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ABSTRACT
Carrot is an important root vegetable crop abundant in bioactive compounds including
carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually
growing owing to its high antioxidant activity. Auxins are a class of plant hormones
that control many processes of plant growth and development. Yet, the effects of
exogenous application of auxin on lignin biosynthesis and gene expression profiles
of lignin-related genes in carrot taproot are still unclear. In order to investigate
the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles,
lignin accumulation, anatomical structures and morphological characteristics in carrot
taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and
150 µM). The results showed that IBA application significantly improved the growth
parameters of carrot. The 100 or 150 µM IBA treatment increased the number and
area of xylem vessels, whereas transcript levels of lignin-related genes were restricted,
resulting in a decline in lignin content in carrot taproots. The results indicate that
taproot development and lignin accumulation may be influenced by the auxin levels
within carrot plants.

Subjects Agricultural Science, Genomics, Molecular Biology, Plant Science
Keywords Auxin, Daucus carota L., Gene expression, Growth, Indole-3-butyric acid, Lignifica-
tion

INTRODUCTION
Carrot (Daucus carota L.), a biennial vegetable crop belonging to the Apiaceae family, is one
of the world’s top ten vegetable crops (Que et al., 2019). Carrot crops are widely cultivated
throughout the world, whereas China ranked first in the world in terms of production
by 17.9 million tons (FAO, 2018). Carrots are known for their high yield with abundant
nutritional components including carotenes and plant fibers. It has high nutritional and
medicinal values (Arscott & Tanumihardjo, 2010; Luby, Maeda & Goldman, 2014). The
growth and development of carrot taproot directly determines the yield of carrot and
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quality. It is reported that plant hormones play key roles in the development of carrot
taproot (Wang et al., 2015; Khadr et al., 2020).

Plant hormones are involved in various processes including plant growth and
development, cell division, cell elongation and differentiation, and apical dominance
(Davies, 2013). The root development and nutrient absorption and transportation by roots
are directly related to the endogenous hormone levels (Wang et al., 2015). Auxins are a
class of phytohormones that control numerous processes of plant growth and development
(Davies, 2013). Auxins are known primarily for their ability to induce cell elongation.
In addition, they stimulate cell division, vascular differentiation, and root initiation.
Indole-3-acetic acid (IAA) is an essential auxin in the plant, which is produced mainly in
meristematic tissues of young leaves (Kaya, Tuna & Okant, 2010). IAA and naphthalene
acetic acid (NAA) treatment enhanced the formation of tomato fruit (Kaya, Tuna & Okant,
2010). The application of IAA can improve plant height and shoot length (Bose, Jana &
Mukhopadhyay, 1980).

Indole-3-butyric acid (IBA) is a kind of auxin that exists naturally in various species of
plants and tissues (Epstein & Ludwig-Müller, 2010). IBA may be transformed to IAA and
vice versa, suggesting that the metabolism of the two auxins is highly correlated (Woodward
& Bartel, 2005). IBA demonstrates the special auxin potential of polar cell-to-cell transfer,
but probably through a different mechanism from IAA (Rashotte et al., 2003). IBA is more
stable in solutions than IAA and has a much stronger influence on initiation rooting
(Nordström, Jacobs & Eliasson, 1991; Ludwig-Müller, 2000). In several bioassays, IBA has
auxin activity and affects the rooting process in various plant species more obviously
than IAA (Nordström, Jacobs & Eliasson, 1991; Wiesman, Riov & Epstein, 1988; Wiesman,
Riov & Epstein, 1989). Furthermore, the IBA application promotes elongation of stems
in intact pea plants (Yang & Davies, 1999). Also, IBA stimulates shoot, hypocotyl and
lateral root growth (Yang & Davies, 1999; Poupart & Waddell, 2000). IBA could act as an
important source of auxin to boost stem elongation in intact plants (Yang & Davies, 1999).
However, the root growth and its response to IBA treatment depend on the concentration.
A high concentration of IBA (10−7 M) inhibited root length in maize and induced the
enlargement of root diameter. On the contrary, a lower concentration (10−9 M∼10−12 M
IBA) stimulated root growth and root diameter (Šípošová et al., 2019).

Lignin is the second most abundant biopolymer in vascular plants after cellulose. It
is mainly deposited in secondary cell walls and is involved in mechanical support and
water transport (Rogers & Campbell, 2004; Zhao & Dixon, 2011). In addition, lignin can
respond to environmental stimuli and growth signals including hormone stimuli, pathogen
invasion, abiotic stresses, andmechanical attack (Moura et al., 2010;Duan et al., 2019). The
excess lignin accumulation in the taproot results in poor quality of carrot (Wang et al.,
2017). Therefore, it is important to regulate the lignin levels in the fleshy taproot of carrot.

This study aims to investigate the influence of applied IBA on the anatomy and
lignification of carrot taproots. We performed a morphological and anatomical
characterization and found that IBA application not only enlarged the taproot diameter but
also decreased lignin accumulation in the taproot. Moreover, the transcript levels of genes
in lignin biosynthesis and polymerization were altered in response to the IBA treatment.
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The results could enhance our understanding about the IBA role in taproot growth and
lignin accumulation.

MATERIALS & METHODS
Plant materials
In the present study, the carrot cultivar Kurodagosun was used as plant materials. The
carrot seeds were germinated on wet filter paper for 48 h at 25 ◦C in full darkness for
further experiments. The resulting plants were then moved into plastic pots (30×27 cm)
in a greenhouse and maintained at 22 ± 3 ◦C and 18 ± 3 ◦C (day and night, respectively)
with 65∼75% humidity under a 14/10 h photoperiod. The plants were grown in a mixture
of organic soil and vermiculite (1:1, v/v).

To determine the effect of IBA treatment on carrot taproot growth, different
concentrations of IBA solution (0, 50, 100, and 150 µM) (Beijing Solarbio Science &
Technology Co., Ltd, Beijing, China) were prepared. After 40 days of sowing, the soil
mixture was sprayed with 200 mL of different concentrations of IBA, four times at
three-day intervals, whereas soil samples around control plants were sprayed with water.
Carrot samples were harvested for analysis at 60 days after sowing.

Analysis of the anatomical structure of carrot taproot
To examine the changes in carrot taproot structure, cross-sections of treated carrot taproots
were harvested. Sample slides were prepared according to the procedure in our published
work (Wang et al., 2017). Then, sample slides were analyzed using a light microscope
(Olympus brand, CellSens software).

Quantitative determination of lignin content in carrot taproot
Carrot taproot samples were prepared with three independent biological replicates. Lignin
was extracted and quantified according to the method described by Cervilla and his
colleagues (Cervilla et al., 2009). The absorption was detected at 280 nm using SpectraMax
iD5, Soft Max Pro7 Software (Molecular Devices, Shanghai, China).

Total RNA extraction and cDNA synthesis
Total RNA was extracted using an RNA extraction kit (Tiangen, Beijing, China).
Quantification of total RNA concentration was carried out using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, USA). The total RNA was
treated with gDNAEraser (TaKaRa, Dalian, China) for 2 min at 42 ◦C, to remove the DNA
contamination. Synthesis of cDNA from total RNAwas carried out using the PrimeScriptRT
reagent kit (TaKaRa, Dalian, China).

Gene selection and expression profiles analysis by RT-qPCR
Genes involved in lignin biosynthesis and polymerization were selected based on a genomic
and transcriptomic database CarrotDB (http://apiaceae.njau.edu.cn/carrotdb) (Xu et
al., 2014; Wang et al., 2018a). Real time quantitative PCR (RT-qPCR) experiment was
performed using TaKaRa SYBR Premix Ex Taq to quantify the transcript expression
in treated plant samples. The primers of DcPAL, DcC4H, Dc4CL, DcHCT, DcC3′H,
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Figure 1 Effect of IBA on the growth status of carrots. Carrot plants treated with 0 (A), 50 (B), 100 (C),
and 150 (D) µM IBA were shown. White lines in the lower left corner of each plant represent 5 cm in that
pixel.

Full-size DOI: 10.7717/peerj.10492/fig-1

DcCCoAOMT, DcF5H, DcCOMT, DcCCR, DcCAD, DcPER1, DcLAC1, and DcLAC2 used
for RT-qPCR assays were selected from our previously published article (Wang et al., 2017).
All PCR reaction mixtures consist of 10 µL of SYBR Premix Ex Taq, 7.2 µL of deionized
water, 0.4 µL of each forward and reversed primer, and 2 µL of tenfold diluted cDNA.
PCR cycle was set up to run initially 30 s at 95 ◦C, followed by 40 cycles at 95 ◦C for 5 s,
and 60 ◦C for 30 s. DcActin was used as internal standard for gene normalization (Tian et
al., 2015).

Statistical analysis
The difference in the mean data of the treatments was analyzed at the 0.05 significance level
by Duncan’s method using the SPSS statistics software (Version 16, SPSS Inc. Chicago,
USA).

RESULTS
Effect of IBA treatment on morphological characteristics of carrot plants
To examine the influence of exogenous IBA on the morphological characteristics of
carrot plants, carrot taproots were treated with different concentrations of IBA. Seven
morphological parameters including plant length, shoot length, taproot length, shoot fresh
weight, taproot fresh weight, number of petioles, and taproot diameter of carrot plants
were determined for comparison among the different treatments.

IBA significantly increased the overall plant length. The highest plant lengthwas recorded
in 150 µM IBA treatment, followed by the seedlings treated with 100 or 50 µM of IBA,
respectively. Similarly, IBA treatment promoted shoot length. The highest shoot length was
observed under 150 µM IBA treatment (Figs. 1 and 2). However, there was no significant
difference in the number of petioles in carrot plants after IBA application (Fig. 3).

IBA application enhanced the taproot length of carrot. The highest taproot length was
recorded under 100µMIBA (Fig. 4). IBA concentrations of 50, 100, or 150µMsignificantly
increased the diameter of carrot taproot as compared with control group (Fig. 5). Further,
IBA significantly increased the fresh weight of both shoot and taproot as compared with
control group (Fig. 6). 150 µM IBA treatment induced the highest increase in the shoot
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Figure 2 Effect of IBA on overall plant length and shoot length of carrots. Error bars represent standard
deviation (SD). Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-2

Figure 3 Effect of IBA on the number of petioles of carrot plants. Error bars represent standard devia-
tion (SD). Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-3
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Figure 4 Effect of IBA treatment on carrot root length. Error bars represent standard deviation (SD).
Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-4

fresh weight. The taproot fresh weight was increased by 53%, 39%, and 32%, respectively,
after 100, 50, and 150 µM IBA treatment.

Effect of IBA on the anatomical structure of carrot taproots
The transverse sections of taproots treated with different concentrations of IBA were taken
and stained with safranin O and fast green to highlight the basic anatomical structure
(Fig. 7). Exogenous application of 100 or 150 µM IBA increased the xylem area. There
was no significant difference in the xylem area between the 50 µM treatment and control
group. Compared with the control group, the number of xylem vessels was the highest in
response to 150 µM IBA application. In addition, it was noticed that the doses of 100 and
150 µM enhanced the diameter of xylem vessels in comparison with the control group.

Effect of IBA application on lignin accumulation in carrot taproots
Lignin accumulation in carrot taproots under different treatments was determined. The
application of IBA significantly decreased lignin content in carrot taproots (Fig. 8). The
lignin content in the control group was about 27.4 mg g−1. The lignin levels were about
9.8, 10.9, and 15.5 mg g−1 in taproots treated with 50, 100, and 150 µM IBA, respectively.

Influence of IBA on expression profiles of key genes involved in lignin
biosynthesis and polymerization
To find out the molecular mechanisms underlying the role of IBA in lignin accumulation
in carrot taproots, transcription of key genes involved in lignin biosynthesis and
polymerization were detected. As shown in Figs. 9 and 10, expression patterns of
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Figure 5 Effect of IBA treatment on carrot root diameter. Error bars represent standard deviation (SD).
Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-5

Figure 6 Effect of IBA on shoot and root fresh weight in carrot. Error bars represent standard deviation
(SD). Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-6
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Figure 7 Influence of IBA on the anatomical structure of carrot roots. The central part of the root
cross-sections treated with 0 (A), 50 (B), 100 (C), and 150 (D) µM IBA were shown. PC, parenchymal
cell; Px, protoxylem; SX, secondary xylem; Ve, vessel. Scale bars in the lower right corner represent 100µm
in length.

Full-size DOI: 10.7717/peerj.10492/fig-7

most lignin-related genes including DcPAL, DcC4H, Dc4CL, DcF5H, DcC3′H, DcCOMT,
DcCCoAOMT, and DcLAC1 were significantly decreased under IBA treatment.

Transcription of DcPAL underwent an evident decline when exposed to IBA treatment.
DcC4H presented a tendency of decrease in mRNA abundance after 50 and 100 µM IBA
treatment, and was highly expressed after 150 µM treatment. Dc4CL and DcCCoAOMT
expression underwent a sharp decline after 50 and 100 µM IBA treatment, whereas no
obvious difference was detected after 150 µM treatment. DcHCT was lowly expressed
after 50 µM IBA treatment, and showed the highest expression in plants treated with 100
µM IBA treatment. Transcript levels of DcF5H, DcCAD, DcC3′H, and DcCOMT were the
lowest in 100 µM IBA treatment. Expression of DcCCR displayed the highest expression
after 50 µM IBA treatment, and reduced when a higher concentration of IBA was applied
(Fig. 9).

Both 50 and 150µMIBA treatment had no obvious effect onDcPER1 expression, whereas
100 µM IBA induced a sharp declined in DcPER1 mRNA abundance. Transcription of
DcLAC1 underwent a constant decline after 50 and 100 µM IBA treatment, and increased
after 150 µM treatment. By contrast, 50 and 150 µM IBA treatment increased DcLAC2
expression as compared with control group (Fig. 10).
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Figure 8 Influence of IBA on lignin accumulation in carrot roots. Error bars represent standard devia-
tion (SD). Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-8

DISCUSSION
Auxins are organic substances, which promote the growth and development of plants at low
concentrations. Auxins regulate numerous developmental processes in plants including cell
expansion, root initiation, vascular tissue differentiation, bud and flower growth (Davies,
2013). Auxin and cytokinin are the main phytohormones that control root growth, root
gravitropism, and vascular differentiation (Aloni et al., 2006).

Carrot has high nutritional values, and is one of the most important vegetable crops
grown throughout the world. The fast growth of the food industry has led to increased
carrot consumption (Wang et al., 2018b; Que et al., 2019). In the current study, carrot
taproots were treated with different concentrations of IBA to study the effect of IBA on
carrot taproot growth and development. The roles of IBA in regulating expression of
lignin-related genes and lignin accumulation in carrot taproot are still unknown. The
present study results could enhance the understanding of the roles of IBA in regulating
growth and taproot lignification in carrot, particularly at the molecular level.

Our results showed that IBA treatment increased carrot plant length, shoot length, and
shoot weight. In contrast, there was no significant effect on the number of petioles after
IBA treatment as compared with control group. This increase may be attributed to the
role of auxin in stimulating cell division and elongation (Davies, 2013). IBA application
was able to induce the elongation of the internodes, leading to the promotion of stem
growth of pea plants (Yang & Davies, 1999). Also, IBA application increased the leaf area
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Figure 9 Effect of IBA on the expression profiles of genes involved in lignin biosynthesis in carrot
roots. The genes encoding ten key enzymes in lignin biosynthesis are DcPAL (A), DcC4H (B), Dc4CL (C),
DcF5H (D), DcCAD (E), DcC3’H (F), DcHCT (G), DcCOMT (H), DcCCoAOMT (I), and DcCCR (J). Er-
ror bars represent the standard deviation (SD) of three replicates. Data are the mean± SD of three inde-
pendent replicates. Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-9

and dry weight of leaves in chickpea (Amin et al., 2013). Thus, the increase in shoot fresh
weight after IBA treatment may result from the increase in shoot length, leaf area, and
leaf fresh weight. These results are consistent with previous studies which observed that
the application of IBA promoted plant and shoot length, plant height, and dry weight of
both branches and leaves (Amin et al., 2013;Hayat et al., 2009). IBA significantly enhanced
taproot length, diameter, and fresh weight, and the highest increase was observed in the
100 µM IBA treatment. Similar results were obtained in maize; low concentrations of IBA
(10−9 M∼10−12 M) significantly increased the length, root diameter and cortex thickness
of the primary root (Šípošová et al., 2019). They also demonstrated that high concentration
of IBA (10−7 M) decreased the primary root length. High doses of auxin restrict root
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Figure 10 Effect of IBA on the expression profiles of genes involved in lignin polymerization in carrot
roots. The genes involved in lignin polymerization are DcPER1 (A), DcLAC1 (B), and DcLAC2 (C). Error
bars represent the standard deviation (SD) of three replicates. Data are the mean± SD of three indepen-
dent replicates. Lowercase letters represent significant differences at P < 0.05.

Full-size DOI: 10.7717/peerj.10492/fig-10

growth via proton pump inhibition and lead to alkalinization of the cell wall, whereas low
doses ensure the acidification of apoplast and activate the vital wall-loosening proteins
(Evans, Mulkey & Vesper, 1980).

Auxin is a kind of plant hormones that regulate the development of the root. It can
stimulate xylem tissue differentiation (Wareing, 1958; Aloni et al., 2006). Exogenous IAA
application induced the cambial division, and thus promoted xylem tissue differentiation
(Wareing, 1958; Digby & Wareing, 1966). Auxin stimulated the elongation of vessels in
Populus robusta, and improved the radial diameter of xylem elements (Digby & Wareing,
1966). In Capsicum and Solanum, auxin boosted the growth of secondary xylem, whereas
auxin inhibitors fully or partially displayed the contrary traits (Samantarai & Nanda, 1979).
Here, we detected an increase in number, diameter and area of xylem vessels in response
to IBA (100 and 150 µM) treatment.

According to the previous studies, lignin deposition mainly exists in the walls of
thickened cells (Rogers & Campbell, 2004; Zhao & Dixon, 2011). Lignin is an essential
component of the plant cell wall. The primary function of lignin is to provide mechanical
support and water transport (Somerville et al., 2004). However, high deposition hampers
the taste, texture and quality of carrot taproot, whereas the decline in lignin content may
affect plant growth and development (Bonawitz & Chapple, 2010). IBA treatment decreased
lignin content of carrot in a dose-dependent manner. This finding is in agreement with the
results of the previous study, which demonstrated IBA inhibited hypocotyl lignification in
soybean (Chao et al., 2001). Similar results were observed when soybean hypocotyls were
treated with NAA (Chen et al., 2002). Also, it was observed that IBA-treated Cinnamomum
kanehirae cuttings exhibited a decrease in lignin content (Cho et al., 2011).

Previous studies have suggested that changes in lignin levels were attributed to altered
expression of the genes in the lignin biosynthesis pathway (Ali & McNear, 2014; Wang
et al., 2017; Duan et al., 2019). In the current study, most of the studied genes (DcPAL,
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DcC4H, Dc4CL, DcF5H, DcC3′H, DcCOMT, DcCCoAOMT, and DcLAC1) in the lignin
synthesis pathway exhibited decreased expression in response to IBA treatment. Our earlier
reports found that the decreased lignin accumulation was related to the lower expression
level of key genes in the lignin biosynthesis pathway. The declined expression levels of PAL,
HCT, CCR, CAD and C3′H genes exhibited an impact on lignin accumulation (Baucher
et al., 2003; Chen et al., 2006; Ralph et al., 2006; Wagner et al., 2007; Derikvand et al., 2008;
Wadenbäck et al., 2008). In alfalfa and tobacco, repression of genes in the pathway, such as
PAL, C4H, HCT and C3′H, caused a decrease in total lignin levels (Li, Weng & Chapple,
2008). Moreover, the decline in HCT gene expression resulted in a significant reduction in
lignin content and changed lignin composition (Li, Weng & Chapple, 2008). Likewise, the
mutants 4cl1, c4h and ccr1 showed lower lignin content than that of the wild type (Vanholme
et al., 2012). In Populus tremuloides, inhibition of 4CL1 resulted in a 45% reduction in lignin
content (Hu et al., 1999). However, inhibition of F5H that is involved in S lignin synthesis,
leads to the change of S/G ratio with only minor influence on content of total lignin (Li,
Weng & Chapple, 2008). In Arabidopsis, the mutant f5h1 showed an obvious decrease in
the S unit, whereas no change was determined in the overall lignin levels (Vanholme et al.,
2012). Auxin inhibited peroxidase gene expression via regulating various auxin responsive
elements in the promoter of the peroxidase genes (Klotz & Lagrimini, 1996;Chou, Huang &
Liu, 2010). Exogenous application of IBA decreased lignin content, which was accompanied
by repressed peroxidase gene expression and peroxidase activity in soybean hypocotyl and
Cinnamomum kanehirae cuttings (Chao et al., 2001; Cho et al., 2011).

CONCLUSIONS
IBA application significantly improved the growth parameters of carrot. 100 or 150 µM
IBA treatment increased the number and area of xylem vessels, whereas declined lignin
levels were detected in IBA-treated carrot plants. Furthermore, the expression levels of
lignin-related genes were significantly decreased in response to IBA treatment. Our results
could improve understanding of the roles of IBA in carrot taproot growth and lignin
accumulation, especially at the molecular level.

Abbreviations

4CL 4-coumarate-CoA ligase
C3’H p-coumaroyl shikimate/quinate 3-hydroxylase;
C4H Cinnamate 4-hydroxylase;
CAD Cinnamyl alcohol dehydrogenase
CCoAOMT Caffeoyl-CoA O-methyltransferase
CCR Cinnamoyl-CoA reductase
COMT Caffeic acid O-methyltransferase
DW Dry weight
F5H Ferulate 5-hydroxylase
HCT Hydroxycinnamoyl-CoA shikimate/quinate
IAA Indole-3-acetic acid
IBA Indole-3-butyric acid
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LAC Laccase
NAA Naphthalene acetic acid
PAL Phenylalanine ammonia lyase
PER Peroxidase
RT-qPCR Real-time quantitative PCR
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