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Abstract: The effect of oxygen content on current-stress-induced instability was investigated in
bottom-gate amorphous InGaZnO (a-IGZO) thin-film transistors. The observed positive threshold
voltage shift (∆VT) was dominated by electron trapping in the gate insulator (GI), whereas it was
compensated by donor creation in a-IGZO active regions when both current flows and a high
lateral electric field were present. Stress-induced ∆VT increased with increasing oxygen content
irrespective of the type of stress because oxygen content influenced GI quality, i.e., higher density of
GI electron traps, as well as typical direct current (DC) performance like threshold voltage, mobility,
and subthreshold swing. It was also found that self-heating became another important mechanism,
especially when the vertical electric field and channel current were the same, independent of the
oxygen content. The increased ∆VT with oxygen content under positive gate bias stress, positive
gate and drain bias stress, and target current stress was consistently explained by considering a
combination of the density of GI electron traps, electric field relaxation, and self-heating-assisted
electron trapping.

Keywords: a-IGZO TFT; current stress; oxygen content; instability; electron trapping; oxygen flow
rate; donor creation

1. Introduction

Since amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) are used in active-matrix organic
light-emitting diode (AMOLED) television manufacturing, their reliability under long-term current stress
is an important and challenging issue [1]. Although a-IGZO TFTs have been successfully commercialized
into display products, next-generation displays with higher resolution, higher brightness, and longer
product lifetime will demand more stable device characteristics. In particular, current stress-induced
instability must be analyzed systematically along with various bias conditions, i.e., various gate-to-source
voltage (VGS) and drain-to-source voltage (VDS) conditions, because current-driving TFTs in an AMOLED
pixel as well as the TFTs in gate-driver circuitry experience various VGS and VDS conditions during real
operation of the display circuits. On the other hand, the performance or stability of a-IGZO TFTs has
been widely designed and optimized based on controlling the oxygen content (O-content) in IGZO thin
films [2–8]. Therefore, thoroughly understanding the effect of O-content in IGZO thin films on current
stress (CS)-induced instability under various VGS and VDS conditions is indispensable for the design of
highly stable a-IGZO TFTs as well as for the design of current-driving schemes for high frame-rate display
backplanes [9]. However, consolidated explanations of the effect of O-content on various CS-induced
instabilities in a single framework are rare.
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In this work, the effect of O-content on CS-induced instability is experimentally investigated in
bottom-gate a-IGZO TFTs under various VGS and VDS conditions. To control the O-content in IGZO
thin films, the oxygen flow rate (OFR) during the sputter deposition of the IGZO film is modulated.
The OFR-dependent O-content is verified by X-ray photoelectron spectroscopy (XPS), which is consistent
with previous studies [6–8]. Moreover, the measured current–voltage (I–V) and hysteresis characteristics
as well as the experimentally extracted subgap density of states (DOS) in a-IGZO active films are
combined. Self-heating and power consumption are considered by using technology computer-aided
design (TCAD) simulation. The influence of O-content on the CS-instability in IGZO TFTs under
various VGS/VDS conditions is elucidated from material science and device physics perspectives.

2. Experimental Procedure and Material Properties

The fabrication of a-IGZO TFTs with a bottom-gate structure is described as follows. The first
room temperature (RT) sputtered deposition of a-IGZO on a glass substrate and patterning of the
molybdenum (Mo) gate were followed by plasma-enhanced chemical vapor deposition (PECVD)
of SiNX and SiO2 at 370 ◦C, which acted as a gate dielectric (the equivalent oxide thickness, Tox,
was 258 nm). A 50 nm-thick a-IGZO thin film was then deposited by direct current (DC) sputtering
(3 kW) at room temperature (RT) in a mixed atmosphere of Ar (35 sccm) and O2 by modulating the
OFR to produce O-poor (21 sccm), O-mid (42 sccm), and O-rich (63 sccm) TFT devices. Next, an etch
stopper (SiOX) layer was deposited by PECVD at 150 ◦C. For the formation of the source/drain (S/D)
electrodes, Mo was sputtered at RT. A passivation layer (SiOX and SiNX; each 100 nm thick) was
subsequently deposited. Finally, the devices were annealed at 250 ◦C for 1 h in a furnace. The width
(Wch) and length of the device channel (Lch) were 200 and 100 µm, respectively.

To check if the OFR modulated the O-content in IGZO active films, the XPS spectra of the devices
were analyzed. Figure 1 shows the O1s spectra of the IGZO films. The low-binding-energy component
(OL) located at 530 eV is usually attributed to O2

− ions surrounded by Zn, Ga, and in atoms in the IGZO
compound system. The middle binding-energy component (OM) centered at 531.5 eV is associated
with O2

− ions that are in the oxygen-deficient regions of the IGZO matrix. Therefore, a change in the
peak area ratio is related to the concentration of oxygen vacancies. OM-related oxygen vacancies supply
free electron carriers in the IGZO film, resulting in an increase of electron concentration. The high
binding-energy component (OH) located at 532.4 eV is mainly attributed to the presence of loosely
bound, chemisorbed oxygen impurities (−CO3

− adsorbed H2O or adsorbed O2
−) on the surface of the

film. The observed O1s peak can be deconvoluted into three peaks, namely, OL, OM, and OH, as shown
in Equation (1), and their characteristic parameters are summarized in Table 1:

O1s = OL + OM + OH = NL· exp
(
−

(E− EL

kTL

)2)
+ NM· exp

−(E− EM

kTM

)2+ NH· exp
(
−

(E− EH

kTH

)2)
(1)

It is clearly observed in Figure 1 and Table 1 that OM decreases (from 33% to 28.5%) and OH increases
(from 5% to 11%) as the OFR increases. The O-content is proportional to the OFR trend. The results of
the XPS analysis suggest that the oxygen content in the IGZO film can be controlled by modulating the
OFR during sputter deposition of the IGZO thin film. This is consistent with previous reports [6–8].
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Figure 1. X-ray photoelectron spectroscopy (XPS) O1s spectra of InGaZnO (IGZO) films upon varying 
the flow rate in a mixed atmosphere of Ar and O2 (oxygen flow rate (OFR) = 35 sccm). The OFR is 
modulated to produce O-poor (OFR = 21 sccm), O-mid (42 sccm), and O-rich (63 sccm) IGZO thin 
films. The inset shows the surface morphology of IGZO thin films as a function of OFR, as observed 
by atomic force microscopy (AFM). 

Table 1. Extracted XPS parameters (initial). 
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NH (A.U.) 0.10 × 105 0.2 × 105 0.25 × 105 
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The surface roughness of the IGZO films was characterized by using atomic force microscopy 
(AFM, Suwon, Republic of Korea), the results of which are presented in the inset of Figure 1. The 
measured roughness values for O-poor, O-mid, and O-rich devices were 0.236, 0.386, and 0.562 nm, 
respectively. As the O-content becomes larger with increasing OFR, the IGZO surface becomes 
rougher. 

The I–V characteristics of the IGZO TFTs were measured using an HP4156C (Keysight, Santa 
Rosa, CA, USA) semiconductor parameter analyzer at RT in the dark. The capacitance–voltage (C–V) 
characteristics were measured between the gate and the source tied to drain terminals by using an 
HP4294 LCR meter (Keysight, Santa Rosa, CA, USA). The subgap DOS was extracted using 
multi-frequency C–V spectroscopy [10], wherein frequencies of 2 kHz, 100 kHz, and 1 MHz were 
used with a ramp-up rate of 0.4 V/s and a small signal of 0.1 mV. 

In terms of the VGS and VDS conditions under CS, three stress conditions were used during a 
stress time of 104 s: positive gate bias stress (PGBS), where VGS/VDS = 20/0 V; positive gate and drain 
bias stress (PGDBS), where VGS/VDS = 20/10 V regardless of the OFR; and target current stress (TCS) 
with 20 μA for various O-contents, where VGS/VDS = 20/10 V for O-poor, 20.5/11 V for O-mid, and 
22/12 V for O-rich. PGBS and PGDBS were investigated first, after which the TCS was analyzed. 
Here, TCS means that the VGS/VDS condition varied depending on the O-content, where VGS is 
determined so that the value of overdrive voltage (VGS − VT) remains the same according to the 
O-content-dependent threshold voltage (VT). VDS is then determined such that the drain-to-source 
current (IDS) is maintained at the same value (20 μA) as that of the O-poor TFT at VGS/VDS = 20/10 V. 
Therefore, our TCS condition establishes both constant vertical electric field and constant current, at 
least in pristine states before CS. 
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Figure 1. X-ray photoelectron spectroscopy (XPS) O1s spectra of InGaZnO (IGZO) films upon varying
the flow rate in a mixed atmosphere of Ar and O2 (oxygen flow rate (OFR) = 35 sccm). The OFR is
modulated to produce O-poor (OFR = 21 sccm), O-mid (42 sccm), and O-rich (63 sccm) IGZO thin
films. The inset shows the surface morphology of IGZO thin films as a function of OFR, as observed by
atomic force microscopy (AFM).

Table 1. Extracted XPS parameters (initial).

O-Content O-Poor O-Medium O-Rich

OL

NL (A.U) 1.20 × 105 1.25 × 105 1.30 × 105

KTL (eV) 1
EL (eV) 530

OM

NM (A.U.) 0.65 × 105 0.60 × 105 0.50 × 105

KTM (eV) 1.15 1.1 1.1
EM (eV) 531.5

OH

NH (A.U.) 0.10 × 105 0.2 × 105 0.25 × 105

KTH (eV) 0.5 0.75 1
EH (eV) 532.4

The surface roughness of the IGZO films was characterized by using atomic force microscopy (AFM,
Suwon, Republic of Korea), the results of which are presented in the inset of Figure 1. The measured
roughness values for O-poor, O-mid, and O-rich devices were 0.236, 0.386, and 0.562 nm, respectively.
As the O-content becomes larger with increasing OFR, the IGZO surface becomes rougher.

The I–V characteristics of the IGZO TFTs were measured using an HP4156C (Keysight, Santa
Rosa, CA, USA) semiconductor parameter analyzer at RT in the dark. The capacitance–voltage
(C–V) characteristics were measured between the gate and the source tied to drain terminals by
using an HP4294 LCR meter (Keysight, Santa Rosa, CA, USA). The subgap DOS was extracted using
multi-frequency C–V spectroscopy [10], wherein frequencies of 2 kHz, 100 kHz, and 1 MHz were used
with a ramp-up rate of 0.4 V/s and a small signal of 0.1 mV.

In terms of the VGS and VDS conditions under CS, three stress conditions were used during a
stress time of 104 s: positive gate bias stress (PGBS), where VGS/VDS = 20/0 V; positive gate and drain
bias stress (PGDBS), where VGS/VDS = 20/10 V regardless of the OFR; and target current stress (TCS)
with 20 µA for various O-contents, where VGS/VDS = 20/10 V for O-poor, 20.5/11 V for O-mid, and 22/12
V for O-rich. PGBS and PGDBS were investigated first, after which the TCS was analyzed. Here, TCS
means that the VGS/VDS condition varied depending on the O-content, where VGS is determined so
that the value of overdrive voltage (VGS − VT) remains the same according to the O-content-dependent
threshold voltage (VT). VDS is then determined such that the drain-to-source current (IDS) is maintained
at the same value (20 µA) as that of the O-poor TFT at VGS/VDS = 20/10 V. Therefore, our TCS condition
establishes both constant vertical electric field and constant current, at least in pristine states before CS.
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3. Results and Discussion

The O-content-dependent parameters of pristine TFT devices, such as I–V, VT, subthreshold swing
(SS), and saturation field-effect mobility (µFE), are shown in Figure 2a–c, where VT was extracted by
linear extrapolation. SS was determined from 10−10 to 10−9 A in the subthreshold region. In addition,
µFE was extracted using the square root method at VGS − VT = 10 V and VDS = 10 V. With increasing
OFR, i.e., with higher O-content, VT and SS increase, and µFE decreases, as shown Figure 2b,c. These
results indicate that oxygen-related defects near the conduction band minimum (EC) increased with
increasing OFR [11]. Therefore, the subgap DOS should be investigated to understand the effect of
O-content on TFT performance and stability.
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Figure 2. (a) ID–VGS transfer curve characteristic at VDS = 0.1 V for various O-contents. The inset
is the fabricated a-IGZO thin-film transistor (TFT) with an inverted staggered bottom-gate structure.
The statistical data of (b) subthreshold swing (SS)-VT, and (c) µFE-VT were extracted from 10 devices
for each O-content.

The extracted DOS (g(E)) values near the EC were divided into three components according to
their energy level distribution: 1. shallow donor-like states, characteristic, and center energies of the
Gaussian peaks (NSD, kTSD, and ESD), 2. acceptor-like deep states and characteristic NDA and kTDA,
and 3. tail states and characteristic NTA and kTTA. The extracted g(E) value near EC was modeled
according to Equation (2):

g(E) = gTA(E) + gDA(E) + gSD(E) = NTA exp
(
−

EC−E
kTTA

)
+ NDA exp

(
−

EC−E
kTDA

)
+ NSD exp

(
−

(EC−E−ESD
kTSD

)2
)

(2)

The extracted DOS and their parameters are summarized in Figure 3 and Table 2. They were
extracted for the initial state and after PGBS, PGDBS, and TCS.
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Figure 3. Density of states (DOS) over a range of O-content as stress time under positive gate bias stress
(PGBS), positive gate and drain bias stress (PGDBS), and target current stress (TCS). Lines denote the
initial state, and symbols indicate values after each stress condition.
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Table 2. Extracted DOS parameters (initial and after PGBS, PGDBS, and TCS).

Parameter O-Content Stress
Condition

Ndos
(eV−1 cm−3)

kTdos
(eV)

Edos
(eV)

gTA (E)
O-poor All conditions 2.0 × 1019 0.06 –
O-mid All conditions 2.3 × 1019 0.065 –
O-rich All conditions 3.0 × 1019 0.075 –

gDA (E)
O-poor All conditions 1.5 × 1017 0.4 –
O-mid All conditions 1.6 × 1017 0.47 –
O-rich All conditions 1.9 × 1017 0.5 –

gSD (E)

O-poor

Initial –

0.4–0.45 0.3

After PGBS –
After PGDBS 5 × 1017

After TCS 6 × 1017

O-mid

Initial –
After PGBS –

After PGDBS 3 × 1017

After TCS 3 × 1017

O-rich

Initial –
After PGBS –

After PGDBS 2 × 1017

After TCS 3 × 1017

The effects of O-content on VT, SS, and µFE (Figure 2b,c) can be explained by considering both the
XPS and AFM results (Figure 1) and the DOS (Figure 3). At first, VT increases as the O-content increases.
This is explained by the decrease in the number of oxygen vacancies (VOs) in the TFT devices with
larger O-content, as shown in the XPS spectra in Figure 1. VOs are well-known shallow donors [12,13].
Second, SS increases with increasing O-content, which is explained by the higher gTA(E) and gDA(E) in
the TFT devices with more O-content, as shown in Figure 3. Higher gTA(E) and gDA(E) result from an
ion bombardment process during the sputter deposition with the increase of OFR [11]. Finally, µFE

decreases as the O-content increased, which can be explained as follows. In amorphous multi-metal
oxides, some potential barriers are inherently present between neighboring ions at the EC and affect the
electrons. Such barriers hinder electron transport and lower the mobility because of the different metal
ion radii that result from the non-uniform overlap of conduction electron orbitals among In–O, Ga–O,
and Zn–O bonds [14]. Subsequently, the percolation barrier height is effectively lowered because of
the higher Fermi energy (EF) in lower O-content or higher VGS conditions, thus leading to higher
µFE. Moreover, the AFM topography of the sample shown in Figure 1 suggests that either the surface
roughness scattering or trap density in IGZO increases for higher O-content, which is another reason
for lower µFE.

It is usually reported that the electrical performance in IGZO TFTs is significantly affected by trap
sites near the EC [11]. Several key parameters such as surface roughness, gTA(E), gSD(E), and gDA(E)
around the EC are both energetically and locally distributed throughout the energy bandgap with energy
level dependency, causing carrier trapping and emission in each energy state (i.e., surface roughness
scattering, multiple trapping, subgap hopping process, and thermal release events). Therefore, high
trap density and high surface roughness decrease the mean free path of carriers and the ability to
accumulate carriers, thus leading to the degradation of µFE and SS.

The IDS–VGS transfer characteristics before and after stress are shown in Figure 4. The CS-induced
VT shift (∆VT), which increased with O-content irrespective of the type of stress, is summarized in
Figure 5. To clarify the degradation that occurred only in the a-IGZO active layer, g(E) values before
and after CS were also compared, as shown in Figure 3 and Table 2. Under the influence of PGBS
and/or PGDBS, VT of the TFTs frequently shifted in the positive direction. The physical origin of PBTS
instability has been classified largely by either electron trapping (e-trapping) into the gate insulator (GI)
interface [15,16] or the change in defect states in the active region [17]. In the former case, e-trapping
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becomes more accelerated with increasing temperature and/or electric field [18] as well as high density
of electron traps in the gate insulator bulk interface. In the latter case, donor creation followed by a
negative ∆VT occurs, especially in short-channel TFTs [19,20], whereas oxygen–dimer bond breaking
was very recently observed as the physical origin of positive ∆VT [21]. Furthermore, in comparison
with PGBS, ∆VT under PGDBS and/or TCS is very complicated because of various combinations of
VGS and VDS, and competition between e-trapping and donor creation has been reported [22].
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stress condition.
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Only under PGDBS and TCS, i.e., when IDS flowed through the channel, were shallow donor
states consistently created below the EC, as shown in Figure 3 and Table 2. The physical origin of donor
creation is still controversial. In this study, it seemed to be dominated by VO ionization [19] or by
peroxide formation [23]. Under PGDBS or TCS, electrons gained enough energy from the lateral field
and were able to break the weakest oxygen bond or generate holes. In the former case, VOs that are not
filled by electrons are generated by structure relaxation and are doubly positively charged (VO

2+) [22].
In the latter case, hole-intermediated peroxide generation occurs, i.e., O2− + O2−

→O2
2− + 2e−. In both

cases, donor creation lowers VT when stress is applied. This is contradictory to the observed positive
∆VT. Therefore, the dominant mechanism behind the positive ∆VT compensates donor creation (origin
of a negative ∆VT), thus leading to eventual positive ∆VT. It can be assumed that the positive ∆VT

during stress originates from the e-trapping in the GI.
To validate our assumption, we examined the relationship between hysteresis and ∆VT, as shown

in Figure 6a. The hysteresis effect is known to change VT when VGS is swept from negative to positive
values and then the transfer curve is measured again while sweeping from positive to negative VGS.
That is, after accumulated carriers are trapped in shallow or deep traps of the GI, the captured carriers
cause a screening effect to the VGS. Therefore, the hysteresis voltage (VHys) is a good indicator of the
quality of the GI as well as the GI/IGZO interface. Here, VHys is defined as the difference in VT between
double VGS sweeps, i.e., the sweep from 20 to −20 V and that from −20 to 20 V as denoted in Figure 6a.
Figure 6a indicates that the oxygen-content-dependent, PGBS-induced ∆VT is well correlated with the
VHys depending on the O-content, which validates the assumption that the PGBS/PGDBS/TCS-induced
instability is dominated by e-trapping in the GI and/or interface.
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The effect of O-content on ∆VT and VHys can be explained as follows. As the O-content in the
a-IGZO active layer increases, a larger number of oxygen atoms at the interface or in the active layer
diffuse into the SiO2 of GI owing to the stronger Si–O affinity in comparison to that of Ga–O, Zn–O,
or In–O (Si–O > Ga–O > Zn–O > In–O) [24] during fabrication. Increased oxygen interstitials generate
electron traps in the GI [25], which is consistent with relatively poor GI quality (i.e., larger ∆VT) and
hysteresis in O-rich devices, as shown Figure 7. Here, NOT symbolizes the spatial density of electron
traps in the GI.

Given the O-content of the active layer, the positive ∆VT increased in the following order: PGDBS <

TCS < PGBS, as shown in Figure 5. In the PGBS condition, only e-trapping in the GI occurred effectively,
both in the source and drain regions. However, in the PGDBS and TCS conditions, e-trapping near
the drain was significantly alleviated, owing to the release of the vertical electric field and creation of
donor states. Therefore, the largest positive ∆VT occurred for PGBS conditions.
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In addition, it should be noted that, for a given O-content, ∆VT under TCS is larger than that
under PGDBS. This can be explained by the self-heating assisted e-trapping [26–28], vertical electric
field, and bulk oxide trap. To analyze the Joule heating effect under stress conditions, the average
power consumption was calculated by multiplying the drain current by VDS under stress conditions,
as shown in Figure 6b. Joule heating under TCS was greater than that under PGDBS. Such Joule
heating accumulated from self-heating in the active layer as the thermal conductivity of a-IGZO is quite
low [29]. E-trapping can then be activated to a greater extent via thermionic field emission-assisted GI
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trapping. Under PGDBS, although the O-poor device generated more heat in the active layer than that
in the O-mid and O-rich devices, the ∆VT of the O-rich device was the largest. These results indicate
that e-trapping is dominated by the NOT rather than by the self-heating effect. Therefore, GI quality is
the key factor for determining ∆VT under TCS, PGDBS, and PGBS conditions for various O-contents.
Self-heating-assisted e-trapping also becomes more significant for devices with the same O-content as
the CS dissipates more Joule heating and power.

To validate our discussion, a well-calibrated TCAD simulation was performed by incorporating
the energy band structure, a DOS model depending on the O-content, trap-limited conduction, and a
self-heating model into Silvaco ATLAS-2D [30]. The electric field, Joule heating power, and device
temperature were simulated under different conditions, as shown in Figure 8a–c. As shown in
Figure 8c, regardless of the O-content, self-heating was more significant in TCS than in PGDBS.
Therefore, as shown in Figure 6b, the ∆VT in TCS is larger than that in PGDBS irrespective of O-content.
Here, it should be noted that, in the O-poor device, the TCS condition is the same as the PGDBS
condition. Eventually, the CS-induced instability is determined by the increasing NOT with O-content
and the ∆VT-compensation by donor creation. Specifically, under TCS, the increasing self-heating with
O-content becomes another key factor, although both the initial vertical electric field and initial IDS are
the same, independent of the O-content.
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Figure 8. The simulated (a) electric field, (b) Joule heat power, and (c) temperature of the device based
on the configuration of VGS/VDS.

Our results suggest that the effect of O-content on CS-induced instability can be explained
consistently for all cases considered in this study, i.e., TCS, PGDBS, and PGBS conditions.

4. Conclusions

The effect of O-content on CS-induced instability is investigated in bottom-gate a-IGZO TFTs.
Under PGDBS and TCS conditions, donor creation was clearly observed in a-IGZO active regions.
The observed positive ∆VT was dominated by e-trapping in the GI. Because the O-content affects the
GI quality as well as the typical DC-performance parameters, such as VT, SS, and µFE, stress-induced
∆VT increased with increasing O-content irrespective of the type of stress. For specific O-content, ∆VT

increased in the following order: PGDBS < TCS < PGBS, which can be explained by considering a
combination of electric field relaxation via donor creation and self-heating-assisted e-trapping. Our
results suggest that careful joint optimization of the GI and active layer is indispensable for designing
highly stable a-IGZO TFTs. The detailed findings are useful for designing stable current-driving
schemes for compensating electrical degradation and for circuits in high-frame-rate displays.
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