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ABSTRACT

There are currently 151 plants with draft genomes
available but levels of functional annotation for pu-
tative protein products are low. Therefore, accurate
computational predictions are essential to annotate
genomes in the first instance, and to provide focus
for the more costly and time consuming functional
assays that follow. DNA-binding proteins are an im-
portant class of proteins that require annotation, but
current computational methods are not applicable
for genome wide predictions in plant species. Here,
we explore the use of species and lineage specific
models for the prediction of DNA-binding proteins
in plants. We show that a species specific support
vector machine model based on Arabidopsis se-
quence data is more accurate (accuracy 81%) than a
generic model (74%), and based on this we develop a
plant specific model for predicting DNA-binding pro-
teins. We apply this model to the tomato proteome
and demonstrate its ability to perform accurate high-
throughput prediction of DNA-binding proteins. In
doing so, we have annotated 36 currently uncharac-
terised proteins by assigning a putative DNA-binding
function. Our model is publically available and we
propose it be used in combination with existing tools
to help increase annotation levels of DNA-binding
proteins encoded in plant genomes.

INTRODUCTION

There are currently 151 draft plant genomes available in the
NCBI genome database (accessed 09/02/15), collectively
representing more than 115 gigabases. However, a genome
is only of value if genes can be identified and functions as-
signed. Assigning functions to the protein products of genes

is a complex task, partly as function can be defined on dif-
ferent levels, including cellular location, molecular func-
tions, biological processes (1), as well as post-translational
modifications. Using experimental assays to assign func-
tion, whilst accurate, is both difficult, costly and time con-
suming, and currently can not keep pace with the volume
of sequenced data (2). Therefore, accurate computational
predictions are essential to annotate genomes in the first in-
stance, and to provide focus for functional assays in down-
stream analysis.

Gene Ontology (GO) terms (1) can be used to as-
sign molecular functions to proteins to assess levels of
genome annotation. On average 44% of proteins within
the Viridiplantae (Green plants) are annotated with molec-
ular function GO terms, with levels varying from 33%
for the moss Physconitrella patens, to 56% for the model
species Arabidopsis thaliana. Economically important crop
plants also have low levels of molecular function annota-
tion: Oryza sativa (35%), Solanum tuberosum (43%), Zea
mays (45%) and Solanum lycopersicum (45%). Therefore,
while it is clear that functional annotations on a genomic
scale are the key to understanding plants at the molecular
level, this is severely limited by the current level of annota-
tion. As a consequence the development of computational
protein function prediction methods is a key research area.
The first large-scale Critical Assessment of protein Func-
tion Annotation (CAFA) experiment featured more than 50
competing algorithms (3), and found that tools which pre-
dicted molecular functions provided a greater level of ac-
curacy compared to those which predicted a protein’s in-
volvement in a biological process. Overall, the prediction
algorithms were less accurate at predicting the function
of multi-domain proteins compared to single-domain pro-
teins, which led to the conclusion that algorithms needed
to be developed to make predictions for specific molecular
functions for multi-domain proteins. One group of proteins
which are predominantly multi-domained (4), and are of
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particular importance in eukaryotic biology, are those that
bind DNA.

It is estimated that DNA-binding proteins (DNA-BPs)
comprise 6–7% of eukaryotic proteomes (5). They are cru-
cial for many fundamental cellular processes, including
replication, transcriptional control, chromatin stability and
modification, and epigenetic regulation (6,7). The large
number of DNA-binding protein families, and the diverse
DNA features that these proteins recognise makes identifi-
cation of DNA-BPs within proteomes a difficult task (5,8).
Prediction of DNA-BPs has been approached using infor-
mation from protein sequences and/or protein structures.
Prediction tools can be divided into three groups, those that
(i) use protein sequence information to make DNA-binding
predictions at the protein level, (ii) use protein structural in-
formation to make DNA-binding predictions at the protein
level and (iii) use protein sequence information to make pre-
dictions as to which residues interact with DNA, but do not
give a prediction of DNA-binding at the protein level. In
addition there are tools that use combinations of these ap-
proaches. Tools in group (i) are summarised in Table 1, and
tools representing the other groups have been reviewed pre-
viously (9). Although structure based predictions are more
accurate than sequence based ones, the lack of structural in-
formation for many proteins makes this method inappropri-
ate for high-throughput annotation. Hence, many existing
methods have focused on predictions at the whole protein
level using amino acid sequence information, and many of
these apply supervised machine learning methods (9–21).

Supervised machine learning involves the use of algo-
rithms which can learn from validated data sets how to
make predictions on new data. Many machine learning
methods have been used to predict protein function from
amino acids sequence information, but support vector ma-
chines (SVMs) have proved in many circumstances to have
the best performance (22). SVMs are a supervised learning
method used for data classification. Using a set of features
which describe the data, the SVM learns to classify train-
ing data, where the class value is already known, to create a
prediction model. The resulting model can then be applied
to data where the class is unknown to predict the values
(23). SVMs are specifically suited to the problem of pre-
dicting function from sequence as they can be trained on
many different types of data, they are suited to noisy data
sets, and are less susceptible to overfitting (24). When pre-
dicting DNA-BPs it is important to have a high quality data
set to train the SVM, and a feature vector which adequately
describes the data. One of the simplest and most common
features selected to predict protein function is amino acid
composition.

A number of models have previously been developed to
predict DNA-BPs from amino acid sequence (summarised
in Table 1), but most have many limitations that restrict
their application to whole genome DNA-BP annotation
in plants. We identified five limitations shared by previous
models: (i) the use of sequences from mixed prokaryotic,
eukaryotic and species data sets for training, (ii) the restric-
tion of training data sets to proteins with solved structures
bound to DNA, (iii) reliance upon evolutionary relation-
ships evident in position-specific-scoring matrices (PSSMs),
(iv) use of complex models with large numbers of feature T
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vectors giving slow running times, (v) lack of publically
available website or software suitable for whole genome pre-
dictions.

The development of models based on proteins from a
wide range of eukaryotic and prokaryotic species results
in generic models, but these often lack the specificity re-
quired to annotate lineage specific DNA-BPs. For exam-
ple, transcription factors are known to be highly specific
to each kingdom, with up to 47% of DNA binding tran-
scription factors belonging to lineage-specific families (25).
In addition, RNA-binding proteins have been shown to
have amino acid binding propensities that are lineage spe-
cific (26). Despite such observations, very few studies have
been conducted on the use of lineage specific models. One
study analysed the potential of using lineage specific mod-
els in prokaryotes, but this was limited to a small number
of closely related bacteria (27). Hence, there is a need to as-
sess the performance of species/lineage specific prediction
models for DNA-BPs.

The use of DNA-BPs for which there is a solved struc-
ture of the protein–DNA complex available in the Protein
Data Bank (PDB), severely restricts the number of proteins
that can be used to effectively train an SVM. This also im-
pacts on the potential to implement a lineage/species spe-
cific approach. The use of evolutionary profiles as a fea-
ture vector for predictions represents an additional prob-
lem when predictions are required for non-model organ-
isms. Many plants have few close relatives with sequenced
genomes, meaning that useful PSSMs can not be created,
limiting the use of prediction methods that use evolution-
ary profiles.

The prediction algorithms surveyed in Table 1, show a
trend for increasingly complex models based on large num-
bers of sequence features (e.g. Zhang et al. (16) use a 128
feature model and Zou et al. (14) use a 153 feature model),
using more complex concepts from computer sciences (e.g.
chaos game theory (13)). Whilst such models can be shown
to have increased accuracy on test data sets, they are pri-
marily focussed on theoretical method development rather
than application. This complexity hinders the application
of these models to proteome wide predictions, due to their
long running time and limitations on the number of input
sequences. The final limitation of many of the prediction
algorithms is that they are no longer publically available or
have software dependencies that are no longer functioning.
Of the 12 algorithms surveyed, only DNAbinder (10) could
be applied to whole proteome function prediction.

In this work we develop a prediction tool that over-
comes these limitations and is applicable to the prediction
of DNA-BPs in plant genomes. We have created species
and lineage specific models using experimentally validated
DNA-BPs, selected using molecular function GO terms.
The model only uses a single feature vector, amino acid
composition, and this combined with its implementation
through the WEKA workbench software (28) means we
have created a plant genome annotation tool that can be
used by others on genome sequences. For the develop-
ment of our model we firstly demonstrate that using species
specific prediction models, with the dicotyledonous model
plant Arabidopsis (Arabidopsis thaliana) and yeast (Saccha-
romyces cerevisiae), gives more accurate predictions than

the generic DNAbinder model (10). Building upon this we
created a plant specific model and tested its application to
realistic data sets, designed to simulate the relative propor-
tion of DNA-BPs within a plant genome. This allowed us
to show that our predictions still perform well when there is
not an equal number of DNA-binding and non-DNA-BPs.
Finally, we demonstrate the application of the plant model
to the prediction of DNA-BPs in the tomato (Solanum ly-
copersicum) genome. Tomato is an economically important
crop plant which is used as a model species for fruit de-
velopment and whose draft genome has been recently se-
quenced (29). Analysis of GO annotation of the genome re-
veals that only 43% of proteins have a molecular function
assigned, and hence this provided a good system on which
to apply our model. We made proteome wide predictions
for the tomato genome, and compared the results to current
annotations and results from mass spectrometry analysis of
chromatin-associated protein fractions. These predictions
reveal a large number of tomato proteins (1459) that have
possible DNA binding activity and from these, we highlight
36 currently uncharacterised proteins, which we propose to
be putative DNA-BPs.

MATERIALS AND METHODS

Data sets

Three types of data set were used to create and evaluate
our species and lineage specific prediction models. Details
of their creation and composition are summarised in Fig-
ure 1 and detailed below.

� Equal data sets: Full length protein sequences were
obtained from the Gene Ontology database (1) using
AmiGO (version 1.8) (30), by searching for Arabidop-
sis (A. thaliana) (accessed: 07/12/13) and yeast (S. cere-
visiae) (accessed: 26/01/14) proteins which had a molec-
ular function with an experimental evidence code of IDA
(function inferred by direct assay). DNA-BPs were se-
lected using GO terms associated with DNA binding
(GO:0003677, GO:0003700, and their child terms). Pro-
teins less than 40 amino acids in length were removed to
ensure only full length proteins were present. BLAST-
clust, from the NCBI-BLAST package (31), was then
used to remove homologous proteins (with ≥35% se-
quence identity over ≥90% sequence length) and a se-
quence was selected randomly from each cluster to give
a representative data set (Supplementary File 1). Final
training sets were obtained by randomly selecting 294
DNA-BPs and 294 non-DNA-BPs from our yeast repre-
sentative data set, and 129 DNA-BPs and 129 non-DNA-
BPs from our Arabidopsis representative data set. The re-
maining 100 DNA-BPs for each species were used, along
with 100 randomly selected remaining non-DNA-BPs to
create data sets for testing. This allowed us to maximise
the number of DNA-BPs used to create these models
while retaining a suitable number of proteins for testing.

� Realistic data set: In reality proteomes comprise many
more non-DNA-BPs than DNA-BPs (the estimated ra-
tio is 10:1), and hence a realistic data set for Arabidopsis
was created to reflect this. The workflow used to identify
non-DNA-BPs from Arabidopsis gave a total number of



e158 Nucleic Acids Research, 2015, Vol. 43, No. 22 PAGE 4 OF 11

Training (Realis�c)
DNA-BP = 88
Non-DNA-BP = 884
Test (Realis�c)
DNA-BP = 88
Non-DNA-BP = 883

Training (Equal)
DNA-BP = 129
Non-DNA-BP = 129
Test (Equal)
DNA-BP = 100
Non-DNA-BP = 100

Training (Equal)
DNA-BP = 294
Non-DNA-BP = 294
Test (Equal)
DNA-BP = 100
Non-DNA-BP = 100

DNA-BP = 142
Non-DNA-BP = 724

DNA-BP = 229
Non-DNA-BP = 1767

DNA-BP = 394
Non-DNA-BP = 1753

DNA-BP = 221
Non-DNA-BP = 1223

DNA-BP = 275
Non-DNA-BP = 2408

Yeast Arabidopsis

Search for DNA binding or non-DNA binding proteins using GO terms.

DNA-BP = 400
Non-DNA-BP = 1954

Use these to create Representa�ve data sets using BLASTclust.

Randomly select proteins to create Equal
and Realis�c data sets.

‘Other-Plant’

Final Plant Model

DNA-BPs = 340
(all Arabidopsis and 
‘other-plant’)

Non-DNA-BPs = 340
(170 from Arabidopsis, 
170 from ‘other-plant’)

Remove Arabidopsis 
homologs using 

BLASTclust to create 
‘Other-plant’ Test 

data set

Test
DNA-BP = 111
Non-DNA-BP = 516

Figure 1. Workflow of data set extraction. Summary of the methods used to obtain protein sequences and create each data set.

1767 non-homologous proteins. This set was divided in
two, giving 884 non-DNA-BPs for the training set, and
883 for the test set. To give a ratio of 10:1 the maximum
number of DNA-BPs used was 88 in both the training
and testing data sets.

� ‘Other-Plant’ data set: To determine how well the
Arabidopsis model performed predicting DNA-BPs
from other plant species, a data set which included
‘other-plant’ species was created. Proteins from
all Viridiplantae species (excluding Arabidopsis)
with a DNA-binding molecular function GO term
(GO:0003677, GO:0003700, and their child terms) and
manually annotated evidence code were extracted using
QuickGO (32). A non-DNA-BP data set was extracted
in a similar way, except the GO terms selected were not
associated with DNA-binding. Proteins with less than 40
amino acids in length were removed. In addition proteins
with homologs (with ≥35% sequence identity over ≥90%
sequence length) within the data set and to proteins in
the Arabidopsis Representative data set were removed.
This resulted in a final representative ‘other-plant‘ data
set consisting of 111 DNA-BPs and 516 non-DNA-BPs
(Supplementary File 1). The ‘other-plant’ data set was
then used as an independent test set to evaluate the
performance of the Arabidopsis model.

Support vector machine (SVM) prediction models

The SVM models developed to predict DNA-BPs from pro-
tein sequence information were created using WEKA, a
software workbench that integrates a collection of machine
learning tools (28). We used the libSVM library (33) with
the Radial Basis Function (RBF) kernel (34). The RBF ker-
nel nonlinearly maps data into a higher dimensional space,
so it can be used for data in which the relationship between
class labels and attributes are not linear, as is the case for
the amino acid sequence data used in our model. The RBF
kernel has been used in many other SVMs for prediction of
protein–DNA interactions (11,14,15) and protein–RNA in-
teractions (35), and hence we selected it to test our models.
In each case, we created our models by optimising the cost
and � parameters, using a grid search on the training data.

Evaluation of SVM prediction models

Five-fold cross validation has been used to evaluate the per-
formance of our models. This involves randomly splitting
the data set into five equal groups. Four of these groups are
used for training while the remaining group is used for test-
ing. This process is repeated five times so that each group is
used once for testing.

Using the numbers of true positives (TP), true nega-
tives (TN), false positives (FP) and false negatives (FN),
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four statistics were calculated to determine the SVM per-
formance:

� Accuracy = (TP+TN)
(TP+TN+FP+FN) , measure of the overall num-

ber of correct predictions

� Sensitivity = TP
(TP+FN) , measure of correct true positive

predictions

� Specificity = TN
(TN+FP) , measure of correct true negative

predictions

� Matthews correlation coefficient (MCC) =
(TP×TN)−(FN×FP)√

(TP+FN)(TP+FP)(TN+FN)(TN+FP)
, measure of the quality

of the classification.

Our species specific models created with equal data
sets were benchmarked against the Alternate DNAbinder
model using a threshold of 0.2, the optimal parameter (10).
This model was used as the benchmark as it is based on
equal sized training and testing sets of full-length sequences.

SVM plant model and its application to tomato genome an-
notation

A plant lineage specific SVM model was created using
a data set of all 340 plant DNA-BPs and 340 randomly
selected non-DNA-BPs from the Arabidopsis and ‘other-
plant’ representative data sets (170 from Arabidopsis, 170
from ‘other-plant’) (Figure 1). This plant lineage model was
applied to the tomato (Solanum lycopersicum) genome (re-
lease ITAG2.4), which is comprised of 34725 proteins. A
probability score (ranging from 0.5 to 1.0) was assigned
by the model to each predicted protein. This score repre-
sents the likelihood of that prediction being correct. For the
tomato proteome we used a probability score ≥0.85 to des-
ignate putative DNA-BPs. Further details of this model and
the data sets can be found in Supplementary Files 2–4.

Annotation comparisons for tomato genome predictions

The proteins predicted to be putative DNA-BPs were as-
sessed by extracting information from the current tomato
genome annotations (29) which included GO terms and as-
signed Interpro domains, and by assigning Pfam domains
in a separate process (36). In this way we assigned proteins
to one of three sets: GOA-DB (Gene Ontology Annotation
- DNA binding), GOA-Other and GOA-Unknown. Pro-
teins which had evidence of being DNA-binding were desig-
nated as GOA-DB and those which had alternative molecu-
lar functions were designated as GOA-Other. Proteins that
either had no GO term or Interpro domain, or had annota-
tions with insufficient information to assign function were
designated as GOA-Unknown.

Nuclear localisation enrichment analysis of tomato genome
predictions

In order to further assess the likelihood of the 1459 pre-
dicted proteins having a DNA-binding function, we used

WoLF PSORT (37), to predict which proteins were localised
to the nucleus. We used all proteins ranked 1 by WoLF
PSORT (37) (the highest level of confidence for nuclear lo-
calisation) to calculate a nuclear localisation enrichment
score. This score was calculated as

nNLDNA−BP
/
nDNA − BP

nNLT Prot
/
nTProt

where:
nNLDNA-BP = number of predicted nuclear localised pro-
teins in 1459 putative DNA-BPs
nDNA-BP = number of putative DNA-BPs = 1459
nNLTProt = number of predicted nuclear localised proteins
in tomato proteome
nTProt = number of proteins in tomato proteome = 34725.

GO enrichment analysis of tomato genome predictions

To determine which Gene Ontology molecular function
terms were significantly enriched in our predicted DNA-
BPs from the tomato proteome, we used agriGO (38) to
conduct singular enrichment analysis (SEA). Any proteins
without an associated GO term were removed from the
analysis. The GO enrichment analysis was also conducted
on a reference set of GO terms in the tomato proteome for
comparison. Significant results (p<0.05) were determined
using Fisher’s exact test with false discovery rate correction.

Experimental validation of DNA-BP predictions in tomato

We initially evaluated the predicted DNA-BP proteins from
tomato against current electronic annotations in the Gene
Ontology to assess the overlap between known and pre-
dicted DNA-BPs. Whilst this was a useful first step, pro-
tein function can only be confirmed using experimental as-
says. However, the major problem for this work was the
fact that a high throughput assay for direct DNA-binding
in tomato proteins is not feasible. However, the identifica-
tion of proteins associated with chromatin is possible. Chro-
matin is a macromolecule comprising proteins, DNAs and
RNAs; and within this structure only a subset of proteins
will directly bind to DNA. Hence the identification of pro-
teins associated with chromatin is one essential first step
in the experimental validation of DNA-binding function of
tomato proteins. Whilst identifying a protein as chromatin-
associated does not definitively define it as a DNA-BP, it
provides a means of prioritising proteins for further ex-
perimental investigation. The identification of proteins as
chromatin-associated involved three steps; chromatin frac-
tionation, mass spectroscopy and Western blotting.

Chromatin fractionation

Chromatin-associated and non-chromatin-associated pro-
tein samples from tomato tissues were prepared for mass
spectrometry analysis using the chromatin fractionation
method, as follows:

Tomato leaf tissue was harvested and ground under liq-
uid nitrogen. Ground leaf tissue was suspended in 10 ml ice
cold buffer (10 mM PIPES, 10 mM KCl, 1.5 mM MgCl2,
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340 mM sucrose, 10% glycerol, 0.5% Triton X-100 and
1X SIGMAFAST protease inhibitor cocktail (Sigma), pH
6.8) and filtered through Miracloth (Calbiochem). A 6 ml
aliquot of this whole cell extract was taken and centrifuged
at 3000g for 10 min at 4◦C. 1 ml of TCA-A (10 ml acetone,
2 ml TCA (20% w/v in H2O), 8 �l �-mercaptoethanol) was
used to resuspend the pellet, containing chromatin bound
proteins. After brief vortexing, these samples were stored
at −20◦C for 1 h. Samples were centrifuged at 16000g for
30 min at 4◦C and the resulting pellets were washed three
times with a/�-me solution (8 �l �-mercaptoethanol in 10
ml acetone) before resuspending in 100 �l sodium dodecyl
sulphate loading buffer.

Mass spectrometry

Three chromatin fractionation replicates were processed for
mass spectrometry as follows:

Non-chromatin associated and chromatin associated
protein samples were loaded onto 4–20% precast polyacry-
lamide gels (BioRad) and the samples run 2

3 of the gel.
Each lane was cut into six equally sized pieces, with each
section then cut into 1 mm square cubes. Gel pieces were
washed with 100 mM NH4HCO3 and acetonitrile followed
by reduction with 10 mM DTT and alkylation with 55 mM
iodoacetamide. Proteins were subject to in-gel digestion
with sequencing grade trypsin (Roche) at 37◦C overnight,
generating peptides. A C18 (POROS R2, Applied Biosys-
tems) column, which had been activated with 50% acetoni-
trile, 0.1% trifluro acetic acid (TFA) and washed with 0.1%
TFA, was used to clean the peptides. Peptides were loaded
onto the column and washed with 0.1% TFA. Peptides
bound to the column were eluted using 2 × 40 �l of 50%
aectonitrile, 0.1% TFA. Peptide samples were dried down
to approximately 10 �l using a vacuum centrifuge before
adjusting to a final volume of 30 �l using 0.1% TFA.

Peptide samples were run on an LTQ Orbitrap Velos Pro
(Thermo Scientific) mass spectrometer, on a 95 min run.
The MS resolution was set to (FTMS) 60 000. MS/MS was
done on the top 16 ions, using Collision Induced Dissocia-
tion (energy 35) on a minimum signal of 5000, with an iso-
lation window of 2 ppm. Unassigned and 1+ ions were re-
jected. Dynamic exclusion was used with a repeat count of
1, repeat duration of 30 s and exclusion duration of 45 s.

Protein identification and quantification was done us-
ing MaxQuant software version 1.4.1.2 (39). Raw data files
were searched against the predicted proteins of the S. lycop-
ersicum genome ITAG2.3 release. The resulting data were
then filtered to obtain all chromatin associated proteins
which were found in at least one replicate.

Western blotting

To assess the levels of nuclear and non-nuclear proteins
in our mass spectrometry samples, we carried out West-
ern blots using specific antibodies. Tomato leaf tissue chro-
matin fractionation samples, which were submitted for mass
spectrometry analysis, were run on Biorad TGX gels be-
fore being transferred to PVDF membranes with the Bio-
rad Trans Blot Turbo System. Blots were blocked for 30

min with 5% milk in TBS-T (0.1% Tween 20) before be-
ing probed with Calnexin (endoplasmic reticulum protein),
UGPase (cytoplasmic protein) or Histone H3 primary an-
tibody. The blots were washed three times with TBS-T for
10 min before addition of the corresponding secondary an-
tibodies, and leaving for 2 h. Blots were washed with TBS-T
three times for 10 min before incubation with SuperSignal
West Femto Maximum Sensitivity substrate (Thermo Sci-
entific) and imaging with a Syngene G:Box TX4 Imager. Af-
ter imaging Coomassie brilliant blue (Cbb) stain was used
on each membrane to visualise total protein levels and the
level of RuBisCO in each sample.

RESULTS AND DISCUSSION

In this work we have shown that species-specific models
for the prediction of DNA-binding proteins outperform
a generic model based on proteins from multiple species
(DNAbinder (10)). We have used this result to create a plant
specific model, and applied it to the prediction of DNA-BPs
in the tomato genome. In doing so we have assigned puta-
tive DNA-binding function to 36 currently uncharacterised
tomato proteins. This is the first time species-specific SVM
models have been shown to perform better than generic
models for DNA-BP function prediction, and this has led
to a high throughput DNA-BP prediction tool suitable for
plant genomes.

Species-specific models perform better than a generic model

We hypothesised that a species-specific DNA-BP prediction
model would give more accurate predictions for proteins
from that species, than a generic model. To test this we cre-
ated Arabidopsis and yeast models using equal numbers of
DNA-binding and non-DNA-binding proteins (Figure 1).
We then compared these against the generic DNAbinder
model, which is trained on a mixed data set of eukaryotic
and prokaryotic DNA-BPs (10). The 5-fold cross valida-
tion of these models showed that our Arabidopsis and yeast
specific models have an increased accuracy and MCC com-
pared to DNAbinder (Table 2). To substantiate this finding
we evaluated our yeast model on our Arabidopsis data set
and vice versa (Table 2). This confirmed that prediction ac-
curacy was reduced when non-species specific models were
used.

These results raise the question of why species-specific
models give more accurate predictions. It is known that a
number of DNA-binding protein families, such as histones
and core transcription factors (40,41), are conserved across
diverse lineages. However, there are also families of DNA-
BPs and transcriptional regulators which are highly spe-
cific to eukaryotic lineages and participate in lineage spe-
cific processes (42). Most relevant to the current results are
the many plant specific families of DNA binding transcrip-
tion factors (TFs) (43). Arabidopsis, for example has a large
repertoire of TFs, 45% of which are lineage specific (25). If
training sets of representative DNA-BPs are extracted from
diverse species then the models based on them may lack se-
quence information from species-specific proteins. This is
an important factor especially relevant for DNA-BP pre-
diction in non-model species, as many existing prediction
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Table 2. Evaluation statistics of species specific libSVM models and comparison with DNAbinder model using equal data sets

libSVM model Test data set Accuracy Sensitivity Specificity MCC

Arabidopsis Arabidopsis 0.81 0.77 0.85 0.62
Yeast Yeast 0.76 0.81 0.71 0.52
Arabidopsis Yeast 0.74 0.66 0.81 0.48
DNAbinder (10) Arabidopsis 0.74 0.75 0.72 0.47
Yeast Arabidopsis 0.67 0.53 0.81 0.35
DNAbinder (10) Yeast 0.65 0.84 0.47 0.33

Results are shown in order of decreasing Matthews Correlation Coefficient (MCC).

methods rely upon sequence similarity for some aspect of
the prediction (Table 1).

Another factor that will influence the increased accuracy
of the species-specific models, is the fact that DNAbinder is
only trained on DNA-BPs that have solved 3-D structures
of the protein in complex with DNA. The SQUAMOSA
promoter binding (SPB) protein and B3 are both plant
specific transcription factors (included in our Arabidop-
sis DNA-BP data set) that do not have a crystal struc-
ture available in complex with DNA. Hence these plant-
specific DNA-BPs are excluded from models based on pro-
tein structures; which includes 11 of the 12 existing mod-
els summarised in Table 1. Our models are trained on
protein sequences with GO annotations, and are not re-
stricted to proteins with DNA bound structures, ensuring
that many important lineage specific DNA-binding families
are included within the model, thus contributing to their in-
creased accuracy.

Performance of Arabidopsis SVM model on the realistic data
sets

The Arabidopsis model based on a realistic data set achieved
an accuracy of 91% and a MCC of 0.51, whilst retaining
a high sensitivity (Table 3). This showed that the effective-
ness of using species-specific models is retained when mak-
ing predictions for realistic data sets. This is an important
result if the models are to be used on a genomic scale, where
DNA-BPs will form only a small percentage of the total pro-
tein content.

Performance of Arabidopsis SVM model on the ‘other-plant’
data set

In total 1322 DNA-BPs were extracted from all available
Viridiplantae genomes, but only 8.4% were from species
other than Arabidopsis (Figure 2). A large proportion of the
additional proteins were from rice (Oryza sativa), which has
a high level of manual annotations, most likely reflective of
its status as a model organism for cereals (Figure 2). These
data provide further evidence that there is a need for high
throughput methods for protein annotation in plants.

When evaluated against this ‘other-plant’ data set, our
Arabidopsis model achieved reasonable accuracy (80%) but
a very low sensitivity (0.27) (Table 3); suggesting that the
model is not suitable for predictions of DNA-BPs from evo-
lutionary diverse plant species. One possible explanation
for this is that there are a significant number of species-
specific DNA-binding proteins that are not included within
our Arabidopsis training data. This could be reflective of the
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Figure 2. DNA-BPs in Other Plant data set. Bar chart showing the species
distribution of the DNA-BPs in the ‘Other-plant’ data set.

high proportion of monocots in the ‘other-plant’ data set,
when the model is based on the dicot Arabidopsis. Whilst
there are TFs which are shared between monocots and di-
cots, there are also proteins which are specific to each (44).
However, BLASTP analysis of our ‘other-plant’ data set
against the Arabidopsis proteome (TAIR10 release) revealed
that all proteins had a close homolog (e-value<10−3) (Sup-
plementary File 5.1). This suggests that the Arabidopsis ho-
mologs were not in our initial representative Arabidopsis
data set, possibly due to the lack of an experimentally val-
idated DNA-binding function annotated in the Gene On-
tology. Therefore, to ensure that these proteins were rep-
resented in our final model we combined our data sets of
all the DNA-BPs proteins used from Arabidopsis and the
‘other-plant’ data set (340 DNA-BPs) with an equal number
of non-DNA-BPs. This data set was used to create a final
plant model, suitable for making predictions across diverse
plant genomes.

Prediction of DNA-BPs from tomato using a plant model

The predictions made for the tomato proteome (S. lycoper-
sicum) (29) using the plant model resulted in 1459 proteins
being designated as having putative DNA-binding func-
tion (Supplementary File 5.2). These predictions were com-
pleted in ∼20 s using the plant SVM in WEKA (28) (run on
a laptop with an Intel core i5–3360M @ 2.80GHz processor
with 16.0GB RAM). This short execution time shows that
the method is suitable for predicting DNA-BP function on a
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Table 3. Evaluation statistics of the realistic Arabidopsis model tested on realistic Arabidopsis and ‘other-plant’ data sets

libSVM model Test data set Accuracy Sensitivity Specificity MCC

Arabidopsis Arabidopsis 0.91 0.61 0.94 0.51
Arabidopsis ‘Other-Plant’ 0.80 0.27 0.91 0.2

Results are shown in order of decreasing Matthews Correlation Coefficient (MCC).
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Figure 3. Probability distribution of predicted DNA-BPs from tomato.
Line graph showing the relationship between increasing probability and
the number of predicted DNABPs (total, GOA-DB, GOA-Other and
GOA-Unknown) greater than or equal to the corresponding probability.

genomic scale. These 1459 proteins predicted to bind DNA
were assigned to one of three annotation sets (GOA-DB,
GOA-Other, GOA-Unknown). In total 1006 had a function
assigned (GOA-DB and GOA-Other), and of these 68.8%
were annotated as putative DNA-BPs. Many of the proteins
annotated as GOA-Other, had RNA-binding functions or
were zinc finger domains putatively involved in protein–
protein interactions. Our plant model is based upon amino
acid composition, and hence it was to be expected that
proteins’ sharing similar sequence characteristics to DNA-
BPs were miss-annotated. Like DNA, RNA is a negatively
charged and therefore interacting proteins prominently fea-
ture positively charged residues within their binding sites
(45,46). Similarly, many zinc finger proteins bind DNA
whereas others engage exclusively with proteins or RNA
molecules (47), leaving it difficult to define binding pref-
erence on amino acid composition alone. A further issue
with the GO annotations is that many proteins have multi-
ple domains with different functions (4), and as a result one
protein may have several GO terms assigned. Therefore, it
is still possible that proteins we have designated as GOA-
Other may have as yet unassigned DNA binding functions.

Using our final plant model we predicted 1459 DNA-BPs
in the tomato proteome using a threshold of ≥0.85. This
threshold was chosen based on the number of DNA-BPs
predicted. Early estimates suggested that DNA-BPs make
up 6–7% of a proteome (5), and for tomato, with a pro-
teome of 34725 proteins, this means that we would expect to
see approximately 2084 proteins with DNA-binding func-
tion. We made predictions for the tomato proteome with
different thresholds, to see which gave a number of putative
DNA-BPs close to the expected number (Figure 3). A 0.90
threshold gave a predicted data set of 659 (lower than ex-

pected) and at 0.80 the predicted set is 2438 (higher than ex-
pected). The probability of 0.85 was used, because it gave a
data set size in the region of, but smaller than, the expected.
The smaller size was justified as it made manual annotation
mappings (which was necessary for some parts of the anal-
ysis) possible.

It is also possible for users of our model to test differ-
ent probability thresholds themselves, to create larger or
smaller predicted protein data sets. Figure 3 shows the rela-
tionship between the number of predicted DNA-BPs at dif-
ferent probability thresholds, along with the corresponding
ratio of GOA-DB, GOA-Other and GOA-Unknown. This
shows that as the probability score increases so does the
number of GOA-DB compared to GOA-Other. At a prob-
ability of ≥0.85 (1459 predicted DNA-BPs) there are 692
GOA-DB (47.4%) compared to 314 GOA-Other (21.5%).
When this threshold is increased to ≥0.9 (659 predicted
DNA-BPs) there are 354 GOA-DB (53.7%) compared to
116 GOA-Other (17.6%). This ratio of GOA-DB to GOA-
Other increases further at a probability ≥0.95. This relation-
ship gives users the option to select a probability threshold
that reflects the accuracy and sensitivity of the predictions
they wish to make.

To further validate the predicted data set, we calculated
nuclear localisation (NL) and GO term enrichment scores.
The NL enrichment score showed that the 1459 predicted
DNA-BPs were 2.9 fold enriched for predicted nuclear lo-
calised proteins, compared to the tomato proteome as a
whole. This provided further evidence that the plant model
identified potential DNA-BPs in tomato. The GO term en-
richment analysis, using agriGO (38), was conducted on the
1259 predicted DNA-BPs which had an associated GO term
(Figure 4; Supplementary File 5.3). From this analysis it is
apparent that our predictions significantly enrich for DNA
binding and associated transcriptional molecular processes
compared to the tomato proteome. The predicted protein
set is enriched for three high level molecular function terms
(nucleic acid binding, DNA binding and sequence-specific
DNA binding transcription factor activity) as expected,
and four additional terms (Figure 4). Three are child terms
of protein-binding (transcription cofactor activity, histone
binding and heat shock protein binding) and one is a child
term of ion-binding. This reflects the fact that proteins bind-
ing to DNA often comprise large complexes that include
other proteins and molecules. For example transcription
factors bind DNA in combination with co-factors (48,49),
and zinc finger proteins are one of the largest families of
transcription factors in plants where DNA-binding is coor-
dinated by zinc ions (50). Histones are proteins that occur
as large protein complexes that fold DNA into structural
units called nucleosomes (41). Heat shock proteins are pro-
duced during stress responses and many act as chaperones
involved in protein folding events (51). In plants, heat shock
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Figure 4. Gene Ontology (GO) term enrichment analysis. Histogram
showing the percentage of genes which have a GO term relating to a
molecular function which is significantly enriched in our predicted tomato
DNA binding proteins (black) compared to the reference tomato proteome
(grey).

transcription factors regulate gene expression in response to
environmental stress (51,52). Hence, whilst we predict pro-
teins with molecular functions other than DNA-binding,
many are related to transcriptional processes where DNA
or DNA packaging and modification is involved.

65% of 34725 tomato proteins do not have an anno-
tated molecular function GO term, leaving them as func-
tionally uncharacterised proteins. From the 1459 predicted
DNA-BPs in tomato, we have identified 28 proteins with
at least one source of evidence for DNA-binding function
that are currently annotated as uncharacterised proteins
in UniProt Knowledgebase (UniProtKB) (53) (Supplemen-
tary File 5.4).

The tomato proteome annotation file initially available
for our work (ITAG2.4) was generated on 23/02/14, and
may have since been superseded by annotations in UniPro-
tKB. Hence, we also compared our 1459 predicted tomato
DNA-BPs to 1939 tomato proteins which have a GO term
for DNA binding (GO:0003677, GO:0003700) in UniPro-
tKB (accessed 22/09/14) (Figure 5). This shows that only
419 of the predicted DNA-BPs were also found in this
UniProtKB data set. The low level of overlap prompted us
to further investigate the annotations presented in UniPro-
tKB. In doing so we found that of the 1939 tomato UniPro-
tKB proteins, only 36 are reviewed proteins (i.e. have been
reviewed and evidence interpreted by an annotator). The
majority of these reviewed protein annotations described
multiple members of the same family (i.e. 15 of the 36 re-
viewed proteins are annotated histones). The remaining un-
reviewed proteins (1903 proteins) have annotations that are
inferred from electronic annotation, which is an automat-
ically assigned evidence code. This evidence code results
from sequence similarity searches and keyword mappings,
and hence could be far from robust. This raises the issue
that the UniProtKB data set is very inclusive, and poten-
tially comprises large families of proteins that are not DNA-

Predicted tomato  
DNA-BPs 

Tomato DNA-BPs 
annotated in 

UniProtKB 

Chroma�n-associated 
tomato proteins 

Figure 5. Comparison of predicted tomato DNA-BPs to an existing data
set and an experimental data set. Venn diagram showing the number of
predicted DNA-BPs from tomato (probability ≥0.85) which are also an-
notated as DNA binding in UniProtKB (419 proteins) and found in our
experimental data set from mass spectrometry analysis of tomato chro-
matin protein fractions (105 proteins).

binding. In addition, some of the UniProtKB proteins that
do not overlap with our predictions have different annota-
tions from the ITAG2.4 release of the tomato genome. For
example, the protein Solyc01g100240.2.1 has a molecular
function GO term for calmodulin binding (GO:0005516) as
well as a calmodulin binding protein-like domain from In-
terpro (IPR12416) assigned in the ITAG2.4 release. How-
ever, in UniProtKB it is annotated with sequence-specific
DNA binding (GO:0043565) and sequence-specific DNA
binding transcription factor activity (GO:0003700) GO
terms, despite no change in the evidence code or reviewed
status. The annotation process and anomalies similar to the
one described here, partly explain the relative low level of
overlap observed in Figure 5. The low overlap is also partly
explained by the final plant model predicting false positives
and negatives, as is expected with any machine learning al-
gorithm.

Evaluating our predictions against current electronic an-
notations is useful as a first step, but ultimately functions
can only be confirmed using experimental assays. The lack
of a high throughput assay, suited to validate DNA-BPs
in tomato led us to use mass spectrometry to identify
chromatin-associated proteins from tomato leaf tissue sam-
ples, as an initial experimental validation step. The chro-
matin fractionation and subsequent mass spectrometry led
to a data set of 2415 proteins proposed to associate with
chromatin. We compared the overlap of proteins in this
chromatin-binding data set with the 1459 predicted DNA-
BPs and the 1939 DNA-BPs annotated in UniProtKB (Fig-
ure 5). From the 952 proteins that have no DNA-binding
annotation in UniProtKB, 88 have been shown to have
an association with chromatin (Figure 5). Eight of these
88 proteins are currently annotated as uncharacterised in
UniProtKB (Supplementary File 5.4), hence we propose



e158 Nucleic Acids Research, 2015, Vol. 43, No. 22 PAGE 10 OF 11

they should be annotated as chromatin associated and pu-
tative DNA binding proteins.

The overlap between the chromatin-associated proteins
and the predicted DNA-BPs is small, and there are a num-
ber of reasons for this. The chromatin fractionation assay
is not a conclusive approach for experimentally identifying
DNA-BPs. Chromatin-associated proteins will include not
only DNA-binding proteins but proteins with other func-
tions, many of which will be protein–protein binding. In
addition the chromatin fractionation assay indicates poten-
tial chromatin-associated proteins by selecting those that
are significantly enriched at a certain threshold (Supple-
mentary File 6). Hence, dependent upon the threshold,
non-chromatin-associated proteins may also be included.
However, to further validate the 2415 proteins identified as
chromatin-associated in our assay, we carried out Western
blots using the protein samples submitted for mass spec-
trometry (Supplementary File 6) to see if this set was en-
riched or depleted in specific proteins. This showed there
was a depleted amount of the non-nuclear proteins cal-
nexin, which is found in the endoplasmic reticulum, the
cytosolic protein UGPase, and RuBisCO. Importantly, we
also see that there is an enrichment of histone H3, one key
structural components of chromatin, which interacts with
DNA. This suggests that we are enriching specifically for
chromatin-associated proteins in our assay (Supplementary
File 6).

A further point to highlight is that, DNA-binding is a
highly dynamic process. Many different DNA-BPs are in-
volved in the regulation of gene expression, and expression
of these proteins may vary in response to different times of
the day, different environmental conditions and in different
plant tissues. Our chromatin fractionation assay was con-
ducted using a single plant tissue type and at a single time
point, hence we know that we are only detecting a small pro-
portion of potential DNA-BPs. We propose that researchers
looking to select a reduced number of putative DNA-BPs
from the list of 1459 would begin with some of the 88 pro-
teins that overlap with chromatin-associated proteins, but
lack UniProtKB annotation.

In this work, we have developed a lineage specific model
that allows accurate prediction of DNA-BPs in plant pro-
teomes. This model overcomes the limitations of previous
annotation methods, is publically available and capable of
high-throughput predictions on a genomic scale. This repre-
sents a significant advance in prediction tool development,
which will contribute to the annotation of plant genomes in
the future. We demonstrated the high throughput capabili-
ties of our plant specific model by making DNA-BP predic-
tions for the whole tomato proteome. This identified a sig-
nificant percentage of putative DNA-BPs for further anal-
ysis and specifically provided predicted DNA-BP annota-
tions for 36 proteins, previously of unknown function. We
anticipate that this lineage specific model will form an im-
portant complementary genome annotation tool, and sug-
gest that the development of analogous models in other lin-
eages will improve DNA-BP predictions in other systems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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