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Abstract

Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these
systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of
natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that
threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures
have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed
within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the
information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent
applications to conservation. However, these practical applications have so far been restricted to simple models with
analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the
Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We
test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify
management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International
Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on
ecosystem parameters.
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Introduction

The Eastern Channel is a very important area because of its

high biodiversity and the many fisheries it sustains [1], the most

emblematic being the flatfish fishery. Sole (Solea solea) is one of

the most economically valuable flatfish species in this area [2].

Fishing mortality applied to sole being high [3], there are risks that

the sole population may be over-harvested. This may have critical

consequences for the sole population, bycatch species and the

economic viability of fishing vessels. The level of risk is highly

dependent on the level of fishing effort, but also on our level of

knowledge on environmental and biological parameters. For

instance if natural mortality (a parameter that is usually very

difficult to determine) is higher than what is commonly deemed to

be the correct value, then fishing mortality is overestimated and

fishing regulations will not have the expected impact.

The ICES (International Council for the Exploration of the Sea)

stock assessment working groups have traditionally dealt with

uncertainties by means of a precautionary approach. When

possible a limit spawning biomass and/or fishing mortality are

defined, beyond which the risk of recruitment impairment is high

[4]. In addition, more conservative reference points have also been

defined, based on a precautionary approach (PA points). These PA

points aim to prevent reaching the critical limit, despite

uncertainty in the ecosystem state or in the fishing effort [4].

Total Allowable Catches (TACs) should be adjusted yearly

depending on the estimated state of the stock so that these limit

reference points are not reached.

Even if flatfish populations in this area have been studied in

depth, many uncertainties remain concerning their biology, their

dynamics, or the fishing pressure they are subject to. Therefore,

current management cannot guarantee that management goals

will be reached. Indeed, the method currently used by ICES

working groups does not explicitly take uncertainties into account

and is only based on past ecosystem states, not anticipating

situations that have not been observed yet. One possible way to

circumvent these limitations is to model the ecosystem of interest

and our uncertainties on ecosystem parameters, then to test the

performance of management measures. If management measures

can be found that always allow reaching management goals, then

such management measures can be considered robust to

uncertainties. In this paper, we propose to determine whether

simple changes made to current management measures can allow
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reaching management goals with a higher robustness to uncer-

tainties.

Uncertainties and risks have been increasingly taken into

account in fisheries management since the beginning of the

1990s [5,6] and now pervade modern fisheries management [7].

Many methods dealing with risks in fisheries management have

been developed and have been reviewed in [8] and [7]. Most

quantitative methods are based on a Bayesian approach, as

advocated in [9–12]. This probabilistic approach is based on the

use of available a priori information on the shape of probability

density functions that are attributed to model parameters.

However, using probability density functions is possible only if

enough knowledge is available to estimate them precisely;

otherwise it only amounts to adding more uncertainties to the

model. This is especially the case with complex ecosystem models

where sources of uncertainty [6,13–15] impacting model outputs

are even more difficult to identify, as the number of modelled

processes increases. In addition, ecosystems are usually complex,

nonlinear and strongly influenced by poorly known ecological

variables [16,17]. Among these systems, marine ecosystems have

enormous biological uncertainty [9] and exploited populations in

general are known to exhibit large levels of natural variability [18].

Therefore, in some cases it may not be possible or desirable to give

probability density functions to model parameter values when

dealing with such ecosystems.

Choosing to not define probability density functions makes the

use of methods commonly used to deal with risk less tractable.

However, methods have been developed within Decision Theory

that aim at allowing decision making under severe uncertainty.

One of these methods is the information-gap decision theory

[19,20]. The info-gap method has started to permeate ecological

modelling, with recent applications to conservation [21–23].

However, these practical applications have so far been restricted

to rather simple models with analytical solutions and many

limitations of this approach have been evidenced [24,25].

To determine whether management measures can allow

robustly reaching management goals for sole and plaice (Pleur-

onectes platessa) in the Eastern Channel, we build an ISIS-Fish

[26–29] model of ICES area 7D. This spatialized fisheries

dynamics model allows us to represent both fish populations and

fleets targeting them, and model management scenarios. From this

model, we apply a method based on decision theory so as to find

out if management goals on these species can be reached despite

uncertainties. First, the input parameters space of our model is

explored by means of sensitivity analysis techniques. This allows us

to identify and rank parameters that most influence model outputs

and whose uncertainty should be tested against management

measures in priority. Once enough model runs have been

performed, we split combinations of model parameters between

those giving output variables equal to or above our management

goals and those that do not allow reaching management goals. So

as to identify combinations of management parameters and

ecological parameters needed to reach management goals,

supervised classification is performed by means of classification

trees on the dataset obtained with sensitivity analysis. This

classification allows us to identify management parameter values

that are most desirable so as to reach management goals, and what

level of uncertainty on environmental parameters can be tolerated

without compromising the achievement of management objec-

tives.

Materials

ISIS-Fish
ISIS-Fish was designed to simulate and evaluate policies in the

context of mixed fisheries (multi-species multi-fleet fisheries) and to

take into account the spatial and seasonal heterogeneities in the

distribution of resources and fishing activities [28]. This fishery

model is based on three submodels: (i) a fishing activity dynamics

model, (ii) a population dynamics model and (iii) a management

dynamics model. Each submodel is spatially and seasonally

explicit, with a monthly time step. The three submodels interact

only if they overlap in space and time. The modelled area is

represented by a grid, the resolution of which, in latitude and

longitude, is chosen with respect to the dynamics being described

and the available knowledge of the studied fishery. Within this

region, zones (i.e. sets of contiguous grid cells) are defined

independently for each population, each fishing activity, each

management measure. Seasons are defined as sets of successive

months. It is also possible to take into account fish price as well as

fixed and variable costs in ISIS-Fish [27] to better model fishers

behaviour. In our model, fish price is the only economic variable

needed to determine the choice of fishing areas.

The Eastern Channel
Twenty-six exploited species can be found in the Eastern

Channel, but also feeding, spawning and nursery grounds, as well

as migration routes. Most catches come from the French and the

English fleets, the English fishing activity having decreased a lot in

the past decades with only a few ports maintaining a fishing fleet

on the South-Eastern coast of England. On the contrary, the

French fleet in this area still comprised 641 ships in 2005 that

landed more than 90000 tons of fish, worth 218 M euros [30]. The

harbour of Boulogne-sur-Mer is the biggest fishing harbour in this

area (ICES area 7D) with 171 active fishing vessels in 2009 [31].

The majority of landings are demersal species, especially common

sole, scallops and whiting. Plaice is an important bycatch of fishing

vessels targeting sole and is also directly targeted by fleets from the

Netherlands and Belgium. Sole and plaice are mostly caught by

beam-trawlers and netters.

Populations of sole and plaice are managed by means of TACs

which build to some extent on catch limits recommended by

ICES. Until the end of 2010 these catch limits aimed to keep the

fishing mortality below precaution fishing mortality (Fpa~0:4 for

sole and Fpa~0:45 for plaice). In 2011 a transition framework to

maximum sustainable yield (MSY) was implemented. This

transition framework is based on a harvest control rule (HCR)

spanning a 5-year period. The goal is to reduce the fishing

mortality from current levels to the fishing mortality providing the

maximum sustainable yield (FMSY ). So as to reach FMSY by the

end of the HCR, the level of fishing mortality tolerated (and

therefore the associated catch limit) is progressively decreased from

F2010 to FMSY . Year-to-year variation in catch limits is bounded to

15% [4].

The Eastern Channel Model
This study is based on an ISIS-Fish model of the English

Channel by [32]. This model is deterministic: a given set of

parameter values always gives the same values for the output

variables. We performed 10-year simulations so as to model a

2008–2017 period that encompasses the 2010–2015 period of the

ICES transition framework to MSY. This allows us to force some

input parameter values to their estimated value for the first three

years modelled (2008–2011) and then test transition scenarios and

determine their consequences on the ecosystem.

Complex Models for Robust Fisheries Management?
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Exploitation. This model focuses on the French flatfish

fishery. Only French gillnetters and English or Belgian beam

trawlers are explicitly taken into account and the modelling

assumption is made that the travelling time from their home

harbour to fishing grounds is negligible. It is considered that they

fish all year long in ICES areas 7D and 7E and fleet (i.e. group of

boats with same characteristics belonging to the same harbour)

parameterisation is the same for both areas. They target sole

(Solea solea) and their main bycatch is plaice (Pleuronectes

platessa). An important notion when defining fishing activities in

ISIS-Fish is that of métiers. For a given fishing vessel and a given

month of the year, the métier practised by the vessel is defined by

the gear used, the target species and the fished area [33,34]. Some

fishing units have the same métier all year long, others change of

métier (i.e. change of fishing area and/or gear and/or target

species) depending on the season. A succession of métiers in a year

defines a fishing strategy. Métiers, as well as entire fishing

strategies can be common to groups of vessels. Fishing units with

the same fishing trip duration, the same number of trips per month

and belonging to the same harbour belong to the same fleet [28].

Notions of fleet and métier are not totally correlated; a given

métier can be common to ships belonging to various fleets.

Métiers, fishing strategies as well as fleets are defined based on real

data (e.g. commercial logbook data, fishers interviews, observer

data, etc.), the level of detail depending on the available

information and the modeller’s needs [29]. In our model métiers

parameterisation differs between ICES area 7D and ICES area

7E, but in general trawlers target both species with almost the

same intensity while netters clearly focus on sole. These two

species are the only ones explicitly represented in the model, other

species caught by this fishery being grouped together in a single

group. Our goal being to study flatfish fisheries, we are mostly

interested in the Eastern Channel (ICES area 7D). However,

fishing activities and fish stocks in the Eastern and Western part of

the Channel being linked, we chose to model both areas and

emphasize results obtained on the Eastern Channel. In our model,

fishers select their métier dynamically by means of a gravity model.

The attractivity of each choice is estimated yearly from fishing

habits and past outcomes of the fishery [27]. Once the catch limit

has been reached for a species a set of conditions are applied in an

attempt to realistically model fishers’ behaviour: for a given métier

i) if the species only is a bycatch species then fishing goes on and

this species is discarded, ii) if the species is the target species then

the métier stops and fishers look for another métier for the

remaining months of the year. The choice of an alternative métier

depends on the ease of implementation of the métier: métiers

within the same strategy (i.e. monthly choice of métiers for a fleet

during the year) using the same gear are preferred to métiers

where a change in fishing gear is needed or métiers outside the

strategy (that can correspond to no fishing activity). Discarded fish

have a chance to survive that is species-dependent but age-

independent and discarded fish that survive are returned to the

abundance of their year class.

Populations. Both species are assumed to be distributed

homogeneously over the whole modelled area. Each species is split

in two populations, one for area 7D and one for area 7E.

Biological parameters, and in particular weight-at-age, maturity,

initial fish abundance, correspond to those estimated for year 2008

by the ICES Working Group on the Assessment of Demersal

Stocks in the North Sea and Skagerrak (WGNSSK) [35]. Fish

catchability was calibrated so that, for each population, fishing

mortality at age for year 2008 in our ISIS-Fish model corresponds

to that estimated by the working group for year 2008 in the 2011

stock evaluation. In our model, the spawning biomass of sole in the

Channel seems to be within acceptable biological limits, but with a

high fishing mortality. No reliable stock recruitment relationships

could be fitted to these stocks. We used spawning biomass

precautionary thresholds (as suggested by [14]) that were defined

by the ICES. We forced reference values of recruitment for years

2008, 2009 and 2010 (Table 1) to values estimated by ICES [35].

From year 2011 onwards, recruitment was fixed as the geometric

mean of past recruitment values [35].

Management. We chose to focus only on the current

transition scenario to MSY and to test a wide range of values

for parameters defining this management scenario. This corre-

sponds to situations where managers have already chosen how to

manage a resource or an ecosystem, but where uncertainties

remain on the best way to apply the chosen scenario. This allows

us to find which particular range of parameter values gives

maximum efficiency to the management measure. It also permits

determining whether a range of parameter values allows reaching

some robustness to uncertainties on biological parameters.

For the first three years of simulation, populations are managed

using TACs. TAC values for these years correspond to those that

were applied in 2008, 2009 and 2010 (Table 2). As a single TAC

level was used to manage plaice in areas 7D and 7E, this TAC was

split so that a TAC level could be attributed to each population.

Plaice TAC in area 7D was set to 3500 t for years 2008 and 2009

and to 3400 t for year 2010, as recommended in ICES stock

evaluations [3,36,37]. The remaining part of the total TAC was

attributed to plaice in 7E. This allowed us to get 2010 TAC levels

for all simulated populations and simulate harvest control rules

thereafter. From 2011 onwards TAC values are determined for

each population by a harvest control rule (HCR) that controls the

transition towards MSY. Every year during the transition period a

value of maximum fishing mortality to be applied to the ecosystem

is computed as a combination of the 2010 fishing mortality and the

fishing mortality that would give the maximum sustainable yield.

Transition duration being 5 years the proportion of F2010 in the

computed F decreases by 20% every year and the proportion of

FMSY increases by 20%. The TAC level computed by the HCR is

determined by other conditions in addition to those on fishing

mortality: (i) Spawning biomass has to be above a minimum level

(MSYBtrigger), (ii) TAC value cannot change by more than 15%

from one year to the next, and (iii) the computed fishing mortality

has to be below Fpa. A minimum landing size is also implemented

for each species: 27cm for plaice and 24cm for sole.

The database used in this paper, including HCR and gravity

model java code, can be downloaded from the ISIS-Fish website

(http://www.isis-fish.org/download.html), as well as the latest

version of the ISIS-Fish model.

Table 1. Recruitment (in number) values used for the first
three simulated years and after.

Population
Recruitment 2008 2009 2010 after

Sole 7D 2.395e7 5.298e7 2.817e7 2.353e7

Plaice 7D 1.157e7 2.343e7 1.498e7 1.216e7

Sole 7E 2.379e6 2.885e6 4.301e6 4.301e6

Plaice 7E 5.560e6 1.006e7 5.007e6 5.007e6

doi:10.1371/journal.pone.0077566.t001
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Methods

Decision Theory
The info-gap decision theory [19,20] aims at allowing decision

making under severe uncertainty. This theory allows comparison

between various courses of action (q [ Q), depending on states of

Nature (u [ U). ‘‘u’’ is called the ‘‘ambient uncertainty’’ in the info-

gap theory. The reward function R(q,u) gives the expected

outcome for a given course of action q and a given state of Nature

u. When using a model to compute R(q,u), the model gives the

value of R(q,u) associated to parameter values used to perform the

simulation. The decision maker has to choose a critical value (rc)

below which the reward function should not drop (in case a high

value of the selected output variable is desirable, for instance a

high fish biomass). The robustness function (âa(q,rc)) is the greatest

horizon of uncertainty a that can be tolerated (on Nature’s state or

on variables controlled by human activities) while being sure that

the reward function did not cross rc. The Info-Gap theory

proposes several functions of uncertainty to compute the

robustness function. In practise, the most popular one consists in

testing parameter values around the reference parameter values set

in the model that increasingly differ from these reference values,

until a combination of values is reached for which R(q,u)vrc. The

distance between the last parameter values tested for which

R(q,u)§rc and the reference values corresponds to âa(q,rc). As a

result, the decision maker knows for each possible action and state

of Nature the level of uncertainty that can be tolerated. Thus, it is

possible to choose the action that seems most appropriate to the

situation, depending on management goals, local knowledge of the

fishery and the environment, and the level of risk that is accepted

by stakeholders. If the probability of occurrence of the various

ecosystem states is not known, then a minimax approach [38] or

other aspects of the Theory of Games [39] can be applied.

Many limitations of the info-gap approach have been under-

lined by Sniedovitch [24,25] and are reviewed in [40]. One of

these is that it is performed around a given reference point and

therefore is inherently local and not suitable to situations of severe

uncertainty. This particularly is an issue in fisheries science where

reference model parameterisations (corresponding to our knowl-

edge of the state of an ecosystem) often poorly meet management

goals. When this happens, then âa(q,rc) is very small, and many

other values of the parameters could lead to acceptable reward R.

So this approach seems to be very conservative and cautious and

does not fully allow the exploration of the input parameters space

and the identification of an area in the input parameters space that

gives acceptable results. Therefore, we choose to define a priori the

window in the input parameters space that we wish to explore and

perform the exploration by means of exploration techniques from

sensitivity analysis.

Applying Info-gap to a Complex Model
To our knowledge, the Info Gap Theory has only been applied

to analytical models. In the context of complex models (with no

analytical solution), deriving the robustness function is a great

challenge. The ISIS-Fish model belongs to this family of complex

models. The model can be used to simulate the reward function

R(q,u) for each selected couple (q,u) in QxU. Many model runs

have to be performed to explore the robustness of R to uncertainty

in q and u. Therefore, we propose a pragmatical approach to

apply Info-Gap theory to complex model, following two main

steps: 1) a sensitivity analysis of the simulation model performed on

the input parameters space UxQ; 2) a classification trees analysis

fitted to the model’s outputs (simulated for the previous step) to

discriminate the sensitive parameters and their range of variation

accounting for reward R(q,u) above the critical value rc.

Perform sensitivity analysis. A good exploration of the

input space can rely on the powerful tools provided by sensitivity

analysis techniques. Many sensitivity analysis techniques are

available to modellers [41,42].

Most sensitivity analysis techniques can be divided into two

parts: a method to explore the parameter space and a method to

rank parameters according to their levels of sensitivity. Following

[43,44] we chose to focus on a global sensitivity analysis method

associated to a variance decomposition method, instead of a one-

at-a-time (OAT) method. The difference between local and global

sensitivity analysis techniques is that global techniques study

variations of the output variable over the entire range of values of

the input parameters [45,46]. The main asset of global sensitivity

analysis is that it allows us to measure interaction effects, which

can be of great importance in complex ecosystem models.

We identified 81 parameters from our model on which to

perform sensitivity analysis (Fig. 1,Step 0). These parameters can

be split into three groups: biological parameters, technical

parameters and management parameters. Biological and technical

parameters (Table 3) correspond to states of Nature with various

levels of uncertainties and management parameters (Table 4) allow

us to test various management scenarios.

We chose to explore a window corresponding to +/250% of

the reference value of each parameter (Fig. 1,Step 1). This range of

values agrees with observations from [47] who noted that

managers can rarely measure stock levels accurately and typically

use confidence intervals of 50%.

From a biological point of view, exploring the same range of

values for all parameters makes little sense. This window probably

does not allow us to take into account the total variability of all

parameters, as some may naturally vary within a greater range,

but should be wide enough to contain most variability. On the

other hand, this window may be too wide for some well-known

parameters with little natural variability. This has to be taken into

account when studying sensitivity analysis results. Indeed, some

parameters may be identified as important because an unrealis-

tically wide range of values was tested for them. By contrast, other

parameters may be identified as little impacting only due to a too

narrow range of values tested in the analysis.

The selected window in the input parameters space was

explored by means of Latin Hypercube Sampling (LHS, [48])

using the ‘‘sensitivity’’ package [49] from R [50] (Fig. 1,Step 2).

Latin Hypercube Sampling is a probabilistic sampling procedure

that incorporates many of the desirable features of random

sampling and stratified sampling [51]. Then a a variance

decomposition method gave us for each input parameter Xj a

coefficient STj ,corresponding to Stot
(j) in [52], indicating whether Xj

is a sensitive input parameter or not for the output variable

studied. Parameters with STj close to or equal to zero can be

Table 2. TAC values used for the first three simulated years.

TAC Population 2008 2009 2010

Sole 7D 6593t 5274t 4219t

Plaice 7D 3500t 3500t 3400t

Sole 7E 765t 650t 618t

Plaice 7E 1550t 1146t 874t

doi:10.1371/journal.pone.0077566.t002

Complex Models for Robust Fisheries Management?
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removed from the uncertainty analysis as they do not influence the

model output. Model outputs we studied are biomass, spawning

biomass, fishing mortality and catch. Spawning biomass and

fishing mortality were studied in priority as they are variables

commonly studied by ICES working groups. Classification trees

were then built on management parameters and natural param-

eters most influencing model outputs.

Point out isles of robustness with classification

trees. Once the input parameters space has been explored,

one has to find the boundary between input parameter values

leading to acceptable outputs (relative to management goals) and

input values leading to failures (Fig. 1,Step 3). As we use a complex

model to compute values of R(q,u) this boundary cannot be found

analytically, but has to be identified from a limited number of

simulations. Very powerful methods have been developed for

machine learning that allow identifying the hyperplane separating

input values from a dataset in two (or more) groups depending on

resulting outputs, but these method are either black boxes or

provide results that are too difficult to interpret for our needs.

Therefore we chose to focus on classification trees [53], that allow

for simpler representations of results by means of successive

univariate splits of the set of input parameter values.

A classification tree is built step by step. At each step, a split is

performed on a parameter belonging to the set of parameters on

Figure 1. The general approach used to identify areas of
interest in the input parameters subspace. Once the model has
been built and parameters identified (step 0) output variables to be
studied and thresholds corresponding to these variables can be chosen
and the input space to explore defined (step1). Then the input
parameter is explored and important parameters identified (step 2).
Classification trees are used to classify input parameters values
depending on the output values they gave when exploring the input
parameter space (step 3).
doi:10.1371/journal.pone.0077566.g001

Table 3. Biological and technical parameters tested, for every
population, métier or gear.

Parameter Name Abbreviation

Catchability Q

Mean Weight MW

Recruitment RE

Natural Death Rate NDR

Growth Rate K

Asymptotic Length Linf

Time at the Origin T0

Price P

Selectivity Beam Trawl SBT

Selectivity Net SN

Selectivity Other Gears SO

Target Factor Beaming TFB

Target Factor Netting TFN

Target Factor Other Métiers TFO

Proportion of effort allocation
coming from habits

habit

50% variations were tested around the reference value. Each biological
parameter exists in five versions, one for each population: sole 7D (S7D), plaice
7D (P7D), S7E or P7E and one for the ‘‘Other’’ group. Technical parameters are
either defined at the population scale (S7D, etc.) or at the area scale (7D, 7E, or
both: 7DE).
doi:10.1371/journal.pone.0077566.t003

Table 4. Management parameters tested.

Parameter Name Abbreviation
Reference
Value

Minimum Landing Size for Sole MinSizeS7DE 24cm

Minimum Landing Size for Plaice MinSizeP7DE 27cm

Duration of the transition framework Trans 5yrs

Survival rate of discarded fish PropSurv 0.25

Maximum yearly TAC variation varTAC 0.15

Targeted fishing mortality at MSY, Sole 7D FmsyS7D 0.29

Targeted fishing mortality at MSY, Plaice 7D FmsyP7D 0.23

Targeted fishing mortality at MSY, Sole 7E FmsyS7E 0.27

Targeted fishing mortality at MSY, Plaice 7E FmsyP7E 0.19

Precautionary fishing mortality, Sole 7D FpaS7D 0.4

Precautionary fishing mortality, Plaice 7D FpaP7D 0.45

Precautionary fishing mortality, Sole 7E FpaS7E 0.4

Precautionary fishing mortality, Plaice 7E FpaP7E 0.45

HCR Trigger Biomass, Sole 7D MsyBtS7D 8000t

HCR Trigger Biomass, Plaice 7D MsyBtP7D 8000t

HCR Trigger Biomass, Sole 7E MsyBtS7E 2800t

HCR Trigger Biomass, Plaice 7E MsyBtP7E 2500t

50% variations were tested around the reference value, except for the survival
rate of discarded fish. Survival rates from 0 (no survival of discarded fish) to 0.5
(survival of 50% of discarded fish) were tested because of large uncertainties on
this parameter and because the reference model value is 0. Parameters ‘‘Trans’’,
‘‘PropSurv’’ and ‘‘varTAC’’ have similar reference values for all populations so
they are only given once.
doi:10.1371/journal.pone.0077566.t004
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which the tree is built. A split separates the dataset (values of

R(q,u) simulated by the model and associated parameters) into

two parts according to values of this parameter. When building a

tree, the rule to perform a split is that some measure of

discrepancy between the two datasets given by the split is

maximized. Therefore the tree is built from the most important

node (i.e. combination of a splitting parameter and a splitting

value for this parameter) to the least important one. Classification

stops when some criteria defined by the user are reached. For

instance, classification can stop when the information gain given

by a split (i.e. the increase in discrepancy between the two datasets

obtained) is lower than a defined threshold. The terminal nodes of

a tree are small datasets that are parts of the initial dataset on

which the tree was built. They are called leaves. For a given tree,

the path leading from a node (usually the first node) to a leaf is

called a branch of the tree (Fig. 2).

Our goal being to determine the extent to which management

measures can allow reaching management goals robustly, we

perform classification in two successive steps for each output

variable (Fig. 2). Let fR1,R2, . . . ,RMg be the set of all output

variables studied. Let Q be the set of all management parameters

in the model: Q~fXq,1,Xq,2, . . . ,Xq,ng: Let U be the set of

parameters corresponding to important states of Nature (fish

biology and fleet characteristics) identified at step 1:

U~fXu,1,Xu,2, . . . ,Xu,mg:

1. A classification tree (the main tree) is built based only on

management parameters belonging to Q. Each leaf of the tree

may contain either successes (values of R(q,u) above some

threshold) or failures, or a mix of both. A leaf can be considered

‘‘robust’’ when it contains only successes, i.e. all realisations

belonging to this leaf correspond to successful management

configurations, whatever the state of Nature. In practice, as the

classification relies on model simulations only robust nodes

with a high weight (i.e. containing many simulations) should be

considered. The concept of robustness can be adapted,

depending on the willingness of managers to tolerate risk, so

that a node may be considered to be robust if its proportion of

successes is above some threshold. Here, we fixed that

threshold to 99% of successes as node boundaries can

sometimes be difficult to identify very accurately and therefore

a few failures can be included in a node that would otherwise

be robust. At the end of this first step, leaves are classified into

two classes: ‘‘robust leaves’’ if leaves are identified within the

tree based on management that allow always reaching

management goals or ‘‘not robust leaves’’ for others. Leaves

that are not robust are used to perform a second stage of

classification.

2. For each leaf that is not robust, we performed a second

classification on parameters belonging to U. This allows us to

grow subtrees in a limited amount of time while knowing that

important parameters are tested. If a robust terminal node is

identified within a subtree associated to a leaf of the main tree,

then we know within which range of values of fXu,1, . . . ,Xu,mg
management parameter values corresponding to that leaf will

allow reaching management goals.

This approach has two assets: (i) if management parameters

tested are consistent with current management measures then we

know what level of uncertainty or variability on natural

parameters can be tolerated while still reaching management

goals at the end of the period; (ii) if current management

parameters do not correspond to those identified by the tree then

we know how (and to what extent) current management should be

altered to have a chance to reach management goals considering

the uncertainty on management parameters.

The method we chose to build classification trees is that of

conditional trees [54] that allows overcoming usual problems of

possible overfitting, selection bias, or input parameters scaling.

We assessed tree and subtrees instability (i.e tree structure

changing when slightly modifying the dataset used to build it) by

means of re-sampling techniques. For the main tree and subtrees

corresponding to leaves of the main tree, we built sets of 500 trees

with subsets containing 95% of the dataset. From all these trees,

we identified the tree appearing most often and focused on it,

making the hypothesis that all trees would converge to this tree

type provided the dataset is big enough. We also compute average

splitting values and standard deviations from the 500 replicates so

as to have clear indicators of tree variability (see Supporting

Information S1 for more details about this method). If tree

variability is too high (it is especially the case for subtrees, as they

are built from a subset of the main dataset corresponding to their

associated leaf), it makes little sense to focus only on one particular

tree type. In this case, results from the most common tree types

can be provided.

Results

Sensitivity Analyses
Results from the sensitivity analysis are presented in Fig. 3,

where each column stands for an output variable and each row for

a different input parameter. Only rows should be compared as the

intersection of a row and a column represents the amount of the

total variance of a particular output variable explained by an input

parameter. The naming of the various input parameters appearing

in Fig. 3 is detailed in Table 3 and Table 4. Parameters are

presented individually in Fig. 3 whereas parameters with similar

values for all populations appear only once in Table 3 and Table 4.

Besides FMSY and Fpa were varied jointly in the sensitivity analysis

and appear as a single parameter FMSY Fpa in Fig. 3.

Figure 2. Successive use of trees for input parameters space
exploration. The first tree (called the main tree) is built on
management parameters only, as they are the main concern in the
study. When management parameters do not allow robustly reaching
management goals, trees (called subtrees) are built for each leaf of the
main tree. The second set of trees is built on parameters identified as
important by the sensitivity analysis. Results of interest are parameters
values corresponding to branches (either of the main tree only or both
the main tree and a subtree) leading to robust leaves.
doi:10.1371/journal.pone.0077566.g002
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The goal being to reduce the model, we focus only on the most

sensitive parameters that really stand out compared to the others.

These input parameters are listed from the most important to the

least important in Table 5 and Table 6. First order interactions

between parameters were also tested. Interactions are pretty

straightforward, the most sensitive parameters producing the

strongest interactions. Interactions do not especially drive output

variables in our model. Fishing mortality is the output variable

most impacted by interactions, but even in this case the most

sensitive interaction is always less than 0.1 times as impacting as

the most important parameter. We therefore focus only on main

effects when presenting our results. It is interesting to note that the

most important parameters impact the four studied populations

whereas less important parameters are specific to only some of

these populations. Also, small interactions between areas 7D and

7E appear, as sometimes populations from one area can be slightly

impacted by parameters defined for the other area.

The first thing that stands out from these results is that all

studied output variables except fishing mortality are mostly

impacted by biological parameters, technical parameters having

a lower impact on the outputs. Management measures have little

impact on all output variables, even those directly related to

fishing. The parameter of our harvest control rule that most

influences output variables is the target value of fishing mortality

FMSY (and the associated Fpa). However the effects of the FMSY

Figure 3. Results of the sensitivity analysis. Each row corresponds to one of the 81 input parameters tested and each column to an output
variable. Output variables are biomass (B), Spawning Biomass (SSB), Fishing mortality (F) and Catch (Y). Results have to be studied in columns, black
cells indicating important parameters for a given output.
doi:10.1371/journal.pone.0077566.g003

Table 5. Input parameters most impacting output variables.

Biomass Spawning Biomass

Mean Weight (MW) Mean Weight

Catchability (Q) Maturity Ogive (MO)

Natural Death Rate (NDR) Catchability

Natural Death Rate

S7D P7D S7E P7E S7D P7D S7E P7E

RES7D SBTP7D MOS7E SBTP7E RES7D SBTP7D QS7D SBTP7E

MOS7E TFB7DP QS7D TFB7EP

0.751 0.742 0.825 0.716 0.676 0.669 0.786 0.666

Parameters are sorted from the most impacting to the less impacting, and the
proportion of total output variance explained by these parameters is given at
the bottom of each column.
doi:10.1371/journal.pone.0077566.t005

Complex Models for Robust Fisheries Management?

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77566



parameter are limited to fishing mortality and effects of

management on biomass or spawning biomass are low.

Interestingly, while fishing mortality is driven by catchability

and technical parameters, catch appears to be impacted almost

only by biological parameters. Fish mean weight-at-age alone

explains up to 60.0% of the total variance of the catch which

leaves little variance to be explained by other parameters. This

importance of fish weight may be linked to the fact that we study

biomass and catch in tons, and not abundances or catch in

numbers. Besides fish mean weight-at-age is a parameter with

relatively small variability, and testing 50% around this param-

eter’s reference value may artificially give it an important weight.

Mean weight is the input parameter most impacting model

output variables, and is followed by natural death rate and

catchability (Table 5 and Table 6). Recruitment has noticeable

impact only for sole in area 7D, and this impact is moderate.

In our model, beam-trawling is the most impacting fishing

activity, with high Sjs for both its target factor (TFB) and

selectivity (SBT). It impacts both populations of plaice, as well as

fishing mortality of Sole in area 7E. The effects of netting are

limited to sole in area 7D and can be noted only for fishing

mortality (moderate Sjs for SNS7D and TFN7DS). Biomass and

spawning biomass of plaice in area 7D are also impacted by the

target factor of the ‘‘other métiers’’ group of our model, that

bundles together all the lesser operated métiers.

Conditional Tree Analysis
Conditional trees can be built according to the previously

presented method for all output variables studied in the sensitivity

analysis. However, only the most important variable for conser-

vation, spawning biomass, will be discussed here for populations of

sole and plaice in area 7D. The management goal, for both sole

and plaice, is that spawning biomass must remain above 8000t.

Sole 7D. The tree structure obtained when building the main

tree (Fig. 4) on the entire training dataset corresponds to that

identified when creating a large number of trees on a smaller

subset (see Supporting Information S2 for more details about the

tree-building process). Therefore we can infer that our dataset is

big enough to ensure good tree stability and that all trees built

from subsets would converge to that particular tree provided we

had enough data. As no leaf of this tree is robust, i.e they all

contain some failures, a subtree was built for each of the six leaves

of the main tree to determine if management measures allow

reaching management goals within a certain range of values of

natural parameters, as shown in Fig. 2. Among all subtrees

corresponding to a leaf of the main tree, only some subtrees are of

interest (robustness+high weight), we therefore decided to focus on

those. For each subtree, we compute mean splitting value and

standard deviation around these values because there can be

variations in the splitting values at each inner node. Branches of

interest can be identified within subtrees that lead to leaves that

are robust and have a high weight. Besides, it appears that these

particular branches are much more stable than other branches of

subtrees. Table 7 shows for each leaf of the main tree built on

management measures parameters and split values corresponding

to interesting subtree branches that would allow robustly reaching

management goals. A very interesting thing to observe is that for

all subtrees all important branches identified correspond to

boundaries on natural parameters that contain the reference

model parameterisation (which corresponds to value 0.5). There-

fore all robust nodes identified in Table 7 can be reached by

means of changes made to management measures. The distance

between the reference model parameter value (supposed current

‘‘real’’ state of the system) and the split parameter value identified

by the classification tells us how much uncertainty or variability

can be tolerated around the reference parameter value to ensure

reaching management goals.

Leaf 6 of the main tree (top center of Table 7) is of particular

interest as both management and natural parameter values leading

to the robust node are compatible with reference model

parameterisation (Table 8). This means that current management

measures should allow reaching a spawning biomass of sole above

8000t by 2018, provided reference model parameterisation

correctly represents the environment. As our model cannot

correctly represent the environment, we look at conditions

imposed on environmental parameters by subtree branches. In

both cases, only two conditions on environmental parameters are

imposed: one on recruitment and the other on mean weight-at-

age. The first branch identified tells us that it is possible to reach

management goals if (i) mean weight-at-age of sole in area 7D is no

more than 32% lower than reference model sole mean weight-at-

age and (ii) recruitment until 2018 is no more than 12% lower

than recruitment used to perform simulations in our model (which

is the geometric mean of recruitment values estimated for the

previous years). The second option identified corresponds to a

mean weight no more than 24% lower than reference and to a

recruitment recruitment no more than 22% lower than reference

recruitment value. If a 22% variation around a mean recruitment

and a 24% variation in mean weight are deemed sufficient to

encompass both natural variability and our uncertainties, then

management measures can be left the way they are. If a greater

Table 6. Input parameters most impacting output variables (continued).

Fishing Mortality Catch

Catchability Mean Weight

Natural Death Rate

S7D P7D S7E P7E S7D P7D S7E P7E

MOS7D SBTP7D MOS7E SBTP7E RES7D MWS7E QS7E QP7E

FmsyFpaS7D TFB7DP FmsyFpaS7E TFB7EP MOS7E MWS7D FmsyFpaS7D PropSurvP7E

MOS7E MOS7E QS7D MOS7E FmsyFpaS7D PropSurvP7D QS7D TFB7EP

QS7E QS7D FmsyFpaS7D QS7E

0.571 0.637 0.542 0.629 0.847 0.805 0.799 0.747

Parameters are sorted from the most impacting to the less impacting, and the proportion of total output variance explained by these parameters is given at the bottom
of each column.
doi:10.1371/journal.pone.0077566.t006
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margin is needed on natural parameter values, then management

parameters have to be modified.

Moving from leaf 6 to leaf 3 imposes reducing FmsyFpaS7D:

Results for leaf 3 (Table 9) allow greater uncertainties on

recruitment than those for leaf 6. In this case, reducing the target

fishing mortality of the management measure by 26% or more will

allow tolerating recruitments up to 37% lower than the reference

recruitment of our model, but lower uncertainties can be tolerated

on mean weight-at-age, and natural death rate now also has to be

taken into account.

Results for other leaves of the main tree are rather similar, and

correspond to different combinations of the most important

management parameters (target F, MSY Btrigger and transition

duration). There can be variability in results obtained between

leaves, and sometimes stricter conditions on environmental

parameters are not observed in leaves where they could be

expected (e.g. when the value of FmsyFpaS7D is increased). This

illustrates the fact that some results obtained may be too

conservative and that some uncertainties remain about the

Figure 4. Main tree built on management measures for sole in subarea 7D. The criterion separating successes from failures is a 8000t
spawning biomass threshold. Splitting variables (and values) are sorted by importance, from the top to the bottom of the tree (the most important
corresponding to node 1). Values appearing on branches of the tree are the splitting values. The black and grey squares at the bottom of the tree are
the terminal nodes or leaves.
doi:10.1371/journal.pone.0077566.g004

Table 7. Results of the classification performed with conditional trees for sole.

Leaf 3 Leaf 6 Leaf 10

FMSY FpaS7D,0.241 0.241,FMSY FpaS7D,0.584 FMSY FpaS7D.0.584

MSYBtriggerS7D,0.605 MSYBtriggerS7D,0.568

TransitionS7D,0.75

Subtree 1 Subtree 1 Subtree 2 Subtree 1

Mean Value Split Standard
Deviation

Mean Value Split Standard
Deviation

Mean Value Split Standard
Deviation

Mean Value Split Standard
Deviation

MWS7D.0.317 0.0006 MWS7D.0.172 0.0009 MWS7D.0.260 0.02 MWS7D.0.248 0.005

RES7D.0.131 0.003 RES7D.0.383 0.002 RES7D.0.2RES7D79 0.02 RES7D.0.097 0.009

NDRS7D,0.801 0.007

Each block corresponds to a leaf of the main tree and gives conditions on management parameters that are needed to reach it. The lower part of each block
corresponds to branches identified from subtrees and gives conditions on environmental parameters that are to be added to those on management to reach a robust
terminal node. Cells that are compatible with the reference model parameterisation (i.e. containing value 0.5) are in bold type.
doi:10.1371/journal.pone.0077566.t007

Table 8. Management parameters values identified from leaf
6 and environmental variability they allow dealing with. For
sole in subarea 7D.

Management

0.22, FMSY S7D,0.31

0.30, FpaS7D,0.43

MSYBtS7D,8840t

TransitionS7D,7.5 yrs

Environment

MWS7D.MWS7Dref 224%

RES7D.RES7Dref 222%

doi:10.1371/journal.pone.0077566.t008
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position of the boundary separating acceptable parameter

combinations from unacceptable parameter combinations.

Plaice 7D. Table 10 shows that, similarly to what was

observed for sole, it is the value of fishing mortality targeted by the

harvest control rule that mostly determines whether management

goals will be reached or not. For plaice, this parameter is

associated to the duration of the transition period and to the

survival rate of discarded fish.

Leaf 4 (see Supporting Information S3 for more information

about trees built for plaice) if of great interest as it is the only one

that contains values of current management parameters, and

natural parameters that are compatible with our perception of

plaice life cycle. The two options identified in leaf 4 are quite

similar, except for the uncertainty that can be tolerated on fish

mean weight. This shows that when building trees both split value

were identified as having rather similar abilities to split a node into

two other nodes, and we cannot say that one value really is better

than the other. The goal being to be robust to uncertainties, only

the value of 0.366, corresponding to a maximum 13% variability

on fish mean weight should probably be considered (Table 11).

Uncertainties on parameters such as fish mean weight-at-age or

age at maturity usually being lower than uncertainties on

recruitment, management goals may still be reachable with the

current management (even if the 0.501 threshold on FmsyFpa

leaves no room for variation on this parameter, the reference value

being 0.5).

Values of FmsyFpa above 0.501 (leaf 12 and leaf 13) are

associated to survival rates of discarded fish above 0.251, which

means that more than 13% of discarded plaice have to survive.

Even if this were true, other conditions on natural parameters are

not fulfilled except for one branch of leaf 13. This combination of

parameters appearing in leaf 13 but not in leaf 12 where

management is tighter makes little sense and illustrates tree

instability and the need for a bigger training set and a more

thorough tree exploration.

Other leaves correspond to other combinations of management

and natural parameters. Even if many natural parameters do not

agree with our reference model parameterisation, split values for

catchability and sometimes fish mean weight are close to model

values, and little changes in these parameters could make

management goals reachable for a wider range of management

scenarios.

Table 9. Management parameters values identified from leaf
3 and environmental variability they allow dealing with. For
sole in subarea 7D.

Management

FMSY S7D,0.22

FpaS7D,0.30

Environment

MWS7D.MWS7Dref 218%

RES7D.RES7Dref 237%

NDRS7D,NDRS7Dref +10%

doi:10.1371/journal.pone.0077566.t009
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Discussion

Management Implications
For sole as well as plaice, no combinations of management

measures could be identified that always allow reaching manage-

ment goals accounting for ‘‘Nature uncertainty’’. However, the

sole population in area 7D is in a good enough state to make the

8000 t spawning biomass goal recommended by working groups

reachable for a rather wide variety of management parameters

values and states of Nature. In particular, management goals on

spawning biomass can be reached with current management,

provided mean weight-at-age and recruitment of sole do not vary

too much. This seems acceptable for mean weight, as it is not a

highly variable parameter. On the contrary, variations in

recruitment higher than 22% seem likely to happen for sole in

the Eastern Channel [55]. In this case, the model suggests strongly

reducing the target fishing mortality (division by more than two of

FMSY and Fpa) so as to be able to withstand much stronger

variations in recruitment.

For plaice in area 7D the spawning biomass threshold chosen by

the working group is also Bpa = 8000 t, which corresponds in the

evaluation to a fishing mortality threshold Fpa = 0.45. However,

this goal is harder to reach for the plaice population in 7D than it

was for sole. This can be seen with the much smaller ranges of

values of management parameters that allow reaching manage-

ment goals. However, tolerable ranges of values of natural

parameters are rather broad, and these parameters are not known

for their high variability (in particular, recruitment is not one of

them, and could have been an issue otherwise [56]). Therefore,

management goals could be reached, provided plaice stocks are

carefully managed. Trees built for plaice are also less stable than

those of sole. This instability may have two causes: (i) too few

model simulations reach management goals, i.e. the state of the

stock is so bad that only a fraction of parameter values tested yield

acceptable results or (ii) uncertainties in the life traits of the

modelled species are so high that parameters importance and split

values cannot be assessed correctly. These two aspects may be

linked, bad stock state possibly leading to more variability.

These results are coherent with what is known of the history of

sole and plaice stocks in the English Channel. Indeed, mean fishing

mortality estimated by working groups for sole remained between

0.3 and 0.6 since 1989 whereas plaice fishing mortality evolved

between 0.45 and more than 1.2 (most values being equal to or

above 0.6) during the same period [57]. Target and precautionary

fishing mortalities for both species being rather similar, it can be said

that plaice was more overexploited than sole. Management goals

being difficult to reach for plaice our model cannot correctly predict

successes, which increases tree instability. As the state of the stock

improves, tree stability and therefore our ability to make correct

predictions will increase. It is nonetheless worth noting that despite

model simplicity and uncertainties our results are coherent with

what is known about the studied fish stocks.

Results presented in this article only concern spawning biomass,

but similar analyses were performed for the other output variables

mentioned previously. The goal here is not to look for the most

robust management method, which makes little sense if the

analysis is not multivariate. For instance, the best way to maximize

spawning biomass is to stop fishing, and there is no need for a

complex model to determine this. The interest here is to find

management measures that allow reaching management goals on

various (and possibly conflicting) output variables and determine

how all these constraints on management can be combined. In

particular, the key point is to find management measures that

allow keeping biomass to acceptable levels while guaranteeing a

high enough income to fisheries. A first insight can be obtained by

looking for conditions ensuring that catches of flatfish species do

not go below a certain level. As it is possible to model fishing costs

and fish price in the ISIS-Fish model, it would be possible to look

for conditions allowing reaching given economic goals, provided

these criteria can be found. Here, we chose to study output

variables separately and then look for similarities or discrepancies

in management measures manually. But multivariate classification

methods exist, and would be an ideal choice here provided

hypotheses they are based on and types of results they provide are

compatible with our needs. These multivariate techniques could

also be used to perform multi species analyses, so that we make

sure changing management measures on a species does not

negatively impact another species. Here, this problem did not arise

since sole is only impacted by ‘‘sole’’ parameters and plaice by

‘‘plaice’’ parameters (Table 8, Table 9, Table 11).

Caveats
The main limit of techniques we used is that many model

simulations are needed. Otherwise reliability of sensitivity analysis

results decreases, as large parts of the input space can be left

unexplored, and results obtained with classification trees can

become highly unstable if they cannot be trained properly. Here,

we could perform many simulations because we used a ‘‘simple’’

model (one run takes about one minute on one core), but this

method could be harder to apply to a more complex model with

longer simulation times. However, the quick increase in available

computing power opens very interesting prospects concerning the

exploration of complex models input parameters spaces.

Another limit of the method we used is that we built

classification subtrees from the main tree obtained when using

the whole training dataset. Even if the main tree’s type

corresponds to the most common tree type identified, it could be

interesting to grow subtrees from the leaves of a mean tree that

would account for tree variability. This would allow us to take

variability on management parameters into account when building

subtrees. As standard deviations can also be computed, this would

allow us to determine margins of uncertainty around split values.

Depending on the needed level of robustness to uncertainties this

would permit testing hypotheses and finding areas considered safe

at the needed level of confidence. Another possible concern about

classification trees is the size of the sub areas they can distinguish

in the input parameters space. Would they be able to find ‘‘isles of

robustness in a sea of non-robustness’’ ? No extensive tests were

Table 11. Management parameters values identified from
leaf 4 and environmental variability they allow dealing with.
For plaice in subarea 7D.

Management

FMSY P7D,0.23

FpaP7D,0.45

TransP7D,5.1 yrs

PropSurvP7D,0.38

Environment

MWP7D.MWP7Dref 213%

QP7D,QP7Dref +22%

MOP7D.MOP7Dref 225%

doi:10.1371/journal.pone.0077566.t011
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run so as to answer this question but we think the method would

still be appropriate in this case, even if it may not be the most

suitable one. In this case, no constraints should be applied to the

tree building process, so simulation time may increase a lot and

trees may become much larger than those presented in this paper.

This would also make results a lot harder to interpret and translate

into applicable management measures.

Concerning the model itself, the weight of the ‘‘Other Métiers’’

group (i.e. métiers not explicitly taken into account in the model)

in the sensitivity analysis shows that additional information could

have been obtained, had the fishing activity been modelled in

more details. This may illustrate the fact that our model is overly

simplified and does not take into account enough parameters (at

least when modelling the fishing activity). Indeed, we only model

explicitly two species and three fleets corresponding to two gear

types. Besides, fishing, management and population zones are

defined at the scale of the ICES area. Therefore, only large-scale

changes can be tested. As few ecosystem compartments are

modelled, we only focus on a limited number of processes. Adding

information to the model may greatly change its behaviour,

especially because of interactions between parameters that cannot

be observed in the current simple model. Changing the way in

which the model represents the studied processes could also have

notable impacts. Indeed, [40] state that not taking model

structural uncertainty into account is one of the main flaws in

the info-gap approaches that have been implemented so far. The

same hypothesis is made in our study, i.e. that parameter

variability is more impacting than structural uncertainty. We

made this hypothesis mostly because our ISIS-Fish model is based

on equations that are commonly used by stock assessment working

groups, thus our results should at least be coherent with those

given in stock evaluations. Nonetheless, structural uncertainty of

our model should (at least partly) be assessed in order to determine

whether model structure strongly impacts conclusions drawn, or if

they depend (as we supposed in this study) on variations of input

parameters.

We use a three-years ‘‘forcing’’ period at the beginning of our

model, so as to use available information to better represent the

studied ecosystem. This allows us to set management parameters

to their real value during that period. We also chose to set

recruitment to values estimated by working groups for that period.

This could partly explain why recruitment little impacts values of

output variables in the sensitivity analysis. Besides, we deal with

long-lived species, so there can by a many-years delay between

changes in recruitment and the observation of impacts on other

parameters caused by these changes. For other biological

parameters this forcing period was not used and they therefore

are fixed to the calibrated 2008 value, with a 50% level of

uncertainty. So on the one hand no uncertainties are associated to

recruitment for the first tree years, whereas there is uncertainty in

the estimation made by working groups, and on the other hand

other biological parameters are given a fixed value with high

uncertainties during that period. As all past values can be

estimated with some level of certainty, it would seem more logical

to force all biological parameters for the first tree years to their

estimated values and give them low uncertainty levels correspond-

ing to the accuracy of the estimation. Then for values from 2011

onwards either calibrated or mean values can be used, with much

higher levels of uncertainty depending on the level of natural

variability and uncertainty corresponding to these parameters.

The question of the range of parameter values to explore is

linked with these levels of variability and uncertainty. We chose to

perform sensitivity analysis on a 50% window around our model

reference parameterisation, while 20% variations are commonly

tested when performing sensitivity analyses [58,59]. As variability

can be very high on some parameters and very low on others, this

method could be improved. Indeed, it gives too high a weight to

parameters the variability of which is overestimated and lessens the

weight of parameters with higher variability. A next step in the

modelling process is to perform sensitivity analysis on the domain

of variation of parameters tested.

Model simplicity and modelling choices we made prevented us

from testing spatial management measures. In addition to model

changes that we discussed, our goal now is to better represent fish

populations and fleets targeting them in our model. In particular,

decreasing the scale at which processes are modelled may allow us

to test spatial management measures. Combining these measures

to those already included in our model, we hope to find out if

spatial management measures such as MPAs can allow reaching

management objectives with a higher robustness to uncertainties

on the state of the ecosystem.

Management Strategy Evaluation
The approach we used is very close in essence and in goals to

that implemented when performing a management strategy

evaluation (MSE). Indeed, when performing MSE, the goal is to

assess the consequences of a set of management procedures against

key performance measures [60]. Similarly to what we wanted to

do, the MSE approach does not seek to prescribe an optimal

strategy, but rather to provide decision makers with sound

information on which to base their decisions. Providing sound

information implies identifying strategies that are robust to

uncertainty and natural variation [61], as was done in our

approach. MSEs can be based on various interacting models, from

very simple ones to very complex ones.

The main difference between our approach and common MSE is

that we did not just test management scenarios but let parameters

controlling the Harvest Control Rule vary within a chosen range of

values. Therefore, despite strong environmental drivers in our

model (possibly coming from choices made when performing

sensitivity analysis), our method is able to find a range of

management parameters and values that allow reaching manage-

ment goals. Therefore, instead of determining whether a scenario is

robust or not, we can identify a subspace of management

parameters values that are robust to uncertainties. Besides we can

also define ranges of variation on natural parameters that can be

tolerated and still allow reaching management goals, an information

of potentially great importance. Therefore, within the range of

management parameters values that can yield robust outcomes,

managers can choose the combination of values that seems best

depending on their goals and their willingness to take risks.

Such results could be discussed with stakeholders so as to

determine the opportuneness of various management measures

and to better perceive which situations would lead to failures to

reach management or economic goals, and potential solutions to

avoid them. This method also allows identifying particular input

parameters on which uncertainties should be reduced in priority to

allow for better forecast. If the cost of a reduction in uncertainty on

some parameters is known (e.g. the price to pay to get additional

samples) then it can be balanced against the cost of not robustly

reaching management goals and choices can be made depending

on managers’ priorities. Once these important parameters have

been identified an adaptive management procedure [62,63]

targeting them in particular could be set up. An interesting

feature of the method is that there is no need to identify a priori

sources of uncertainty impacting input parameters. Uncertainty is

treated as a whole and identification of sources of uncertainty is

only an optional step that can be made by the user.

Complex Models for Robust Fisheries Management?

PLOS ONE | www.plosone.org 12 October 2013 | Volume 8 | Issue 10 | e77566



Supporting Information

Supporting Information S1 Dealing with conditional
trees instability.
(TEX)

Supporting Information S2 Building conditional trees
for sole in 7D.
(TEX)

Supporting Information S3 Building conditional trees
for plaice in 7D.

(TEX)

Author Contributions

Analyzed the data: LG. Contributed reagents/materials/analysis tools: LG

SM PM. Wrote the paper: LG SM PM.

References

1. Carpentier A, Delpech JP, Martin C, Meaden G, Vaz S (2009) Channel Habitat

Atlas for marine Resource Management, final report (CHARM phase II),

IFREMER, Boulogne-sur-mer, France, chapter Chap. 1, La Manche orientale/

The eastern English Channel. p. 626.

2. FranceAgriMer (2010) Données de ventes déclarées en halles à marée. Technical
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