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A data calibration method for micro 
air quality detectors based 
on a LASSO regression and NARX 
neural network combined model
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Studies have shown that there is a certain correlation between air pollution and various human 
diseases, especially lung diseases, so it is very meaningful to monitor the concentration of pollutants 
in the air. Compared with the national air quality monitoring station (national control point), the micro 
air quality detector has the advantage that it can monitor the concentration of pollutants in real time 
and grid, but its measurement accuracy needs to be improved. This paper proposes a model combining 
the least absolute selection and shrinkage operator (LASSO) regression and nonlinear autoregressive 
models with exogenous inputs (NARX) to calibrate the data measured by the micro air quality 
detector. Before establishing the LASSO-NARX model, correlation analysis is used to test whether the 
correlation between the concentration of air pollutants and its influencing factors is significant, and 
to find out the main factors that affect the concentration of pollutants. Due to the multicollinearity 
between various influencing factors, LASSO regression is used to further screen the influencing factors 
and give the quantitative relationship between the pollutant concentration and various influencing 
factors. In order to improve the prediction accuracy of pollutant concentration, the predicted value 
of each pollutant concentration in the LASSO regression model and the measurement data of the 
micro air quality detector are used as input variables, and the LASSO-NARX model is constructed 
using the NARX neural network. Several indicators such as goodness of fit, root mean square error, 
mean absolute error and relative mean absolute percent error are used to compare various air quality 
models. The results show that the prediction results of the LASSO-NARX model are not only better 
than the LASSO model alone and the NARX model alone, but also better than the commonly used 
multilayer perceptron and radial basis function neural network. Using this model to calibrate the 
measurement data of the micro air quality detector can increase the accuracy by 61.3–91.7%.

With the development of science and technology, the progress of industry and the rapid increase of the global 
population, the environment that people depend on has been greatly destroyed. Many areas have experienced 
environmental problems such as acid rain, species extinction, and land desertification. Environmental issues 
have become one of the common concerns of all countries in the world today, and they are also a major chal-
lenge facing humanity in the twenty-first century. Air pollution is an especially concerning environmental issue, 
which can easily lead to respiratory diseases such as acute and chronic bronchitis, asthma, pneumonia, and even 
lung cancer1–3. According to estimates by the World Health Organization, 7 million people die each year from 
diseases caused by air pollution4,5.

The pollutants in the air are mainly inhalable particles, SO2, NO2 and other substances. The commonly used 
index to measure the quality of air is AQI, which is the Air Quality Index. The larger the AQI value, the more 
serious the air pollution, and the greater the harm to human health. AQI (GB3095-2012) is calculated based on 
six air pollutants: PM2.5, PM10, CO, NO2, SO2 and O3 (“two dusts and four gases"). As air quality is getting more 
and more attention, it is particularly important to monitor air quality.

In order to monitor the air, several national air quality monitoring stations (national control points) are gener-
ally set up in a key environmental protection city. Multi-parameter automatic monitoring equipment is installed 
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in the air quality monitoring station for continuous automatic monitoring, and the monitoring results are stored 
in real time and analyzed to obtain relevant data. The construction and maintenance costs of national control 
points are relatively high, so the number of national control points is very small, which makes it difficult to 
conduct comprehensive monitoring of an area. In addition, although the national control point data is relatively 
accurate, it is often not released in real time, so it is difficult to realize real-time monitoring of air quality. In order 
to overcome the deficiencies of grid monitoring and real-time monitoring of pollutant concentration at national 
control points, some companies have developed miniature air quality detectors, which have the advantages of 
low cost, convenient installation, and convenient data reading. It can be deployed more intensively than national 
control points, and can also be evenly grid-arranged in key areas, which has achieved the purpose of grid-based 
monitoring6–8. However, since the electrochemical sensor used in the micro air quality detector is susceptible to 
external influences, the range drift and zero point drift will occur after a period of use, and the data measured by 
the self-built point will have a certain error. How to use the national control point data to calibrate the self-built 
point data is a problem worthy of study.

The commonly used pollutant concentration prediction models are mainly divided into two categories. The 
first type is the atmospheric chemistry transmission model, which uses the theory of the atmospheric system to 
simulate the physical and chemical processes of pollutants in a specific area, and uses the generated pollutant 
grid data to predict air quality9,10. The mechanism of the atmospheric chemistry transmission model is complex, 
and is limited by the accuracy of the ground emission inventory, and its pollutant forecast effect is not very good.

Another commonly used pollutant concentration prediction model is a statistical model based on machine 
learning algorithms. The multiple linear regression model is a relatively classic statistical model, which can give a 
quantitative relationship between the concentration of pollutants and various influencing factors. The regression 
equation established based on these quantitative relationships can effectively predict the concentration of pollut-
ants. If necessary, the concentration of pollutants can be effectively controlled or dealt with according to these 
factors. Because the multiple linear regression model has good interpretability, the construction of multiple linear 
regression equation is still a common air quality prediction modeling idea11,12. Lei et al. used meteorological and 
air quality data from 2013 to 2017 for five years to establish a statistical model based on linear multiple regression 
(MR) and classification regression tree (CART) analysis. The model successfully predicted the concentrations of 
NO2, PM10, PM2.5 and O3 in Macau on the second day13. For the multicollinearity problem that may exist in the 
construction of multiple regression model, least absolute selection and shrinkage operator (LASSO) regression 
is one of the methods often used to solve it. Sethi et al. proposed an adaptive LASSO regression method based on 
correlation, successfully identified the important factors affecting the air quality index, and completed the forecast 
of air quality in Delhi14. It is difficult for multiple linear regression models to detect the complex and potentially 
non-linear relationship between predictor variables and response variables, so machine learning algorithms 
such as artificial neural networks15–18, support vector machines19–22, random forest23–26 and extreme gradient 
boosting27–29 have become the mainstream of pollutant concentration prediction. The nonlinear autoregressive 
models with exogenous inputs (NARX) increases the delay and feedback mechanism, so it enhances the ability to 
remember historical data. In recent years, it is often used for air quality prediction. Moursi et al. used the PM2.5 
concentration, cumulative wind speed and cumulative rainfall hours in the past 24 h as independent variables, 
and successfully predicted the PM2.5 concentration in the next hour using the NARX model30. Mohebbi et al. 
successfully simulated the carbon monoxide concentration in Shiraz using the NARX neural network model 
without traffic data. The results show that the dynamic neural network is better than the static neural network 
in the prediction accuracy of CO concentration in this area31.

There are many factors that affect the concentration of pollutants, and each factor has a mutual influence. 
If all factors are directly introduced into the multiple linear regression model, multicollinearity may occur. 
LASSO regression can improve the multicollinearity of the model and retain the interpretability of the multiple 
linear regression model. The advantage of NARX neural network over LASSO model is that it can find out the 
nonlinear relationship between pollutant concentration and various influencing factors. Therefore, the NARX 
neural network has higher prediction accuracy than the LASSO model. Combining the LASSO regression model 
and NARX neural network can not only retain the advantages of the two models, but also make full use of the 
data measured by the micro air quality detector. This combined model is called the LASSO-NARX model in this 
paper. The empirical results show that the LASSO-NARX model can not only improve the interpretability of the 
NARX model, but also improve the prediction accuracy of the LASSO model. Figure 1 shows the construction 
process of the LASSO-NARX model.

Figure 1.   The flux diagram of the regression process, where NCP represents the concentration of pollutants 
measured at the national control point.
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Material and methods
Data source and preprocessing.  The appearance of the micro air quality detector makes it possible to 
monitor the concentration of pollutants in real time, but the accuracy of its measurement needs to be improved. 
The two sets of data are collected in this paper to build the data calibration model of the micro air quality detec-
tor. The first set of data is measured by a national monitoring station in Nanjing, which provides the concentra-
tion of two dusts and four gases from November 14, 2018 to June 11, 2019. It has a total of 4200 pieces of data, 
and the interval of each group of data is mostly 1 h. The second set of data is measured by a self-built point 
equipped with a micro air quality detector. It contains 234,717 pieces of data whose time interval does not exceed 
5 min. The location of the self-built point is within 10 m from the national control point. It not only measures the 
concentration of the two dust and four gases in the same period, but also provides five meteorological param-
eters of wind speed, pressure, precipitation, temperature and humidity.

Preprocessing of data is a prerequisite for building statistical models. The first step is to delete duplicate data 
and obviously abnormal data (greater than three times the average value of the left and right neighbors) in the 
data. In the second step, the self-built point data is averaged on an hourly basis, and the averaged self-built point 
data is used to correspond to the national control point data, and the data that cannot be corresponding is deleted. 
The summary table of self-built point data and national control point data after preprocessing is shown in Table 1.

Data exploratory analysis.  Due to the influence of internal factors and external factors, there are certain 
errors in the data measured by the micro air quality detector. This article draws a time series chart to show the 
difference between self-built point and national control point20,32. The discussion method of the two dusts and 
four gases is similar. We randomly select O3 for analysis.

It can be seen from Fig. 2 that the change trend of O3 concentration at the self-built point is roughly the same 
as that at the national control point. However, there is a certain difference between the O3 concentration of the 
self-built point and the national control point. In the first 1500 h, the O3 concentration of self-built point was 

Table 1.   Descriptive statistics of pollutant concentrations and meteorological parameters measured by 
national control points and self-built points after pretreatment.

Input variable Ranges Mean Standard deviation Skewness Kurtosis

PM2.5 (μg/m3) 1–216.883 64.127 37.328 0.988 0.701

PM10 (μg/m3) 2–443.25 102.391 65.267 1.476 2.862

CO (μg/m3) 0.05–3.895 0.863 0.452 1.463 3.136

NO2 (μg/m3) 0.947–157.136 45.209 28.403 0.653 − 0.259

SO2 (μg/m3) 1–651.3 19.397 18.723 12.781 342.11

O3 (μg/m3) 0.579–259 61.586 40.941 1.091 2.035

Wind speed (m/s) 0.133–2.387 0.7 0.346 0.862 0.748

Pressure (Pa) 996.871–1039.8 1018.8 8.889 − 0.093 − 0.599

Precipitation ( mm/m2) 0–312.1 132.084 87.004 0.245 − 0.728

Temperature (oC) − 3.882–37.944 11.882 8.603 0.625 − 0.399

Humidity (rh%) 10.667–100 68.903 21.931 − 0.487 − 0.756

Figure 2.   Comparison of hourly average O3 concentration data between national control points and self-built 
points. Figures are generated using Matlab (Version R2016a, https://​www.​mat- hworks.com/) [Software].

https://www.mat
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generally higher than that of national control points. After 1500 h, the fluctuation degree of O3 concentration 
at the national control point is generally greater than the fluctuation degree of the O3 concentration at the self-
built point.

Since there are certain differences in meteorological parameters in each month, in order to reflect the influ-
ence of meteorological parameters on the concentration of pollutants, we have drawn a box plot33 as shown in 
Fig. 3. It can be seen that the difference in O3 concentration between self-built point and national control point is 
different every month. In November, December, January and February, the O3 concentration difference between 
the self-built point and the nationally controlled point is large. The reason is that the low temperature and low 
humidity during this period affect the accuracy of the electrochemical sensor. It can be seen that meteorological 
parameters are also factors that affect the concentration of pollutants.

Correlation analysis.  The key to air quality prediction is the prediction of the concentration of pollutants 
such as two dusts and four gases. Predicting the concentration of pollutants must find out the main factors that 
affect it10. Because the factors that affect the concentration of pollutants in the air are more complex, and the 
factors themselves also affect each other, quantitative indicators are needed to describe them. Pearson correla-
tion coefficient (Eq. (1)) is a statistical indicator used to reflect the degree of correlation between variables13,29.

Table 2 shows the correlation between the concentration of six types of pollutants and meteorological param-
eters. It can be seen that at a significant level of 0.05, all variables have a significant correlation with each other 
except for the NO2 concentration and temperature. The absolute value of the correlation coefficient between 
many of these variables exceeds 0.8, indicating that they are highly correlated.

(1)r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)
2
·

√∑n
i=1(yi − y)

2

Figure 3.   Compare the O3 concentration of national control points (Ncp) and self-built points (Sbp) on a 
monthly basis. Note that there is no data from July to October.

Table 2.   Pearson linear correlation coefficients between six types of air pollutant concentrations and 
meteorological parameters (Band * indicates significant correlation at a significant level of 0.05).

Variable PM2.5 PM10 CO NO2 SO2 O3 Wind speed Pressure Precipitation Temperature Humidity

PM2.5 1.00 0.89* 0.66* 0.26* 0.29* − 0.26* − 0.23* 0.89* − 0.70* − 0.16* 0.18*

PM10 1.00 0.63* 0.34* 0.35* − 0.19* − 0.18* 0.38* − 0.10* − 0.03* − 0.09*

CO 1.00 0.30* 0.31* − 0.27* − 0.31* − 0.07* 0.08* − 0.05* 0.22*

NO2 1.00 − 0.34* − 0.26* − 0.36* − 0.10* − 0.14* − 0.02 − 0.11*

SO2 1.00 − 0.28* − 0.19* 0.19* 0.27* − 0.10* 0.11*

O3 1.00 0.39* − 0.45* − 0.12* 0.68* − 0.62*

Wind speed 1.00 0.09* 0.06* 0.07* − 0.32*

Pressure 1.00 0.23* − 0.85* 0.15*

Precipitation 1.00 − 0.14* 0.86*

Temperature 1.00 − 0.49*

Humidity 1.00
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Establishment of sensor calibration model
Introduction to basic principles.  Least absolute selection and shrinkage operator was first proposed by 
Tibshirani in 1996. This method is a compression estimation. It constructs a penalty function to obtain a more 
refined model, so that it can compress some coefficients, and at the same time set some coefficients to zero, to 
achieve the effect of subset shrinkage29,34.

In a general regression model, the observed values of each data are generally considered to be independent of 
each other. Because there are many variables in the model, their dimensions are often different. In order to elimi-
nate the interference of dimensions, all independent variables Xi = (xi1, xi2, · · · , xim) need to be standardized via 
a linear transformation. The standardized X∗

i = (x∗i1, x
∗
i2, · · · , x

∗
im) mean is 0, and the variance is 1. Equation (2) 

is the LASSO estimate of the regression model, where the second term is the L1 penalty, k is a nonnegative regu-
larization parameter. When k = 0 , LASSO regression is ordinary least squares regression. With the increase of 
k , the LASSO can compress the coefficients of unimportant variables to 0, thus realizing variable selection. The 
larger the value of k, the more parameters are compressed to 0, and the smaller the model complexity, which 
solves the problem of poor model interpretability14,35,36.

A typical NARX neural network is mainly composed of input layer, hidden layer, output layer and input and 
output delay. NARX neural network model is a kind of nonlinear discrete system, which can be represented by 
a nonlinear difference equation (Eq. (3)), where y represents the output variable; x represents the external input 
variable; d represents the delay step. Different delay steps can be set for output variables and input variables to 
control the time step of continuous prediction.

Equation (4) is the calculation formula for the output of each layer, where xi represents the input of each 
layer of neurons, that is, the output of the previous layer of neurons; ai,j represents the weight between layers;bj 
represents the threshold of the layer; f  represents the activation function. The activation function of the hidden 
layer of the NARX neural network uses the hyperbolic tangent function (Eq. (5)), and the output layer uses the 
linear function (Eq. (6)).

LASSO regression model construction.  From the correlation analysis, we can see that there is a strong 
correlation between the concentration of various pollutants, and between the pollutants and meteorological 
parameters. In this paper, the pollutant concentration at the national control point is used as the dependent vari-
able, and the pollutant concentration and meteorological parameters measured at the self-built point are used 
as independent variables to establish a multiple linear regression model. An important requirement of multiple 
linear regression models is that the independent variables are independent of each other. The variance inflation 
factor is often used to determine whether the variables of a model are independent of each other. Let the stand-
ardized independent variable be X∗ , then X*′X*=(rij) is the correlation matrix of the independent variable. The 
main diagonal element of the (X*′X*)−1 is defined as the variance inflation factor of the independent variable. 
Through the multicollinearity diagnosis of the model, we can see that the maximum variance inflation factor of 
the multiple linear regression model is 26.631, which is greater than 10. Therefore, the multiple linear regression 
model has serious multicollinearity. Multicollinearity will make the air quality prediction model very unstable 
and cause over-fitting problems.

Commonly used methods to solve multicollinearity in practical problems are: (i) Selecting the independ-
ent variables, and the representative methods include forward regression, backward regression and stepwise 
regression. (ii) Perform dimensionality reduction processing on independent variables. Representative methods 
include principal component regression and partial least squares regression. (iii) Biased estimation of regression 
coefficients, representative methods include ridge regression and LASSO regression. This study uses LASSO 
regression to solve the problem of multicollinearity. Compared with ridge regression, LASSO regression can select 
variables and eliminate some variables that have no significant influence on the dependent variable. Compared 
with stepwise regression, LASSO regression can retain those variables that are between significant and non-
significant effects on the dependent variable, so the estimation deviation is not too large.

In the process of establishing the LASSO regression model with the help of SPSSAU (https://​spssau.​com/) 
software, in order to facilitate comparison with other models, we randomly selected 85% of the data to build the 
model, and the remaining 15% of the data for model verification. The analysis of LASSO regression using SPSSAU 
software is divided into two steps: (i) Find the best k value based on the trajectory graph. The selection principle 

(2)β̂(LASSO) = argmin
β

�y −

p∑

j=1

xjβj�

2

+ k

p∑

j=1

∣∣βj
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(3)y(t) = f (x(t − 1), x(t − 2), · · · , x(t − d), y(t − 1), y(t − 2), · · · , y(t − d))

(4)Hj = f (

n∑

i=1

ai,jxi − bj)

(5)tanh(x) =
ex − e−x

ex + e−x

(6)linear(x) = x

https://spssau.com/
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of k value is the minimum k value when the standardized regression coefficient of each independent variable 
becomes stable. The smaller the k value, the smaller the deviation, when the k value is 0, it is an ordinary linear 
OLS regression. (ii) Manually input k value for regression modeling. For the k value, generally the smaller the 
better, and it is generally recommended to be less than 1.After determining the k value, we can manually enter 
the k value to get the LASSO regression model estimate.

For the LASSO regression model of O3 concentration prediction, it can be seen from Fig. 4 that when k = 0.05, 
the standardized regression coefficients of each independent variable tend to be stable, so this paper takes k = 0.05 
to establish the LASSO regression model. In the model, PM2.5 concentration, CO concentration, SO2 concentra-
tion, pressure and precipitation have no effect on O3 concentration, so they are excluded from the model.

After the LASSO model is established, the model needs to be tested. Equations (7)–(9) are the definitions of 
F value in F test, where s represents the number of introduced model variables, n represents the total number 
of samples, yi represents the true value, wi represents the model fitted value, and y represents the average value 
of the true value. P value is more convenient for model verification. The P value is the probability of a sample 
observation or extreme result when the null hypothesis is true (the null hypothesis here is that the variables 
introduced into the model have no significant effect on the dependent variable as a whole). Equation (10) is 
the formula of the model’s goodness of fit, which reflects the degree of fit of the regression line to the observed 
value. The F value in the model test is 1123.756, and the corresponding p value is less than 0.01, indicating that 
at the significance level of 0.01, the overall variables introduced into the model have a significant impact on the 
pollutant concentration. The coefficient of determination of the LASSO model is 0.750, indicating that 75% of 
the change in O3 concentration can be explained by the change in the independent variables introduced into the 
model. The results of the remaining pollutants LASSO regression model are shown in Table 3.

LASSO‑NARX model construction.  The LASSO regression model gives a quantitative linear relation-
ship between the pollutant concentration and various influencing factors31. However, there may be a nonlinear 
relationship between pollutant concentration and influencing factors, and the prediction accuracy of the LASSO 
model needs to be improved. Taking into account the time sequence of pollutant concentration, this paper uses 
NARX neural network to improve the accuracy of pollutant concentration prediction. We take the predicted 
value of LASSO regression and the data measured by self-built points as input, and the concentration of six pol-
lutants as output to establish the NARX neural network model. The structure of the NARX neural network is 
shown in Fig. 5.

In the NARX neural network, it can be known from the Kolmogorov theorem that at most two hidden layers 
can identify arbitrary nonlinear characteristics, so this paper selects the default one hidden layer in Matlab. The 

(7)F =
SSR/s

SSE/(n− s − 1)

(8)SSR =

n∑

i=1

(wi − y)2

(9)SSE =

n∑

i=1

(yi − wi)
2

(10)R2 = 1−

∑n
t=1 (yt − wt)

2

∑n
t=1 (yt − y)2

Figure 4.   The trace diagram of all input variables, where the dependent variable is the O3 concentration 
measured by the national control point.
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number of nodes in the hidden layer of the neural network is determined by considering the training effect and 
training time. For the delay order in the model, determine the order change range based on experience, and find 
out the order when it no longer changes significantly as the model delay order according to the change of the 
mean square error of the model under different orders.

In the NARX model, the input is the predicted value of the LASSO regression model of O3, the concentration 
of six types of pollutants and five meteorological parameters measured by the self-built point, and the output is 
the O3 concentration measured by the national control point. 4135 samples are randomly divided into training 
set, validation set and test set at a ratio of 7:1.5:1.5. For comprehensive comparison, the input delay of NARX 
neural network is selected as 2, and the number of hidden layer nodes is 10. The training algorithm adopts the 
Levenberg–Marquardt algorithm with shorter training time, and the LASSO-NARX model is established with 
the help of Matlab software.

In order to visually show the prediction effect of the LASSO-NARX model, we have drawn the O3 concentra-
tion regression effect diagram. It can be seen from Fig. 6 that whether it is the training set, the validation set or 
the test set, the correlation coefficient between the predicted value of the model and the true value of the national 
control point exceeds 0.95, and the coefficients of each regression model are close to 1. It shows that the LASSO-
NARX model has achieved good results in prediction. It can be seen from the box plot in Fig. 7 that regardless of 
the median, quantile, or outlier, the measured value of the national control point is roughly the same as the fitted 
value of the LASSO-NARX model. In addition, the boxplots of the training set, validation set and test set are 
also roughly the same. We conclude that the prediction and generalization ability of the LASSO-NARX model is 
good. It is worth noting that the output of the model is negative at several points where the concentration of O3 
is particularly low at the national control point. In actual use, it can be considered that the O3 concentration is 
extremely low at this moment. It can be seen from the residual histogram that the error term roughly obeys the 
normal distribution, and the residual values are mostly distributed in [− 40, 40]. In this way, the LASSO-NARX 
model has been validated.

Table 3.   LASSO regression model of six types of air pollutant concentrations. In the model, the dependent 
variable is the concentration of the six pollutants at the national control point, and the independent variable is 
the original data monitored by the self-built point (– represents the variables eliminated in the model).

Independent variable PM2.5 PM10 CO(×10
−2) NO2 SO2 O3

Constant 8.663 47.475 2.127 174.759 − 303.100 63.734

PM2.5 0.724 0.890 0.005 0.070 – –

PM10 – – – – 0.034 − 0.032

CO 1.022 24.045 0.197 − 10.787 31.255 –

NO2 – 0.247 0.002 0.368 0.038 − 0.550

SO2 – – – 0.012 – –

O3 – – – − 0.148 0.081 0.264

Wind speed – – − 0.033 − 14.472 − 2.268 12.520

Pressure – – − 0.002 − 0.111 0.289 –

Precipitation – − 0.005 – − 0.030 0.002 –

Temperature – – – – – 2.188

Humidity − 0.083 − 0.760 – − 0.363 – − 0.375

k value 0.050 0.040 0.010 0.020 0.020 0.050

F value 2307.828 1339.744 284.478 308.185 237.27 1123.756

P value 0.000 0.000 0.000 0.000 0.000 0.000

R2 0.860 0.781 0.431 0.451 0.388 0.750

Figure 5.   The frame structure of the LASSO-NARX model, where the input is the predicted value of the 
LASSO regression model and the measured value of the self-built point. This network has 12 inputs, 1 hidden 
layer with 10 hidden neurons, 2 input delay orders, and 1 linear output layer leading to 1 output.
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Figure 6.   The prediction effect of O3’s LASSO-NARX model on the training set, validation set, test set and all 
sets.

Figure 7.   Residual test of LASSO-NARX model. Compare the national control point (NCP) measurement 
value and the model fit value (MFV) on the training set (TNG), validation set (VLD) and test set (TES) is seen 
on the left. The histogram of the residuals is seen on the right.
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Discussion
In the data calibration problem of the micro air quality detector, the LASSO model alone and the NARX neural 
network model alone can predict the concentration of pollutants. This paper also chooses a multilayer perceptron 
(MLP) and a radial basis function (RBF) neural network to compare with the LASSO-NARX model. Multilayer 
perceptron is a feedforward artificial neural network model that maps multiple input data sets to a single output 
data set. It introduces one or more hidden layers on the basis of a single-layer neural network, and the hidden 
layer is located between the input layer and the output layer. MLP is a neural network composed of fully con-
nected layers, and the output of each hidden layer is transformed by an activation function. Radial basis function 
neural network is a type of forward network. It is based on the function approximation theory. It mainly contains 
input layer, radial base layer and output layer. Its hidden layer uses the radial basis function as the excitation 
function, which is an effective tool for identifying nonlinear systems37,38.

Taylor diagrams are often used to visually compare the accuracy of various models8. The scattered points in the 
Taylor diagram represent the model, the radial line represents the correlation coefficient (Eq. (1)), the horizontal 
and vertical axis represents the standard deviation (Eq. (11)), and the dashed line represents the center root mean 
square error (Eq. (12)). Figure 8 is a Taylor analysis chart of O3 concentration. It should be noted that the indi-
cators of each prediction model in the figure are based on the test set, but the self-built point (SBP) indicator is 
for the entire data set. It can be seen that compared with the O3 concentration measured by the national control 
point, the O3 concentration measured by the self-built point has the lowest accuracy, the LASSO model and the 
RBF neural network model have good accuracy, and the MLP neural network and NARX model have higher 
accuracy. The LASSO-NARX model proposed in this article performs best in comparison with other models.

Goodness of fit (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Relative Mean 
Absolute Percent Error (MAPE) can also be used to compare various air quality prediction models. Equation (10) 
and Eqs. (13)-(15) are specific formulas, where yi is the measured value at the national control point, y is the 
average value of the national control point, and wi is the regression value of the model25,28.

(11)σ =

√√√√ 1

n

n∑

i=1

(wi − w)2

(12)E
′

=

√√√√ 1

n

n∑

i=1

[(yi − y)−(wi − w)]2

(13)RMSE =

√√√√ 1

n

n∑

i=1

(yi − wi)
2

(14)MAE =
1

n

n∑

i=1

∣∣yi − wi

∣∣

Figure 8.   Taylor diagrams of predicted values of five models and measured values of self-built points, where 
SBP stands for self-built points.
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It can be seen from Tables 4, 5, 6 and 7 that in the comparison with the data of the national air quality 
monitoring station, the measurement data of the micro air quality detector has a large error, so it needs to be 
calibrated. The LASSO regression model and RBF neural network model can calibrate self-built point data, but 
the effect needs to be improved. The MLP neural network and NARX model have a good effect on the calibration 
of self-built point data, and the LASSO-NARX model given in this article is the best in each evaluation index. In 

(15)MAPE =
1

n

n∑

i=1

∣∣∣∣
yi − wi

yi

∣∣∣∣

Table 4.   R2 of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP

PM2.5 0.551 0.860 0.931 0.933 0.667 0.933 0.907

PM10 − 1.076 0.781 0.909 0.918 0.558 0.938 0.827

CO − 0.929 0.507 0.895 0.899 0.380 0.872 0.708

NO2 − 1.333 0.451 0.890 0.900 0.389 0.899 0.752

SO2 − 0.726 0.388 0.935 0.941 0.402 0.958 0.786

O3 0.094 0.750 0.932 0.936 0.715 0.945 0.864

Table 5.   RMSE of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP

PM2.5 22.436 12.515 8.800 8.687 19.323 8.649 10.777

PM10 66.263 21.495 13.911 13.208 30.570 11.656 19.126

CO 0.679 0.344 0.158 0.156 0.385 0.175 0.304

NO2 37.183 18.035 8.081 7.715 19.029 7.725 13.216

SO2 26.24 15.627 5.104 4.874 15.449 4.116 9.984

O3 45.673 24.003 12.477 12.190 25.638 11.304 18.603

Table 6.   MAE of six types of air pollutant concentrations between self-built points, model forecast values and 
national control point.

Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP

PM2.5 18.181 9.193 6.070 5.951 13.709 5.821 7.763

PM10 50.151 15.037 9.218 8.981 22.349 7.080 13.184

CO 0.549 0.263 0.100 0.098 0.288 0.110 0.237

NO2 29.838 13.877 4.924 4.806 14.166 4.658 9.991

SO2 12.867 10.421 2.684 2.464 9.998 2.116 7.246

O3 36.63 18.683 7.948 7.788 18.930 7.647 14.396

Table 7.   MAPE of six types of air pollutant concentrations between self-built points, model forecast values 
and national control point.

Input variable Self-built points LASSO NARX LASSO-NARX RBF SVR MLP

PM2.5 0.447 0.242 0.151 0.146 0.370 0.133 0.185

PM10 0.887 0.264 0.147 0.146 0.428 0.107 0.210

CO 0.478 0.317 0.096 0.095 0.379 0.112 0.283

NO2 2.129 0.760 0.1816 0.177 0.737 0.170 0.471

SO2 0.685 0.737 0.161 0.131 0.735 0.131 0.530

O3 4.322 1.487 0.428 0.397 1.446 0.373 1.002
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the index of goodness of fit, several self-built points are negative, which is caused by the large error of self-built 
points. Among the other three indexes, the most improved is the MAPE of NO2, which is an increase of 91.7%, 
and the least improved is the RMSE of PM2.5, which is an increase of 61.3%.

Conclusions
Low-cost micro air quality detectors can help humans conduct real-time and grid monitoring of the concentra-
tion of pollutants in the air. However, since the electrochemical sensor used by the micro air quality detector is 
susceptible to external influences, and after a period of use, it will exhibit range drift and zero point drift, so its 
measurement accuracy needs to be improved. The LASSO regression model can calibrate the data measured by 
the micro air quality detector and give the quantitative relationship between the pollutant concentration and each 
influencing factor, but it cannot find the nonlinear relationship between the pollutant concentration and each 
influencing factor. The NARX model can find the nonlinear relationship between the pollutant concentration 
and various influencing factors, and the prediction accuracy is significantly higher than the LASSO regression 
model. However, it cannot give a quantitative relationship between pollutant concentration and various influ-
encing factors. The LASSO-NARX air quality combined model proposed in this study combines the advantages 
of the two models. It can not only reflect the quantitative relationship between the pollutant concentration and 
the influencing factors, but also has a higher prediction accuracy than the NARX neural network model alone. 
Using this model to calibrate the measurement data of the micro air quality detector can increase the accuracy 
by 61.3–91.7%. The LASSO-NARX model performs very well on the training set and test set, indicating that it 
has a strong generalization ability. The model uses a total of 4135 sets of data, and the data of the four seasons 
are all covered in the model, which also shows that the model is relatively stable. However, due to the different 
climatic conditions in different regions, this model may not be applicable to other regions. In the future, our 
team will try to collect data from other regions to further validate the model.
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