by changing the parameters

The proportion of cells which remain as stem cells to continue self-renewal or that which

begin the the pathway to differentiation is clearly related to the area of three attractors domain

(Fig 2C). In other words, the final fate of the daughter cells could be influenced by the value of

Fig 8. Swarm plot of the SCB rate in ten phases of the simulation. (A, B, C) Swarm plot for the populations of cells with two-element, four-element, and six-

element switches, respectively with the probability value of p = 0.85.

https://doi.org/10.1371/journal.pone.0236519.g008

Fig 9. The system behaviour in the face of mutations through the eleven phases of the simulation with different values

of parameter λ, λ = 2, λ = 5, and λ = 10. The internal regulatory networks of the cell populations are two-element

switches, and the probability value of p is equal to 0.95. (A, B) SCB rate and number of populations survived in the face of

mutations.

https://doi.org/10.1371/journal.pone.0236519.g009
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the parameters in Eq 1. Besides, depending on the intensity of inhibitory and activatory effects

of determinants (through the values of constants in the Hill function ([27]), the attractor

domains could be symmetric or not. Fig 10 shows the system behaviour in parameter space by

evaluation of the effect of six parameters (aAX1
, aIX1

, aAY1
, aIY1

, β, and γ) of Eq 1 in six columns.

The middle row indicates X − Y phase plane, and X−, and Y−nullclines corresponding to the

original set of parameters of Table 1, the first row.

Although our model describes a symmetric dynamical system, Fig 10 shows that by

changing the parameters in the model it can be used to study any desired tissue with different

proportion of differentiated cells. In our view, with appropriate level of stochasticity, an asym-

metric switch still will be able to maintain the desired proportion of stem cells. However, in an

asymmetric system the phenotypic ratio of differentiated cells (differentiated cell types A, and

Fig 10. The system behavior in parameter space, and evaluation of the effect of parameters’ changes for Eq 1. In the 5 × 6 array, each cell represents the X −
Y phase plane, X−, and Y−nullclines, for parameter values as indicated at the bottom of each subplot. The magenta regions represent the steady states domains.

The basic set of parameters are chosen from Table 1, aAX1
¼ aIX1

¼ aAY1
¼ aIY1

¼ 35, β = 45, γ = 0.38, and n = 4.

https://doi.org/10.1371/journal.pone.0236519.g010
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B) would not be equal. In other words, regarding to the parameters set to the switch, the

daughter cell birth could be either A-biased or B-biased. It reflects the flexibility of our model.

Discussion

By focusing on the effect of stochasticity on the cell final fate, we computationally modeled a

regulatory mechanism to orchestrate the proliferation/differentiation balance maintaining the

homeostatic state in a hypothetical adult tissue. In the most simple model, it is assumed that

this hypothetical developing tissue consists of stem cells and two differentiated cell types. Our

model has been described by a set of ordinary differential equations to model a regulatory

switch (Eq 1). This switch consists of two cytoplasmic cell fate determinants with auto-activa-

tion and mutual inhibition (Fig 1A) which forms a tristable dynamical system. The results

showed that two-element switches can be significantly affected by the system perturbations,

while the more complex switches (Fig 1B and 1C) provide more robustness. This is somehow

similar to the idea of “canalisation” in Waddington’s book [99]. Several biological observations

being collected to support the existence of internal switches consisting two groups of determi-

nants, with feedback activation within each group and feedback inhibition between the groups

[36]. Each dividing stem cell contains a small number of determinants, and a small change

could significantly affect the tissue’s final fate. The extended regulatory networks work as a

crucial defence against the perturbations in the system. Moreover, our analysis reflects the flex-

ibility of our model to describe any desired tissue with different proportion of differentiated

cells (Fig 10).

Here, noise is defined as absolute value of the difference between the number of determi-

nants in each cell and the expected number of them in the population, (the original middle

attractor) [16, 93]. From this definition, it is immediately concluded that, the spatial arrange-

ment of the noise would be the same as distributions of cell determinants around the attractor

points on the phase plane. Therefore, one can say, the cell noise distribution balances out the

proliferation and differentiation in the population to maintain homeostatic state. When the

noise variation increases, the majority of the daughter cells are born as differentiated cells (in

orange or green region of Fig 2C). In this case, after several generations, there wont be enough

stem cells to replace the dead differentiated cells in the tissue. This can be interpreted as aging

[94]. On the other hand, by decreasing the noise variation, a great number of daughter cells

are born as stem cells. Under this condition, the growth rate of the cell population increases

through the future generations. This can be interpreted as cancer [95]. This indicates the key

role the noise plays in cell decision-making by regulating the probability of differentiation in a

normal adult tissue.

Our results are in agreement with the previous study by Safdari et. al. [10] introducing a bis-

table system in which a cell can be divided to two daughter cells with different reversible phe-

notypes. Here, we also point out the prominent role of stochasticity to contribute non-genetic

diversityby by extending the model by changing a bi-stable system to a tri-stable one. However,

we assume that offsprings phenotypes are irreversible and do not change between states

through generations. Besides, we illustrate that only the exact level of stochasticity is required

to maintain homeostasis state, which is also compatible with their study.

To keep a pool of N stem cells in an adult tissue, the original stem cells must produce N
stem cells. For this purpose, each division produces one stem cell and one differentiated cell,

on average [3]. Without loss of generality, we can say that in homeostatic state, all the cells pro-

duce exactly one stem cell and one differentiated cell (SCB rate in phase 0 from Fig 6). When a

mutation occurs in a cell, two following scenarios are possible, stem cell extinctions (Fig 5 and

S13 Fig) or exponential expansion of them (Figs 6 and 8, S12 and S13 Figs).
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In the former case, the mutated cell produces two differentiated cells through the next divi-

sion (with a great chance). As a result, our hypothetical tissue contains N − 1 stem cells. Two

new born daughter cells carry their mother cell’s mutation. However, differentiated cells are

non-dividing cells and the inherited mutation will be omitted from the population by their

death. Therefore, this mutation does not affect the next generation of the cell population. In

other words, the only impact of the mutation on the population is the extinction of one stem

cell within the stem cell pool.

In the latter case, the mutated cell divides into two daughter stem cells (with a great chance)

which leads to N + 1 stem cells in our hypothetical tissue. Two new born daughter cells carry

their mother cell’s mutation. In contrast with the former case, stem cells are dividing cells and

the inherited mutation not only remains in but also spreads throughout the population via the

symmetric cell divisions. Consequently, this mutation results in the exponential expansion of

the stem cell pool. It resembles the behaviour of the dividing tumour cells with a strong bias

toward generating dividing over non-dividing daughter cells through cell division [96].

In this study, aging is defined as a process through which the tissue gradually loses the stem

cells with their self-renewal and regenerative potential. Also, cancer is defined as a process in

which an individual mutant pool of stem cells divides and increase in mass, out of control.

Based on these definitions and considering the consequences of single and accumulative muta-

tions in the population, it is easily concluded that aging is a slow process while cancer can

grow so fast.

Maintaining tissue homeostasis is strongly linked to the stem cell divisions with the risk

of mutations in the next generation. In other words, in a long period of time and in a large

enough population, mutations are inevitable [97]. When a single mutation occurs, in the genes

linked to the cell internal switch, it influences the bias of the daughter cells’ fate toward either

cell differentiation (and death) or cell proliferation with a higher growth rate (g1 > 0.50). In

the former case, the mutation will be removed from the population while in the latter case the

mutation remains in. In the same manner, in the next generation, when a single mutation

occurs in a survived cell, either the cell dies through the next division or remains in the popula-

tion with a higher growth rate (g2� g1 > 0.50). This process is repeated for all future muta-

tions. One can say, if a cell remains in the population and receives more mutation, it is a cell

with a high growth rate (with a great chance). These dividing cells, with the accumulation of

inherited mutations, undergo symmetric cell divisions which lead to exponential expansion of

the stem cell pool in the tissue (Fig 6 and S13 Fig). It reveals how populations facing a single

mutation behave differently from the ones facing the accumulation of mutations.

As it is mentioned, mutation accumulation can result in developing cancer. It clearly

explains how cancer can be considered as an age-related process. In the other words, as a suffi-

ciently long period of time is needed to grow mutated cells which multiply in great number,

one can say the probability of cancer incidence increases with age [97, 98]. In addition, this is

in keeping with those studies emphasizing on the importance of the total number of the stem

cell divisions, to receive successive mutations, in the lifetime risk of many cancer types [97–

99]. Moreover, it can be easily concluded that if someone is born with inherited genetic muta-

tion, it puts them at a higher risk of cancer.

In tissue homeostasis, SCB rate after each stem cell division is equal to 0.50 on average. On

the other words, all stem cells have similar capacity to self-renew and/or differentiate. How-

ever, analysing S13 Fig (in phase 0) reflects the fact that stem cells behave in a stochastic man-

ner when they are studied individually. Although the size of the stem cell pool remains fixed in

the tissue (Phase 0 from Fig 6), some populations shrink whereas some others expand in size

[5]. S13 Fig shows that the population behaviour can be described as a gambling game with

equal odds as it was discussed in [19]: ‘equal chance’ does not guarantee ‘equal outcome’. It
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implies how the presence of controlled noise in a population of genetically similar cells with

the same environmental condition provides both heterogeneity and homeostasis [6].

Although this work has been mainly focused on the noise effect on cell decision-making to

maintain homeostatic state, it has not escaped our notice that intercellular signaling has a promi-

nant role in maintaining homeostasis, and the emergence of spatiotemporal patterns [100–102].

It could be interesting to study the effect of noise in the presence of intercellular signaling on

maintaining homeostasis state, and self-organization using our tri-stable switch, in a future work.

Supporting information

S1 Fig. Six phases of the simulation with the probability value of p = 0.85, and λ = 5. The

internal regulatory networks of cells are assumed to be four-element switches. (A-F) Phases

0, 2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S2 Fig. Six phases of the simulation with the probability value of p = 0.85, and λ = 5. The

internal regulatory networks of cells are assumed to be six-element switches. (A-F) Phases

0, 2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S3 Fig. Six phases of the simulation with the probability value of p = 0.90, and λ = 5. The

internal regulatory networks of cells are assumed to be two-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S4 Fig. Six phases of the simulation with the probability value of p = 0.90, and λ = 5. The

internal regulatory networks of cells are assumed to be four-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S5 Fig. Six phases of the simulation with the probability value of p = 0.90, and λ = 5. The

internal regulatory networks of cells are assumed to be six-element switches. (A-F) Phases

0, 2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S6 Fig. Six phases of the simulation with the probability value of p = 0.95, and λ = 5. The

internal regulatory networks of cells are assumed to be two-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)
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S7 Fig. Six phases of the simulation with the probability value of p = 0.95, and λ = 5. The

internal regulatory networks of cells are assumed to be four-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S8 Fig. Six phases of the simulation with the probability value of p = 0.95, and λ = 5. The

internal regulatory networks of cells are assumed to be six-element switches. (A-F) Phases

0, 2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S9 Fig. Six phases of the simulation with the probability value of p = 0.99, and λ = 5. The

internal regulatory networks of cells are assumed to be two-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S10 Fig. Six phases of the simulation with the probability value of p = 0.99, and λ = 5. The

internal regulatory networks of cells are assumed to be four-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S11 Fig. Six phases of the simulation with the probability value of p = 0.99, and λ = 5. The

internal regulatory networks of cells are assumed to be six-element switches. (A-F) Phases

0, 2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S12 Fig. Swarm plot of the SCB rate in ten phases of the simulation. (A, B, C) Swarm plot

for the populations of cells with two-element, four-element, and six-element switches, respec-

tively and the probability value of p = 0.90. (D, E, F) Swarm plot for the populations of cells

with two-element, four-element, and six-element switches, respectively and the probability

value of p = 0.95. (G, H, I) Swarm plot for the populations of cells with two-element, four-ele-

ment, and six-element switches, respectively and the probability value of p = 0.99.

(EPS)

S13 Fig. Population size distribution among eleven phases of the simulation. (A, B, C) The

population of cells with two-element, four-element, and six-element switches, respectively and

the probability value of 0.85%. (D, E, F) The population of cells with two-element, four-ele-

ment, six-element switches, respectively and the probability value of 0.90%. (G, H, I) The pop-

ulation of cells with two-element, four-element, six-element switches, respectively and the

probability value of 0.95%. (J, K, L) The population of cells with two-element, four-element,

six-element switches, respectively and the probability value of 0.99%.

(EPS)
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S14 Fig. The system behaviour in the face of mutations through the eleven phases of the

simulation. Simulations start with different values of parameter λ. The internal regulatory net-

works of the cell populations are two-element switches, and the probability value of p is equal

to 0.95. (A, B, C) Phases 10 of the simulations with λ = 2, λ = 5, and λ = 10, respectively. In

each one of the plots, each circle represents the middle attractor of one of the cells in the popu-

lation, with the representative cell being the one which produces the highest proportion of

stem daughter cells at the end of each phase (D, E, F) Swarm plot of the SCB rate with λ = 2,

λ = 5, and λ = 10, respectively. (G, H, I) Population size distribution among eleven phases of

the simulation with λ = 2, λ = 5, and λ = 10, respectively.

(EPS)

S15 Fig. Six phases of the simulation with the probability value of p = 0.95, and λ = 2. The

internal regulatory networks of cells are assumed to be two-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)

S16 Fig. Six phases of the simulation with the probability value of p = 0.95, and λ = 10. The

internal regulatory networks of cells are assumed to be two-element switches. (A-F) Phases 0,

2, 4, 6, 8, 10 of the simulations. In each one of the plots, each circle represents the middle

attractor of one of the cells in the population, with the representative cell being the one which

produces the highest proportion of stem daughter cells at the end of each phase.

(EPS)
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