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ABSTRACT
The success of islet transplantation in both basic research and clinical settings has proven that cell 
therapy has the potential to cure diabetes. Islets intended for transplantation are inevitably subjected 
to damage from a number of sources, including ischemic injury during removal and delivery of the 
donor pancreas, enzymatic digestion during islet isolation, and reperfusion injury after transplantation 
in the recipient. Here, we found that protein factors secreted by porcine adipose-tissue mesenchymal 
stem cells (AT-MSCs) were capable of activating preserved porcine islets. A conditioned medium was 
prepared from the supernatant obtained by culturing porcine AT-MSCs for 2 days in serum-free 
medium. Islets were preserved at 4°C in University of Wisconsin solution during transportation and 
then incubated at 37°C in RPMI-1620 medium with fractions of various molecular weights prepared 
from the conditioned medium. After treatment with certain fractions of the AT-MSC secretions, the 
intracellular ATP levels of the activated islets had increased to over 160% of their initial values after 
4 days of incubation. Our novel system may be able to restore the condition of isolated islets after 
transportation or preservation and may help to improve the long-term outcome of islet 
transplantation.

Abbreviations: AT-MSC, adipose-tissue mesenchymal stem cell; Cas-3, caspase-3; DAPI, 4,6-diami-
dino-2-phenylindole; DTZ, dithizone; ES cell, embryonic stem cell; FITC, fluorescein isothiocyanate; 
IEQ, islet equivalent; INS, insulin; iPS cell, induced pluripotent stem cell; Luc-Tg rat, luciferase- 
transgenic rat; PCNA, proliferating cell nuclear antigen; PDX1, pancreatic and duodenal homeobox 
protein-1; UW, University of Wisconsin; ZO1, zona occludens 1.
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Introduction
For patients with type 1 diabetes, islet transplan-
tation is a promising therapy due to its thera-
peutic effect and safety.1 During islet 
transplantation, donor islets are infused into 
the hepatic portal vein, which then engraft to 
the hepatic parenchyma. In Japan, the islet 
transplantation program has adopted the immu-
nosuppressive regimen developed by Shapiro 
et al.2 which is known as the Edmonton 
Protocol, with the major adaptation that islets 
are isolated from donors after cardiac death as 
dictated by the Japanese national protocol for 
islet donation, isolation, and transplantation.3,4

Clinical islet transplantation can be accom-
plished in two ways: 1) a cold-preserved brain- 
dead donor’s pancreas is transported to a cell 

processing center, where it is then transplanted 
into a recipient; or 2) a donor pancreas is 
procured and then the islets are isolated, pre-
served, cultured, and then transplanted into 
a recipient in the same facility. For islets to be 
useful in research and clinical applications, they 
must maintain their function after shipment 
from one location to another. It has been 
reported that the system through which sur-
geons send procured pancreas to remote islet 
isolation centers and the center sends back iso-
lated islets is effective within 2,500 km.5–7 

According to a recent report, isolated human 
islets were successfully shipped over 10,000 km 
internationally, a journey longer than 48 h, with 
gas-permeable bags being used to maintain 
clinical grade.8
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The success of islet transplantation greatly 
depends on the number of islets transplanted 
to the recipient (usually > 13,000 islet equiva-
lent [IEQ]/recipient kg), and insulin indepen-
dence is generally only achieved after 
transplantation from more than one donor pre-
paration per recipient.9–11 After intraliver islet 
transplantation, most recipients achieve insulin 
independence, but this condition is not 
permanent.12 Although transplantation of suffi-
cient islets makes it unnecessary for most 
patients to require insulin administration, the 
rate of independence decreases over time, with 
less than 10% of transplant recipients remaining 

insulin independent at five years.13 It is worth-
while noting that although the liver has been 
extremely well studied and characterized both 
in animal models and humans, it is widely 
recognized that it may not provide the ideal 
microenvironment for islets due to the immu-
nologic, anatomic, and physiologic factors that 
contribute to loss of islet mass soon after 
infusion.14–19

Mesenchymal stem cells (MSCs) are thought to be 
pluripotent cells that can differentiate into a variety 
of cells and can be an ideal resource for transplanta-
tion therapy.20,21 Additionally, MSCs have been con-
firmed to secrete a variety of cytokines.22

Figure 1. Shipping of porcine islets and establishment of porcine adipose-tissue mesenchymal stem cells (AT-MSCs). (a) Phase-contrast 
image of cold-preserved porcine islets in a 1.5-mL tube. (b) Morphology of porcine islets after 2 h under culture conditions. (c) 
Dithizone staining of fresh-porcine islets (left) and (b)(Right). (d) Morphology of Kusabira–Orange transgenic porcine-derived AT-MSCs 
at passage 6. (e) The differentiation potential of porcine AT-MSCs (passage 8) into adipocytes and osteocytes were evaluated using 
differentiation-induction media purchased from Lonza Walkersville, Inc. (http://www.lonza.com) according the manufacturer’s proto-
cols. (F) Analysis of porcine MSCs marker genes by RT-PCR. Scale bar (a): 1 mm (b), (c), (d), (e): 500 μm.

70 T. TERATANI ET AL.

http://www.lonza.com


Previously reported, it was suggested that islet co- 
culture with MSCs are effective in improving the 
efficiency of clinical islet transplantation.23 From 
these reports, we considered that there is the islet- 
suppressing effect that deteriorates during transport 
and the islet-activating effect before transplantation.

We previously examined the efficacy of several 
commonly used organ preservation solutions on the 
viability of isolated islets from luciferase-transgenic 
(Luc-Tg) rats and found that proteins secreted by rat 
adipose-tissue mesenchymal stem cells (AT-MSCs) 
activated preserved Luc-Tg rat islets.24–26

Here, we apply the findings from our rodent model 
experiments to the preservation and activation of por-
cine islets in a preclinical study in a large animal. We 
identified factors secreted from porcine AT-MSCs 
that markedly activated preserved porcine islets. 

These data will be helpful for elucidating the precise 
molecular mechanisms of pancreatic commitment 
and could be useful in the development of diabetes 
therapy through the transplantation of preserved 
islets.

Results

Shipping of porcine islets and establishment of 
porcine AT-MSCs

Porcine islets were shipped in University of 
Wisconsin (UW) preservation solution at 4– 
10°C in a 1.5-mL tube (about 2,000 IEQ/tube; 
Figure 1(a)), and the median time required for 
transportation was 20.3 ± 5.43 h (n = 7). Isolated 
fresh porcine islets the stimulation index in the 

Figure 1. Continued.
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static glucose stimulation test (3.482 ± 1.433) and 
ADP/ATP ratio (0.0518 ± 0.0354) were normally. 
The islets regained their three-dimensional mor-
phology post-transportation after culturing in 
RPMI-1620 medium for 2 h (Figure 1(b)), and 
the survival rate was 66.15% ± 7.08% (n = 7) by 
trypan blue staining. We found dithizone (DTZ)- 
negative islets in the samples (Figure 1(c)), sug-
gesting that porcine islets are damaged during 
shipping by the long preservation time and low 
temperature.

Next, we isolated porcine AT-MSCs from the fat 
tissue of Kusabira-Orange transgenic porcines 
(Figure 1(d)). Established porcine AT-MSCs were 
induced to differentiate into adipocytes and osteo-
blasts (Figure 1(e)), and expression of MSC-marker 
genes was detected by reverse transcription–poly-
merase chain reaction (CD29+, CD45-, and CD105 
+), such as a porcine BM-MSCs (Figure 1(f)).27 

Thus, our porcine AT-MSCs expressed similar 
characteristics to those of other animal species, 
such as rat and human.

Figure 2. Analysis of degraded porcine islets and ATP content in a co-culture system. (a) Co-culture of porcine adipose-tissue 
mesenchymal stem cells (AT-MSCs) and porcine islets. (b) Islets only. Upper panels are phase-contrast images and bottom panels 
are images of dithizone staining. (c) The morphology of the co-cultured MSCs. Scale bar (a), (b), (c): 500 µM (d) Intracellular ATP content 
of co-cultured islets. White bar represents day 0. The black bar on the left represents the islets-only control group on day 4, whereas 
that on the right represents islets co-cultured with AT-MSCs on day 4. *There are significant differences between the islets-only control 
group and the islets co-cultured group (P < .05). (e) Blood glucose levels after islet transplantation into the kidney capsule of STZ- 
induced-diabetic mice are shown. Straight line is UW group. Dashed line is non-transplanted group. Dotted line is UW and AT-MSC 
secretions group. Data are representative of three independent experiments.
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Evaluation of co-culture of degraded porcine islets 
with porcine AT-MSCs
We used a Boyden chamber to examine the activa-
tory effect of porcine AT-MSCs on degraded por-
cine islets in co-culture. At 4 days, the co-cultured 
islets had regained their morphology and strong 
DTZ positivities (Figure 2(a)); however, the islet- 
only control group had further degraded 
(Figure 2(b)). The morphology of the co-cultured 
MSCs has changed due to the use of serum-free 
medium (Figure 2(c)). The concentration of intra-
cellular ATP had also recovered in the co-cultured 
islets (Figure 2(d)), whereas it had not in the islet- 
only control group (170.7% ± 39.1% vs. 85.4% ± 
23.6%). This suggests an important islet activatory 
role for factors secreted by AT-MSCs.

Functionality of the preserved islet in STZ-induced 
diabetic mice
Approximately 200 IEQs were transplanted into the 
left kidney capsule of newly diabetic NOD-scid 
mice. Mice receiving islets preserved in AT-MSC 
secretion-conditioned medium in UW or fresh 
showed better glycemic control than those that 
received UW only preserved porcine islet 
(Figure 2(e)). Additionally, a recurrence of hyper-
glycemia was evident in nephrectomized mice, 
which suggests that the diabetic condition was 

reversed upon porcine islet transplantation and 
reappeared when the graft was removed. Thus, the 
UW and AT-MSC secretion-conditioned medium 
preserved islets functioned therapeutically in vivo 
and their transplantation ameliorated the effects of 
STZ-induced diabetes in mice.

Activation of degraded porcine islets by porcine 
AT-MSC secretions
We fractionated the AT-MSC secretion- 
conditioned medium into five fractions by molecu-
lar size and treated islet samples with the individual 
fractions by adding them to the islet culture med-
ium. Islet condition deteriorated when treated with 
the 3–10 kDa or 30–50 kDa fractions compared 
with controls (Figure 3(a)). However, when treated 
with the 10–30 kDa fraction or the fractions above 
50 kDa, the islets retained their structure at 4 days. 
The intracellular ATP content of the cultured islets 
also recovered in those treated with the 10–30 kDa 
fraction or the fractions above 50 kDa. However, 
intracellular ATP content in the groups adminis-
tered the 3–10 kDa or 30–50 kDa fractions 
decreased compared with the control group 
(Figure 3(b)). Thus, we found that factors capable 
of activating degraded islets were present in the 
fractions containing secretions with molecular 
weights between 10 and 30 kDa and above 50 kDa.

Figure 2. Continued.
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Histological analysis
We analyzed the activation of porcine islets by the 
factors secreted by AT-MSCs with immunohisto-
chemistry. First, activated porcine islets were stained 
with markers for functionality (INS and PDX1) and 
proliferation cells (pancreatic-like stem cells) (Ki67 
and PCNA) and then examined under a fluorescence 
microscope (Figure 4(a)). In the group treated with 

the 10–30 kDa fraction, we observed a lot of cells 
strongly positive for INS and PDX1; we also 
observed some INS- and PDX1-positive cells in the 
groups treated with the fractions above 50 kDa. In 
contrast, the numbers of INS- and PDX1-positive 
cells in the groups treated with the 3–10 kDa and 
30–50 kDa fractions were decreased compared with 
the control group. Ki67- and PCNA-positive cells 

Figure 3. Comparison of porcine islet condition after treatment with various fractions of porcine adipose-tissue mesenchymal stem cell 
(AT-MSC) secretions. (a) Microscopic morphology of isolated islets after treatment with various fractions of AT-MSC secretions. (b) 
Intracellular ATP content of each sample of cultured islets after treatment with various fractions of AT-MSC secretions. Intracellular ATP 
content in the groups administered the 3–10 kDa or 30–50 kDa fractions decreased compared with the control group. Scale bar: 
500 µm.
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were observed in the central areas of islets treated 
with the 10–30 kDa fraction or the fractions above 50 
kDa. These positive cells were more abundant in the 
group treated with the 10–30 kDa fraction. Thus, we 
found that treatment with fractions containing secre-
tions with molecular weights between 10 and 30 kDa 
and above kDa increased the expression of markers 
related to islet function and proliferation.

Tight junction proteins play an important role in 
the maintenance of islet structure, so we stained 
activated porcine islets with anti-ZO1 and anti- 

Claudin-3 antibodies (Figure 4(b)). In the groups 
treated with the 10–30 kDa fraction or the fractions 
above 50 kDa, a stable islet structure was observed 
together with ZO1 and Claudin-3 expression. 
However, in the groups treated with the other frac-
tions, ZO1 and Claudin-3 expression was low. In 
addition, the apoptosis marker Cas-3 was expressed 
in the groups treated with the 3–10 kDa or 30–50 
kDa fraction (Figure 4(b)). Previously reported that 
PDX-1 negative islet cells have been shown to 
undergo apoptosis.28

Figure 4. Immunostaining of porcine islets activated by various fractions of porcine adipose-tissue mesenchymal stem cells secretions. 
(a) Evaluation of markers of function and pancreatic stem cells. (b) Evaluation of tight-junction proteins and apoptosis. These samples 
are serial sections.
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Discussion

Recent reports have focused on the induction of 
insulin-secreting cells comparable to βαcells from 
human-derived embryonic stem (ES) cells and 
induced pluripotent stem (iPS) cells in vitro.29–32 

ES cells and iPS cells have enormous potential; how-
ever, limitations, such as teratoma formation fol-
lowed by tumor genesis and immunogenicity, as 
well as a range of ethical issues, are preventing 
them from being applied clinically. Somatic stem 
cells such as MSCs have also been used to induce 
insulin-secreting cells in vitro.33,34 MSC-derived 
insulin-secreting cells present a low risk for tumor 
genesis and do not raise any ethical issues; however, 
the clinical application of stem cell-derived insulin- 
secreting cells is still a long way off. Therefore, 
patients with severe diabetes are currently treated 
by through the transplantation of pancreatic tissue 
or islets from brain-dead donors.

For the quality and quantity of islets from a single 
donor to be sufficient to cure one recipient in terms of 
therapeutic effect, the purification rate of isolated 
islets, and the processes of islet recovery after isolation 
and maintenance of islet viability must all be 
improved. To resolve these issues, many researchers 
have investigated and reported on the use of a range of 
materials and protocols.35–42 Our method here is little 
influenced by the condition of the donor pancreas 
because we use factors secreted by MSCs that restore 
islets injured during shipping and/or culturing before 
transplantation. In preliminary experiments (data not 
shown), we shipped a sample of human islets (n = 1) 
kept in common preservation solution from the 
United States to Japan. We then cultured the islets 
in standard medium containing factors secreted by 
human MSCs, and the result was similar to that of the 
present study regarding porcine islets. In Japan, 
CMRL solution is not so common and only available 
for clinical shipping. Furthermore, for the islets ship-
ping solution, have been made reports still different 
from several research facility, it does not have reached 
the consensus. In our preliminary verification, the 
UW solution was not inferior to the islets-culture 
medium (CMRL or equivalent) in storage effective-
ness. Additionally, several studies have been reported 
that experimentally verified the benefits of using UW 
solution not only for organs but also for islet 
preservation.43

Cell-based therapy is now viewed as an impor-
tant tool in regenerative medicine.37,38 Previous 
reports have revealed that transplantation of 
MSCs in mice and rats has functional benefits, in 
part because of the ability of these cells to produce 
a large amount of bioactive factors.20,21 MSCs dis-
play self-renewal capacity and multilineage poten-
tial that is they have the potential to differentiate 
into bone, fat, or cartilage cells44,45 and MSC-like 
cells have been found in isolated human islets.46,47 

Among the numerous molecules that have been 
proposed to induce β-cell expansion, hepatocyte 
growth factor has received much attention. There 
is increasing evidence suggesting that hepatocyte 
growth factor (about 83 kDa) and insulin-like 
growth factors (about 29 kDa) play an important 
role in the proliferation and survival of pancreatic 
β-cells both in vitro and in vivo.48,49 We think that 
candidate effectors for activating degraded islets are 
hepatocyte growth factor, insulin-like growth fac-
tor, and the transforming growth factor because 
previous reports have suggested that these cyto-
kines are factors for the activation of pancreas 
and/or β cells.50–52

In conclusion, we found that certain fractions of 
the factors secreted by MSCs were able to activate 
preserved islets. By using these factors, it should be 
possible to restore islets to the condition they were 
in prior to isolation and transportation. This is 
important for the shipping of islets for research 
purposes and is even more important for entire 
islet clinical preparations.

Materials and methods

Animals and islet isolation

Retired breeder porcines weighing approximately 
200 kg each were used as donors for all experiments 
as previously described.53 All animals used in this 
study were handled in accordance with the Guide 
for the Care and Use of Laboratory Animals published 
by the National Institutes of Health.54 Isolation of 
porcine islets was performed at Tohoku University 
as previously described,55–57 with minimal modifica-
tions. Purified islet fractions were pooled and cultured 
in CMRL 1066 medium (Biochrom, Berlin, Germany) 
supplemented with 20% porcine serum, 2 mM 
N-acetyl-L-alanyl-L-glutamine, 10 mM HEPES, 100 
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IU/mL penicillin (GIBCO, Tokyo, Japan), 100 μg/mL 
streptomycin (Biochrom), and 20 μg/mL ciprofloxa-
cin (Bayer, Leverkusen, Germany) at 37°C in 
a humidified atmosphere containing 5% CO2. The 
medium was subsequently changed to UW solution 
and the islets translocated to a 1.5-mL Eppndorf tube, 
which was then put into a Styrofoam container and 
transported by refrigerated truck to Jichi Medical 
University, Tochigi, Japan. The porcine islets take 
about 20 hours to refrigerate and transport the iso-
lated to the Jichi Medical University.

Adipose tissue-derived MSC preparation and culture

Kusabira-Orange transgenic porcine-derived adi-
pose tissue was minced with scissors and scalpels 
into pieces less than 1 mm in diameter. After gentle 
shaking of the minced tissue with an equal volume 
of phosphate-buffered saline (PBS[–]), the mixture 
was separated into two phases. The upper phase 
(the phase containing stem cells, adipocytes, and 
blood) was enzymatically dissociated with 0.125% 
collagenase (type I) in PBS[–] for 1.5 h at 37°C with 
gentle shaking. The dissociated tissue was mixed 
with an equal volume of MEMα (GIBCO, Tokyo, 
Japan) supplemented with 10% fetal bovine serum 
(GIBCO, Tokyo, Japan), and incubated for 10 min 
at room temperature. The solution was left to sepa-
rate into two phases in a few minutes. The lower 
phase was centrifuged at 1,200 rpm for 5 min at 
20°C to isolate the AT-MSCs. The AT-MSCs were 
then seeded into 100-mm tissue culture dishes 
(Thermo Scientific, Tokyo) and cultured in 
MEMα supplemented with 10% fetal bovine 
serum. When the cells were 70% to 80% confluent, 
they were harvested with 0.05% trypsin-EDTA 
(Invitrogen, Tokyo), replated at 2.0 × 104 cells/ 
cm2, and cultured in MEMα supplemented with 

10% fetal bovine serum at 37°C for 5 days. AT- 
MSCs between the fifth and eighth passages were 
used for the experiments.

Characterization of porcine AM-MSCs

Analysis of stem cell markers genes and differentia-
tion ability in porcine AT-MSCs. Total RNA (0.5 g) 
was reverse-transcribed using the SuperScript III 
Reverse Transcriptase (Invitrogen, Tokyo, Japan) 
according to the manufacturer’s guidelines. PCR 
analyses were performed using the AmpliTaq Gold 
kit (Applied Biosystems, Tokyo, Japan). The PCR 
primer sequences are listed in Table 1. The differ-
entiation potential of porcine AT-MSCs (passage 8) 
into adipocytes and osteocytes was evaluated using 
differentiation-induction media purchased from 
Lonza Walkersville, Inc. (http://www.lonza.com) 
according the manufacturer’s protocols.

Production of conditioned medium

To analyze the factors secreted by AT-MSCs, we 
prepared a conditioned medium. AT-MSCs were 
plated into thirty 100-mm tissue culture dishes. 
Once they had reached confluence, the cells were 
washed with PBS[–] and incubated in serum-free 
MEMααmedium (GIBCO). After 2 days, the super-
natant was collected and then centrifuged, filtered, 
and concentrated at 12,000 rpm using Amicon 
Ultra centrifugal filters (Millipore, Tokyo, Japan; 
molecular weights 3, 10, 30, 50, and 100 kDa).

Immunohistochemical analysis of preserved islets

Islet samples were cultured for 4 days at 37°C in an 
atmosphere of 5% CO2, before being fixed in 10% 
formalin and embedded in paraffin. Histological ana-
lysis was conducted by serial tissue section followed 
by staining with hematoxylin and eosin for conven-
tional morphological evaluation or with anti-INS-1 
(sc-7839, Dilute 150 times), anti-PDX-1 (sc-14662, 
Dilute 150 times), anti-Ki67 (E1870, Dilute 200 
times), anti-PCNA (sc-7970, Dilute 200 times), anti- 
ZO1 (HP9044, Dilute 100 times), or anti-Claudin-3 
(sc-17662, Dilute 100 times) antibodies. Rhodamine- 
or FITC-conjugated secondary antibodies were 
applied for 30 min (Santa Cruz Biotechnology, 
Dilute 2000 times). Nuclei were stained with DAPI.

Table 1. Primer list.
Primer Name Accession No Sequence

CD29 Forward NM213968 5�-ACAGTGAAGACATGGACGCT-3’
CD29 Reveres 5�-CAGGTCTGACACATCTCACA-3’
CD45 Forward AY444866 5�-TCCAGAATGCGTCACTCTGA-3’
CD45 Reveres 5�-TTGAATGTGAGGCAGACTCC-3’
CD105 Forward NM214031 5�-CTTTGTGCAGGTGAGCATGT-3’
CD105 Reveres 5�-TGCAGTCTTGTGGACATCCA-3’
βActin Forward NM007393 5�-AGAGCAAGAGAGGTATCCTG-3’
βActin Reveres 5�-GCAGAAGCCTAGTTGGATCA-3’
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Measurement of ATP

ATP was measured by means of an ATP 
Bioluminescence Assay Kit CLS II (Roche 
Diagnostics, Tokyo, Japan), as per the manufac-
turer’s instructions. Luminescence was measured 
with a Mithras LB940 multimode microplate reader 
(Berthold, Tokyo, Japan). The total amount of ATP 
was normalized for total protein level using a Pierce 
BCA Protein Assay Kit (TaKaRa, Kyoto, Japan).

Streptozotocin-induced diabetic mice

STZ (Sigma, Tokyo, Japan) was prepared in citrate 
buffer (pH4.5) and delivered by intraperitoneal 
injection (50 mg/kg) for 5 consecutive days before 
transplantation. Mice with blood glucose levels 
>400 mg/dl were considered as diabetic.

Analysis of preserved porcine islets for diabetic mice

The porcine islets were cultured in preservation 
solution (UW contacting AT-MSC secretion- 
conditioned medium or UW only) at 4°C. After 
24 h, preserved islets were injected under the kid-
ney capsule. An incision was made in the renal 
capsule and advanced in the subcapsular space, to 
the kidney. Isolated porcine islets were slowly 
injected and allowed to spread at the pole. The 
blood glucose level was checked at days 0, 1, 2, 3, 
7, 14, and 21. After 14 days, the prince islet contain-
ing transplanted kidney was resected, and monitor-
ing of blood glucose continued 7 days.

Statistical analysis

Data are presented as means ± SEM. Results were 
analyzed by using a two-tailed Student’s t-test. 
A P value of less than 0.05 was considered significant.
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