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ABSTRACT

Transcriptional regulation enables cells to respond
to environmental changes. Of the estimated 304 can-
didate transcription factors (TFs) in Escherichia coli
K-12 MG1655, 185 have been experimentally iden-
tified, but ChIP methods have been used to fully
characterize only a few dozen. Identifying these re-
maining TFs is key to improving our knowledge of
the E. coli transcriptional regulatory network (TRN).
Here, we developed an integrated workflow for the
computational prediction and comprehensive exper-
imental validation of TFs using a suite of genome-
wide experiments. We applied this workflow to (i)
identify 16 candidate TFs from over a hundred un-
characterized genes; (ii) capture a total of 255 DNA
binding peaks for ten candidate TFs resulting in six
high-confidence binding motifs; (iii) reconstruct the
regulons of these ten TFs by determining gene ex-
pression changes upon deletion of each TF and (iv)
identify the regulatory roles of three TFs (YiaJ, YdcI,
and YeiE) as regulators of L-ascorbate utilization, pro-
ton transfer and acetate metabolism, and iron home-
ostasis under iron-limited conditions, respectively.
Together, these results demonstrate how this work-

flow can be used to discover, characterize, and eluci-
date regulatory functions of uncharacterized TFs in
parallel.

INTRODUCTION

Transcription factors (TFs) modulate gene expression in re-
sponse to environmental perturbations by interacting with
a combination of sigma factors, RNA polymerase (RNAP),
activating metabolites, and inorganic compounds. These
signals collectively lead TFs to bind to specific DNA se-
quences referred to as binding sequence motifs (1). Mi-
croorganisms, therefore, can quickly adapt to diverse and
extreme environmental conditions. In transcriptional regu-
lation, genes are indirectly or directly regulated by one or
more TFs. A set of genes directly controlled by the same
TF are considered to belong to a regulon (2), with the com-
plete set of regulons forming the transcriptional regulatory
network (TRN).

Databases such as EcoCyc (3,4), RegulonDB (5), and
TEC (6) maintain large amounts of information about TFs.
However, a complete TRN for individual organisms still
does not exist due to challenges outlined below.

Identifying all TFs

The genome-scale annotation of genes is required for the
identification of the complete set of TFs. The emergence of
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high-throughput DNA sequencing has created a large num-
ber of candidate protein-encoding DNA sequences, lead-
ing to an increased demand for the discovery and annota-
tion of protein functions. However, assigning a physiolog-
ical function to the sequenced but uncharacterized genes
is still a substantial challenge (7,8). For example, although
Escherichia coli K-12 MG1655 has one of the most widely-
studied genomes, a functional annotation is still missing for
approximately 30% of its genes (9). This lack of annota-
tion includes an estimated 50–80 uncharacterized TFs in
E. coli K-12 MG1655 (6). The percentage of uncharacter-
ized genes in other strains is even higher. Thus, a new work-
flow is needed to predict and validate a complete set of TFs
in prokaryotes.

Characterizing transcription factor binding sites (TFBS)

Genome-wide characterization of TFBS is essential for
the reconstruction of a global TRN. Despite a significant
amount of knowledge about microbial TFs in databases and
the literature, the binding activities of many TFs remain to
be discovered. Traditionally, TFBS are identified through
approaches such as DNase I footprinting and electromobil-
ity shift assays, which are limited to the interactions between
TFs and single targets (10). With advances in genome-wide
research technologies, many TFs have been experimentally
investigated using the systematic evolution of ligands by
exponential enrichment (SELEX) and chromatin immuno-
precipitation with microarray (ChIP-chip) or by sequencing
(ChIP-seq) (6,11–16). Recently, the ChIP-seq protocol has
been combined with an exonuclease treatment (ChIP-exo)
to reflect in vivo regulatory interactions between TFs and
target genes at a single-base-pair resolution (17). Moreover,
ChIP-exo can be easily applied to investigate differential
binding patterns of the same TF under different environ-
mental conditions (18–20). Thus, ChIP-exo provides us with
a robust approach to characterize TFBS at the genome-
scale.

Reconstructing TRNs

Several computational approaches have been developed for
the reconstruction of the TRN, including the use of gene
expression data (21,22), regulon-based associations (23),
and integrated analysis with metabolic models (24). The
expression data-driven approach for TRN reconstruction
was widely used to predict transcription factor activities
in E. coli K-12 MG1655. Recently, we have supplemented
ChIP-exo with transcription profiling to describe the reg-
ulons of major TFs, including Cra, ArgR, Fur, OxyR,
SoxRS, OmpR, and GadEWX (20,25–29). Therefore, this
well-described approach is successfully applied to TRN re-
construction.

Here, we address these three challenges through the devel-
opment of an integrated computational and experimental
workflow to discover uncharacterized TFs in prokaryotes.
Using E. coli K-12 MG1655 as an example, we combined a
previously published computational approach with biolog-
ical knowledge to identify candidate TFs for experimental
validation. Given the resulting list of candidate TFs, we then
examined their DNA-binding domains, predicted their ac-

tive conditions, and performed an in vivo experimental val-
idation of predicted DNA-binding capabilities. This work-
flow resulted in the elucidation of the biological functions of
three uncharacterized TFs (YiaJ, YdcI, and YeiE) through
an in-depth analysis of mutant phenotypes. Together, these
results demonstrate the utility of our systematic identifica-
tion workflow and provide a roadmap for its use in other
organisms.

MATERIALS AND METHODS

Identification of candidate TFs

This workflow combined the previously published machine-
learning algorithm, TFpredict, with biological knowledge
to identify candidate TFs for experimental validation. TF-
predict was originally trained to predict whether a eukary-
otic protein was a TF (30). In brief, this algorithm takes a
protein sequence as input and outputs a quantified score in
the range [0,1] that represents the likelihood of the protein
being a TF, based on sequence homology; zero is unlikely,
one is very likely. In this study, TFpredict was applied to
predict candidate TFs in E. coli K-12 MG1655. To assess
whether the algorithm translates well from the eukaryotic
realm to bacteria, the data from the proteobacteria were
compiled for training. The details about the training data
are described below.

The proteobacteria protein sequences in UniProt were
filtered to meet the following criteria (31): (i) the protein
sequences have functional annotation for DNA-binding;
(ii) the proteins were reviewed as non-hypothetical; (iii) the
proteins were annotated by Gene Ontology (GO) term as
being related to the regulation of transcription or nucleic
acid binding transcription factor activity (32) and (iv) the
proteins were filtered out to exclude any protein sequences
that were annotated with non-TF keywords: kinase, ubiq-
uitin, actin, antigen, biotin, histone, chaperone, tubulin,
transmembrane protein, endonuclease, exonuclease, trans-
lation initiation factor (Supplementary Figure S1). TFpre-
dict was trained to rank order the candidate TFs. To evalu-
ate whether the algorithm generalizes from eukaryotes to
prokaryotes, model accuracy was rigorously assessed by
cross-validation (Supplementary Figures S2 and S3). The
results from the proteobacteria training set were compa-
rable to those obtained from the eukaryotic training set,
with a slight decrease in the area under the curve (AUC)
due to the much smaller size of training data used. The
large eukaryotic training sets result in similar prediction
performance for all validated machine learning approaches.
Hence, it is sufficient to choose the output of either ap-
proach. For the proteobacteria training set, performance
varied. Instead of choosing one of approaches, we used a
consensus of the output from all of the available approaches
to make the final prediction.

Additionally, the memory and run-time efficiency for
TFpredict were improved, and all code and data have
been made freely available on GitHub (https://github.com/
draeger-lab/TFpredict/tree/prokaryote). The example sec-
tion in the README summarizes the settings we used
to execute TFpredict. Documentation and installation in-
structions are provided on the GitHub page.

https://github.com/draeger-lab/TFpredict/tree/prokaryote
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The uncharacterized protein sequences of E. coli K-12
MG1655 were the input data for TFpredict. The output
from TFpredict was a rank-ordered list of proteins with
confidence scores; some sequences could not be assigned a
confidence score due to a lack of homologs. The primary se-
lection was made based on the confidence scores from TF-
predict. Next, further classification of the primary selection
was made based on the predicted interactions between can-
didates and DNA sequences. This process not only removed
some false positives but also provided group-specific strate-
gies to predict the experimental conditions for ChIP-exo.
Finally, an initial subset of 16 candidates was selected for
experimental validation.

Bacterial strains, media, and growth conditions

All strains used in this study are E. coli K-12 MG1655
and its derivatives, deletion strains and myc-tagged strains
(Dataset S2). For ChIP-exo experiments, the E. coli strains
harboring 8-myc were generated by a � red-mediated site-
specific recombination system targeting the C-terminal re-
gion as described previously (33). For expression profil-
ing by RNA-seq, deletion strains ΔydcI, ΔyeiE, ΔyafC,
ΔyiaJ, ΔyheO, ΔybaO, ΔybaQ, ΔybiH, ΔyddM and ΔyieP
were also constructed by a � red-mediated site-specific re-
combination system (34). For ChIP-exo experiments, glyc-
erol stocks of E. coli strains were inoculated into M9
minimal media (47.8 mM Na2HPO4, 22 mM KH2PO4,
8.6 mM NaCl, 18.7 mM NH4Cl, 2 mM MgSO4 and
0.1 mM CaCl2) with 0.2% (w/v) glucose. M9 minimal me-
dia was also supplemented with 1 mL trace element solu-
tion (100×) containing 1 g EDTA, 29 mg ZnSO4.7H2O, 198
mg MnCl2.4H2O, 254 mg CoCl2.6H2O, 13.4 mg CuCl2 and
147 mg CaCl2. The culture was incubated at 37◦C overnight
with agitation and then was used to inoculate the fresh me-
dia (1/200 dilution). The volume of the fresh media was 150
ml for each biological replicate. The fresh culture was incu-
bated at 37◦C with agitation to the mid-log phase (OD600 ≈
0.5). For RNA-seq expression profiling, glycerol stocks of
E. coli strains were inoculated into M9 minimal media with
the same carbon sources as used in the ChIP-exo experiment
for each candidate TF. The concentration of carbon sources
was 0.2% (w/v). M9 minimal media was also supplemented
with 1 ml trace element solution (100×). The culture was
incubated at 37◦C overnight with agitation and then was
used to inoculate the fresh media. The fresh culture was in-
cubated at 37◦C with agitation to the mid-log phase (OD600
≈ 0.5).

Measurement of bacterial growth

The effects of iron-limited conditions on cell growth were
examined by growing E. coli K-12 MG1655 and yeiE dele-
tion strain under four media treatments: (i) M9 minimal
glucose medium; (ii) M9 minimal glucose medium con-
taining 0.2 mM of the iron chelating agent 2,2′-dipyridyl
(DPD) (Fluka); (iii) M9 minimal glucose medium contain-
ing 0.3 mM of DPD; (iv) M9 minimal glucose medium con-
taining 0.4 mM DPD. Cells grown overnight on M9 mini-
mal glucose medium at 37◦C with agitation were inoculated
into these four kinds of fresh media. Aliquots of overnight

cell culture were diluted 1:200 into four types of fresh me-
dia, then were incubated at 37◦C with agitation.

Similarly, to measure growth rate on low pH or acetate
medium, the culture was incubated at low pH or acetate
medium at 37◦C overnight with agitation and then was used
to inoculate the fresh media (1/200 dilution). The volume of
the fresh media was 150 ml. The fresh culture was incubated
at 37◦C with agitation.

To measure growth on L-ascorbate, cells were grown
anaerobically in medium containing L-ascorbate as de-
scribed by the literature (35). Briefly, E. coli strains were
grown overnight on M9 minimal glucose medium, and the
cells were suspended in M9 salts medium. The aliquots were
adjusted to 1.0, and 100 �L aliquots were inoculated into
10 ml culture tubes (Fisher Scientific) that were filled to
the top with M9 minimal medium with a concentration of
20 mM L-ascorbate. Then the culture tubes were capped,
sealed with parafilm, and then incubated at 37◦C. All of
growth curves were measured by six independent experi-
ments at least and recorded by OD600 using Thermo BIO-
MATE 3S UV-visible spectrophotometer. The growth rate
was calculated with GrowthRates 2.0 (36). The significant
difference between wild type and deletion strain was deter-
mined by the Student’s t test, P < 0.01.

ChIP-exo experiment

ChIP-exo experimentation was performed following the
procedures previously described (37). In brief, to iden-
tify each candidate TF binding maps in vivo, the DNA
bound to each candidate TF from formaldehyde cross-
linked E. coli cells were isolated by chromatin immunopre-
cipitation (ChIP) with the specific antibodies that specif-
ically recognize myc tag (9E10, Santa Cruz Biotechnol-
ogy), and Dynabeads Pan Mouse IgG magnetic beads
(Invitrogen) followed by stringent washings as described
previously (38). ChIP materials (chromatin-beads) were
used to perform on-bead enzymatic reactions of the ChIP-
exo method (17). Briefly, the sheared DNA of chromatin-
beads was repaired by the NEBNext End Repair Mod-
ule (New England Biolabs) followed by the addition of a
single dA overhang and ligation of the first adaptor (5′-
phosphorylated) using dA-Tailing Module (New England
Biolabs) and NEBNext Quick Ligation Module (New Eng-
land Biolabs), respectively. Nick repair was performed by
using PreCR Repair Mix (New England Biolabs). Lambda
exonuclease- and RecJf exonuclease-treated chromatin was
eluted from the beads and overnight incubation at 65◦C re-
versed the protein-DNA cross-link. RNAs- and Proteins-
removed DNA samples were used to perform primer ex-
tension and second adaptor ligation with following mod-
ifications. The DNA samples incubated for primer exten-
sion as described previously were treated with dA-Tailing
Module (New England Biolabs) and NEBNext Quick Lig-
ation Module (New England Biolabs) for second adaptor
ligation. The DNA sample purified by GeneRead Size Se-
lection Kit (Qiagen) was enriched by polymerase chain reac-
tion (PCR) using Phusion High-Fidelity DNA Polymerase
(New England Biolabs). The amplified DNA samples were
purified again by GeneRead Size Selection Kit (Qiagen)
and quantified using Qubit dsDNA HS Assay Kit (Life
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Technologies). Quality of the DNA sample was checked by
running Agilent High Sensitivity DNA Kit using Agilent
2100 Bioanalyzer (Agilent) before sequenced using HiSeq
2500 (Illumina) following the manufacturer’s instructions.
The antibody (NT63, Biolegend) that specifically recognize
RNA polymerase � was used to conduct the ChIP-exo ex-
periment to detect the binding sites of RNA polymerase in
E. coli K-12 MG1655. Each modified step was also per-
formed following the manufacturer’s instructions. ChIP-exo
experiments were performed in biological duplicate.

RNA-seq expression profiling

Three milliliters of cells from mid-log phase culture were
mixed with 6 ml RNAprotect Bacteria Reagent (Qiagen).
Samples were mixed immediately by vortexing for 5 s, incu-
bated for 5 min at room temperature, and then centrifuged
at 5000g for 10 min. The supernatant was decanted and
any residual supernatant was removed by inverting the tube
once onto a paper towel. Total RNA samples were then iso-
lated using RNeasy Plus Mini kit (Qiagen) following the
manufacturer’s instruction. Samples were then quantified
using a NanoDrop 1000 spectrophotometer (Thermo Sci-
entific) and quality of the isolated RNA was checked by
running RNA 6000 Pico Kit using Agilent 2100 Bioanalyzer
(Agilent). Paired-end, strand-specific RNA-seq library was
prepared using KAPA RNA Hyper Prep kit (KAPA Biosys-
tems), following the instruction (39,40). Resulting libraries
were analyzed on an Agilent Bioanalyzer DNA 1000 chip
(Agilent). Sequencing was performed on a Hiseq 2500 se-
quencer at the Genomics Core facility of University of Cal-
ifornia, San Diego.

Peak calling for ChIP-exo dataset

Peak calling was performed as previously described (37). Se-
quence reads generated from ChIP-exo were mapped onto
the reference genome (NC 000913.2) using bowtie with de-
fault options to generate SAM output files (Dataset S3)
(41). MACE program was used to define peak candidates
from biological duplicates for each experimental condi-
tion with sequence depth normalization (42). To reduce
false-positive peaks, peaks with signal-to-noise (S/N) ra-
tio <1.5 were removed. The noise level was set to the top
5% of signals at genomic positions because top 5% makes
a background level in a plateau and top 5% intensities
from each ChIP-exo replicates across conditions correlate
well with the total number of reads (37,43,44). The calcu-
lation of S/N ratio resembles the way to calculate ChIP-
chip peak intensity where IP signal was divided by Mock
signal. Then, each peak was assigned to the nearest gene.
Genome-scale data were visualized using MetaScope (http:
//systemsbiology.ucsd.edu/Downloads/MetaScope).

Motif search from ChIP-exo peaks

The sequence motif analysis for TFs and �-factors was per-
formed using the MEME software suite (45). For YdcI,
YbiH, YbaQ, YeiE, YddM and YieP, sequences in bind-
ing regions were extracted from the reference sequence
(NC 000913.2).

Calculation of differentially expressed gene

Sequence reads generated from RNA-seq were mapped
onto the reference genome (NC 000913.2) using bowtie
with the maximum insert size of 1000 bp, and two maximum
mismatches after trimming 3 bp at 3′ ends (Dataset S4) (41).
SAM files generated from bowtie were then used for Cuf-
flinks (http://cufflinks.cbcb.umd.edu) to calculate fragments
per kilobase of exon per million fragments (FPKM) (46).
Cufflinks was run with default options with the library type
of dUTP RNA-seq and the default normalization method
(classic-fpkm). Expression with log2 fold change ≥ log2(1.5)
and q-value ≤ 0.05 or log2fold change ≤ –log2(1.5) and
q-value ≤ 0.05 was considered as differentially expressed.
Genome-scale data were visualized using MetaScope.

COG functional enrichment

The regulons were categorized according to their annotated
clusters of orthologous groups (COG) category (47). Func-
tional enrichment of COG categories in the target genes
was determined by performing a hypergeometric test, and
P-value < 0.05 was considered significant.

Structural analysis of candidate TFs

Homology models of the candidate transcription factors
YdcI, YeiE and YiaJ were constructed using the SWISS-
MODEL pipeline, which also carries out a prediction of
the oligomeric state of the enzyme (48). Multiple templates
were analyzed, and inference of the oligomeric state was
based on the reported interface conservation scores to ex-
isting complexes of similar sequence identity. The structures
were annotated using information in UniProt (31) and visu-
alized with VMD (49).

Phylogenetic tree analysis

The homolog sequences of candidate TF YdcI across
common Gram-negative strains were searched in NCBI
databases, to show the shared origin of them. The phylo-
genetic tree (neighbor-joining without distance corrections)
was generated by MUSCLE (50).

RESULTS

Establishing a workflow to discover uncharacterized tran-
scription factors

This workflow consisted of computational prediction,
knowledge-based classification, and experimental valida-
tion of candidate TFs at the genome-scale (Figure 1). TF-
predict is a machine learning algorithm that uses sequence
homology to predict whether a given protein is a TF (30).
The uncharacterized protein sequences in E. coli K-12
MG1655 were evaluated using the model trained by TF-
predict with the data from the proteobacteria (see Materi-
als and Methods). The output from TFpredict was a rank-
ordered list of uncharacterized candidates based on the like-
lihood of their being a TF (Dataset S1). The initial output
from TFpredict was reduced down to 474 primary candi-
dates by excluding the lowest confidence scores (arbitrary

http://systemsbiology.ucsd.edu/Downloads/MetaScope
http://cufflinks.cbcb.umd.edu
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Figure 1. The scheme of the systematic workflow for discovering uncharacterized transcription factors in E. coli K-12 MG1655. This workflow consists of
computational prediction, knowledge-based classification, and experimental validation. The uncharacterized gene sequences of E. coli K-12 MG1655 are
the input data for TFpredict. The output is a rank order list of genes with confidence scores. The primary selection is made based on the confidence scores
from TFpredict. Subsequently, the primary list of genes is categorized into three groups based on the confidence level of biochemical/biological roles. An
initial subset of 16 candidates was selected for experimental validation.Next, genome-wide binding sites were identified by ChIP-exo, and differential ex-
pression of their target genes was analyzed by RNA-seq. Finally, hypothesized functions of selected candidate TFs were inferred by comparing phenotypes
between wild type and TF knockout mutants.

cutoff value of 0.05) and proteins with no homologs (and
therefore no prediction from TFpredict).

To further exclude false positives, the primary candidates
were categorized into three groups based on the predicted
interactions between candidates and DNA sequences (Sup-
plementary Table S1). The first group contains candidates
whose interactions with DNA were studied in vitro with gel
shift assays (51) or SELEX (6,52), yet their in vivo biolog-
ical functions remain largely unknown. The second group
consists of candidates whose interactions with DNA could
be predicted according to a well-studied homologous TF in
a closely related strain. The third group includes candidates
without available information about the protein-DNA in-
teractions.

Considering that uncharacterized TFs are likely to be
expressed at low levels, especially at non-active conditions
(53), it is necessary to predict the conditions under which
uncharacterized TFs are active. This classification also sug-
gests the group-specific strategies to predict experimental
conditions for the downstream ChIP-exo experiment (Sup-
plementary Table S1). The activating conditions for can-

didate TFs could be inferred based on the characteriza-
tion of the interaction between candidates and DNA. For
the first group, the conditions were inferred based on bio-
chemical features of binding targets, e.g., a previous study
showed that yiaJ might be involved in the catabolism of
rare carbon sources (54). The conditions for the second
group were inferred from functional studies of a homolo-
gous TF in a closely related strain. For example, ydcI is a
highly conserved gene and is responsible for pH stress re-
sponse in Salmonella enterica serovar Typhimurium (55),
thus it is likely to function at similar conditions in E. coli
K-12, though it may play multiple biological roles. For the
third group, the conditions were inferred based on expres-
sion profiling data from the NCBI GEO repository (Sup-
plementary Figure S4) (56,57). If the expression level of the
candidate TF is relatively high under a particular condition,
it might be inferred as a test condition. The data showed
that yeiE is highly expressed in glucose medium compared
to other conditions. In this study, the characteristics of can-
didates were analyzed, and their active conditions were pre-
dicted accordingly.
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To prioritize the candidate TFs for experimental valida-
tion, an initial subset of 16 candidates was chosen from
three groups (Table 1). Next, to examine whether selected
candidates have DNA-binding peaks at the genome-scale,
ChIP-exo experiments were conducted at predicted con-
ditions. For those candidates having DNA-binding sites,
the expression profiles upon deletion of each TF were fur-
ther investigated. Combining DNA bindings from ChIP-
exo with gene expression, the hypotheses for the regulatory
functions of candidate TFs were formed. To further test
the hypotheses, mutant phenotypes were measured and then
analyzed under active conditions (Figure 1).

Capturing a genome-wide distribution of uncharacterized
transcription factors (TFs)

To validate the in silico predictions of candidate TFs, the
ChIP-exo experiment was employed to determine the in vivo
genome-wide DNA-binding events of each candidate dur-
ing growth under active conditions. The global binding pro-
files for all candidates were examined using the peak calling
algorithm MACE (58) and confirmed that 10 out of 16 were
DNA-binding proteins (Figure 2A). A total of 255 repro-
ducible binding peaks were identified for 241 unique bind-
ing sites (Dataset S5). Of the six unconfirmed candidates,
YagI and YjhU had high confidence scores (score > 0.8).
Therefore, it is possible that these proteins are TFs, but are
not active under the basal condition used here.

Compared to known global TFs, these ten uncharacter-
ized TFs exhibit some interesting regulatory features. First,
they have more intragenic binding peaks and fewer peaks lo-
cated within putative regulatory regions. The binding sites
from these confirmed TFs showed that only 41% (98 of 241)
were located in putative regulatory regions (promoters and
5′-proximal to coding regions). Second, individual unchar-
acterized TFs had fewer binding peaks than those of global
TFs such as CRP, Lrp, Fnr, and ArcA (12,59,60). Most of
the uncharacterized TFs have 3–25 binding sites under ac-
tive conditions, while global TFs in E. coli usually have more
than 40 binding sites. Third, the uncharacterized TFs bind
to more genes with putative functions (Supplementary Fig-
ure S5). Finally, the average expression level of these un-
characterized TFs is relatively lower than the majority of
global TFs. These observations are consistent with the pre-
vious study showing that TF position in the TRN hierarchy
network is correlated with its expression levels, its number
of target genes, and its scope of regulatory function (61).
TFs in the top hierarchy usually have high protein concen-
tration in the cell, and regulate a significant number of genes
of diverse functions. On the contrary, these candidate TFs
are likely located in the lower levels of the E. coli hierar-
chical TRN, and may regulate local specific physiological
functions instead of broad biological roles.

Next, for six of the ten confirmed TFs, the conserved
binding motifs were further analyzed using the MEME al-
gorithm (E-value < 10−10) (Figure 2B) (62). Interestingly,
the consensus binding motifs were palindromic, suggesting
a dimeric protein conformation. Specifically, the transcrip-
tional factor binding sites (TFBS) of YdcI and YbiH en-
close AT-rich inverted repeats separated by 7-nt. This find-
ing is consistent with the structural predictions (Supple-

mentary Table S2 and Supplementary Figure S6) that these
candidate TFs likely form homodimers or tetramers, which
facilitate tight binding to DNA molecules in the cell.

Interactions between uncharacterized TFs and RNA poly-
merase (RNAP)

A transcriptional repressor down-regulates transcription by
steric exclusion of RNAP from the promoter regions. To de-
termine the interaction between the uncharacterized TFs
and RNAP, the binding sites of the uncharacterized TFs
were compared with the –10 and –35 promoter elements oc-
cupied by RNAP. Three interaction modes were observed
based on their relative location: (i) downstream (D): TF
binds downstream of the –10 and –35 promoter region (Fig-
ure 3A); (ii) upstream (U): TF binds upstream of the –10
and –35 promoter region (Figure 3B) and (iii) overlap (O):
TF binding site coincides with the –10 and –35 promoter
region (Figure 3C). To further illustrate how different TF-
RNAP interaction modes may affect TF function, the regu-
latory effects on the target genes were characterized by their
differential expression in �TF strain with respect to WT.

To demonstrate how binding sites of uncharacterized TFs
interact with RNAP in vivo, four candidate TFs (YeiE,
YieP, YiaJ, YafC) were used as representatives, since they
showed a large number of binding sites. The most com-
mon binding mode for these transcription factors is down-
stream of the RNAP binding region. This binding mode
commonly results in the repression of the target gene (13/19
or 68%). For example, YeiE represses and binds down-
stream of the RNAP binding region of the gene dcuC (Fig-
ure 3A). However, the upstream binding mode is more com-
monly activated, as shown by yoaC (Figure 3B). Three of
the four binding sites that overlap with the RNAP bind-
ing location lead to the repression of the target genes serC,
yceA, and putA (Figure 3C). Genes having upstream, down-
stream, or overlap modes from these four representatives
mentioned earlier were determined (Figure 3D). This data
suggested that transcriptional regulation by uncharacter-
ized TFs are likely mediated by using steric exclusion mech-
anisms, though this pattern is not always true, as in gltF,
rpmI, ilvN, and htpG. It is possible that other TFs are in-
volved in the regulation of these target genes (Supplemen-
tary Figure S7) (63–66). Together, these data demonstrated
that different sets of uncharacterized TFs have similar regu-
latory mechanisms, though they may have different biolog-
ical functions.

To confirm the regulatory roles of candidate TFs, three
of ten candidates identified by ChIP-exo (YiaJ, YdcI, YeiE)
from three different groups were selected for further analy-
sis, respectively. These three case studies illustrate how ex-
perimental observations from ChIP-exo and RNA-seq can
be used to infer regulatory functions of a candidate TF. The
binding sites of YiaJ and YdcI directly indicated their po-
tential functions, so mutant phenotypes were used to val-
idate biological roles. The genome-wide binding sites for
YeiE showed that it is involved in diverse biological pro-
cesses. Therefore, integration of expression profiling data
with ChIP-exo was used to infer its potential roles in ad-
dition to mutant phenotype validation.



10688 Nucleic Acids Research, 2018, Vol. 46, No. 20

Table 1. Category of uncharacterized transcription factors in this study

Candidate
TFs Locus Family typea

Protein size
(# amino
acids)

TFpredict
score

Target genes identified
previouslyb

Target genes identified in this
study

Group I
YiaJ b3574 IclR 282 1.0 157 binding sites Supplementary Figure S7
YagI b0272 IclR 252 1.0 yagA, yagE N/A
YbiH b0796 TetR 223 0.98 ybiH, rhlE Supplementary Figure S7
Group II
YdcI b1422 LysR 307 1.0 N/A Supplementary Figure S8
YbaO b0447 AsnC 152 0.06 tdcG, yfdV, yfjI, yhaO Supplementary Figure S8
Group III
YeiE b2157 LysR 293 1.0 N/A Supplementary Figure S9
YjhU b4295 N/A 328 1.0 N/A N/A
YafC b0208 LysR 304 0.96 N/A Supplementary Figure S9
YihY b3886 N/A 290 0.91 N/A N/A
YieP b3755 GntR 230 0.38 N/A Supplementary Figure S9
YddM b1477 Xre 94 0.34 N/A Supplementary Figure S9
YiaG b3555 Xre 96 0.31 N/A N/A
YbaQ b0483 Xre 113 0.06 N/A Supplementary Figure S9
YjdC b4135 TetR 191 0.05 N/A N/A
YchA b1214 N/A 269 0.05 N/A N/A
YheO b3346 Xre 240 0.06 N/A Supplementary Figure S9

acandidate TFs are classified into 54 families based on the DNA-binding motifs (6);
bTarget genes identified previously are from Regulon DB and TEC database (https://shigen.nig.ac.jp/ecoli/tec/top/);
Abbreviations: N/A: no available information.
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Case I: YiaJ regulates genes that are responsible for the uti-
lization of L-ascorbate

Group I contains candidates whose biochemical activities
were studied in vitro, yet their in vivo biological functions
still remain unclear. One of the candidates is YiaJ, which
has been studied in vitro by gel mobility shift assays (35,67).
However, in vivo analysis of direct interactions between YiaJ
and DNA in E. coli has not been reported. In this study, we
found that there were two binding peaks between the yiaJ

and yiaKLMNOPQRS (yiaK-yiaL-yiaM-yiaN-yiaO-lyxK-
sgbH-sgbU-sgbE) operon (Figure 4A and Supplementary
Figure S8). One binding peak suggested autogenous regu-
lation and the other showed that YiaJ binds to a promoter
region of the yiaK-S operon, which occupied the position
of RNAP. We compared the expression data of the yiaK-
S operon in the wild type and yiaJ deletion strain (Fig-
ure 4B) and found that the expression of the operon yiaK-
S was highly up-regulated in the deletion strain. This re-

https://shigen.nig.ac.jp/ecoli/tec/top/
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Figure 3. Transcriptional regulation by the position of uncharacterized
TFs relative to the binding of RNA polymerase (RNAP), using binding
sites from YeiE, YieP, YiaJ, and YafC as representatives. (A) In the case
of dcuC, YeiE-binding is located downstream of the promoter. (B) YeiE
binds to the upstream site of the yoaC. (C) YeiE-binding region upstream
of serC overlaps with the promoter occupied by RNAP. (D) The binding
positions of YeiE, YieP, YiaJ, and YafC from the promoter are categorized
according to the gene regulation. The abbreviations, D, U, and O indicate
the downstream, upstream, and overlapped position, respectively. R and
A indicate the regulation modes: repression and activation, respectively.

sult suggests the repression function of YiaJ on the yiaK-
S operon. A previous study showed that YiaJ might be in-
volved in the utilization of an uncommon carbon sugar (54).
To further identify the substrate catabolized by the yiaK-
S operon, we compared the products of the yiaK-S operon
with the known operon ulaABCDEF encoding for catabolic
enzymes in the utilization of L-ascorbate, and found that the
yiaK-S operon encodes similar catabolic enzymes in the L-
ascorbate degradation pathway. Thus, we proposed the reg-
ulatory role of YiaJ in E. coli, based on the products of
the yiaK-S operon (Figure 4C). When L-ascorbate is im-
ported and converted to L-ascorbate-6-phosphate by the
phosphotransferase system (PTS) in E. coli K-12 MG1655,
expression of YiaJ would be repressed. Subsequently,
lyxK, sgbH, sgbU, and sgbE encode four metabolic en-
zymes, L-xylulose kinase, gulonate-6-phosphate, L-xyluose-
5-phosphate-3-epime, and L-ribulose-5-phosphate-4-epime,
respectively. They can eventually metabolize L-ascorbate-
6-phosphate to D-xylulose-5-phosphate. Thus, E. coli
could ferment L-ascorbate using a branch of the pentose
metabolic pathway (35).

To verify the function of the repressor YiaJ, the growth
profiles of the wild type and the yiaJ deletion strain were
measured in L-ascorbate medium. The data showed that the
deletion of gene yiaJ allowed more rapid utilization of L-

ascorbate and reduced the lag phase compared to wild type
(Figure 4D). Furthermore, growth profiles suggested that
the yiaJ deletion strain allowed cells to grow on L-ascorbate
medium under microaerobic conditions, while the wild type
could not. This confirmed that YiaJ is a repressor of operon
yiaK-S and that it influenced growth under microaerobic
conditions.

Case II: YdcI is a transcription factor involved in pH home-
ostasis and acetate metabolism

Group II consists of highly conserved candidate TFs, which
were studied in a closely related species. The regulatory
function of the LysR-type regulator YdcI in E. coli K-
12 MG1655 has not been studied with experimental ap-
proaches (6). Thus, a ydcI myc-tagged strain was con-
structed to detect 18 binding sites using ChIP-exo (Supple-
mentary Figure S9).

Previous studies showed that YdcI is responsible for acid
stress resistance in Salmonella enterica (55). The protein
identity of YdcI was analyzed among multiple strains across
Gram-negative bacteria, which showed that YdcI encodes
a highly conserved protein with related homologs present
in a range of Gram-negative bacterial genera (E. coli K-12
MG1655, S. enterica, K. pneumoniae, and S. flexneri) (Fig-
ure 5A, Supplementary Figure S10). Notably, YdcI from
E. coli K-12 MG1655 shares 80% of its identity with that
from Salmonella enterica. Given that the function of a pro-
tein is tightly associated with its sequence, we can hypoth-
esize that YdcI has similar biological roles in E. coli K-12
MG1655.

To test our hypothesis, ChIP-exo experiments for YdcI
were conducted at different pH conditions (Figure 5B). Un-
der low pH conditions, YdcI bound to 16 locations, and
two-thirds of these binding peaks were found in intergenic
regions. Under neutral or high pH conditions, YdcI bound
to all sites identified at low pH conditions but had differen-
tial binding intensity. Thus, the ratio of signal to noise (S/N)
was analyzed. The data showed that YdcI had the highest
average binding intensity at high pH medium (Figure 5C).
More important, we found that four of the intergenic tar-
get genes (nhaA, dtpA, lldP, and gltP) encode proton trans-
porters, which play important roles in the acidic/alkaline
conditions. Especially, as a major cation/proton antiporter,
NhaA reveals a prominent role in alkaline pH homeostasis
(68). Therefore, the growth phenotypes of the ydcI deletion
strain were examined at low pH, neutral pH, and high pH
media (Figure 5D). At pH 5.5 or pH 8.5, the ydcI deletion
strain showed significant growth defects compared to the
wild type. However, there was no defect observed at neutral
pH conditions. These data confirmed that YdcI is required
to maintain physiological activity at acidic/alkaline condi-
tions in E. coli.

Additionally, there were two binding sites in the proxim-
ity of known ncRNAs (Supplementary Figure S11A and
B). In panel A, YdcI binding regulates the transcription of
nhaA encoding Na:H+ antiporter. There is a small RNA
sokC annotated as antisense RNA sokC blocking mokC
and hokC (69). In panel B, YdcI binds to the promoter
region of yobA. At the downstream of the binding event,
there is a small RNA sdsR, which is the base-pair with
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BA C D

Figure 4. The regulatory role of the uncharacterized TF YiaJ is involved in the utilization of L-ascorbate in E. coli K-12 MG1655. (A) YiaJ binding sites
at the promoter region between yiaJ and the yiaKLMNO-lyxK-sgbH-sgbU-sgbE operon. (B) Expression changes for genes in the yiaJ deletion strain in
the yiaKLMNO-lyxK-sgbH-sgbU-sgbE operon compared to the wild type strain. (C) The proposed function of YiaJ is to repress the ascorbate utilization
pathway, therefore regulating the level of D-xylulose-5-P that feeds into the pentose phosphate pathway. (D) Growth curve of wild type and yiaJ deletion
strains at ascorbate as the carbon source under anaerobic and microaerobic conditions, respectively.

some part of mutS coding region. Deletion of sdsR de-
creases ampicillin-induced mutagenesis (70). Overexpres-
sion of SdsR decreases biofilm development and swarming
motility (71). This data showed that no YdcI binding was
found upstream of ncRNAs, indicating that YdcI does not
directly regulate ncRNAs.

YdcI has another important binding site at the gene gltA,
which encodes a citrate synthase in E. coli K-12 MG1655. It
is induced and becomes the rate-limiting step for the TCA
cycle when acetate is the sole carbon source (72,73). A pre-
vious study hypothesized that YdcI may regulate the car-
bon flux in the TCA cycle through gltA expression (74). To
test this hypothesis, the growth of E. coli WT and the ydcI
deletion strain were compared in acetate medium (Figure
5E). The ydcI deletion strain grew significantly faster than
the wild type, showing that YdcI represses the gene gltA.
The acetate uptake rate increased upon ydcI deletion com-
pared to WT using high-performance liquid chromatogra-
phy (HPLC), which confirmed that YdcI is also involved in
regulating the carbon flux in the TCA cycle.

Case III: YeiE is a transcription factor that is involved in iron
homeostasis

Group III includes candidates with neither biochemical
characterization nor biological function prediction. Among
them, the global binding profile of LysR-type YeiE showed
over 100 binding sites across the E. coli K-12 MG1655
genome (Supplementary Figure S12) (6). Target genes of
YeiE are involved in diverse biological processes, including
transport and metabolism, cell wall/membrane biogenesis,
signal transduction, and transcriptional regulation (Figure
6A). Furthermore, functional classification showed that ap-
proximately 42% (43 /102) of YeiE bindings are involved
in main transport processes, including amino acids, carbo-
hydrate, and inorganic ions, though it is not significantly
enriched in any functional group. This data suggests that
YeiE may play multiple biological roles in E. coli K-12
MG1655. To further investigate the potential functions of
YeiE, the expression profiles of the �yeiE strain were exam-
ined. Three Clusters of Orthologous Groups (COGs) func-
tional groups were significantly (P-value < 0.01) associated
with the functions of YeiE: energy production and conver-

sion, amino acid transport and metabolism, and inorganic
ion transport and metabolism (Supplementary Figure S13).
Notably, many metal ion homeostasis-related genes, such as
entS, entC, cirA, fhuA, fhuF, fepB, and feoA, were down-
regulated in the yeiE deletion strain (Figure 6B). These re-
sults suggest that YeiE may be involved in the iron-uptake
regulation pathway.

To examine the role of YeiE in inorganic ion transport
and metabolism, the growth profiles of the wild type and
yeiE deletion strain were measured in M9 medium with or
without iron chelator (Figure 6C). There was no appreciable
difference between the growth profiles of the two strains in
the iron-rich condition without iron chelator. With 0.2 mM
of the iron chelator (2,2′-dipyridyl, DPD), the yeiE dele-
tion strain grew slower than the wild type in the early-mid
log phase. As cells entered into late log phase, different
growth curves were observed. The differences in the station-
ary phase between the wild-type and yeiE deletion strain in-
creased with the concentration of iron chelator in the media.
When the concentration of iron chelator reached 0.4 mM,
neither strain could enter the log phase. The fact that this
growth defect was only observed under iron-limited condi-
tions suggested that YeiE is involved in iron-uptake path-
ways under these conditions.

DISCUSSION

The characterization of a transcriptional regulatory net-
work (TRN) is an essential step in our understanding of or-
ganism function and evolution. A critical limitation of this
step is that a complete set of characterized TFs for an in-
dividual organism does not exist. Here, this was addressed
by the development of an integrated bioinformatic and ex-
perimental workflow. This workflow was applied to E. coli
K-12 MG1655, one of the most well-studied organisms. Ten
previously uncharacterized TFs were discovered in vivo. The
regulon for each novel TF was reconstructed, and the phys-
iological roles for three of them were determined; YiaJ is in-
volved in the utilization of L-ascorbate (Figure 7A), YdcI is
involved in proton and acetate metabolism (Figure 7B and
C), and YeiE is involved in iron uptake under iron-limited
conditions (Figure 7D). Also, in vivo binding patterns of
YbiH and YbaO were consistent with the genomic SELEX
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Figure 5. The regulatory role of the uncharacterized TF YdcI is involved in proton and acetate metabolism in E. coli K-12 MG1655. (A) Phylogenetic trees
displaying the relatedness of YdcI from E. coli K-12 MG1655 and from Salmonella enterica. (B) Genome-wide YdcI DNA binding. YdcI binding across the
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results, though the genome-wide binding profile of YbiH
showed some extra target genes (Supplementary Figure S8)
(75,76). This suggests that the binding patterns of some reg-
ulators are very consistent between in vivo and in vitro meth-
ods. The results of this study have several notable implica-
tions.

First, the ten newly identified TFs represent a 6% increase
to the 185 already known TFs. Furthermore, new knowl-
edge about the co-binding of candidate TFs and known
TFs was provided at the genome-scale (Supplementary Fig-
ure S7). This TF discovery workflow enables the system-
atic examination of the remaining putative TFs identified
by the initial computational step of the workflow. In this
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study, six of the examined candidate TFs were not found
to have any binding sites at test conditions. This failure
to identify binding sites could have happened for two rea-
sons: (i) our conditions did not activate these TFs (e.g., YagI
was recently identified as a regulator of xylonate catabolism
using the SELEX method in vitro (77)); and (ii) current
prediction algorithm methods may generate false-positive
candidates. Recently, the annotations of YihY and YchA
have been updated to putative inner membrane protein and
transglutaminase-like/TPR repeat-containing protein, re-
spectively, though their physiological functions remain un-
clear (3,78). However, it is still necessary to develop a sys-
tematic workflow to predict and validate TFs and improve
our knowledge of the TRN.

Second, differential expression data between wild type
and uncharacterized TF deletion strains allowed us to re-
construct new regulons. A regulatory network contain-

ing 47 new regulatory interactions was reconstructed be-
tween candidate TFs and their target genes (Supplementary
Figure S7). Specifically, more regulatory information was
added for 25 target genes that previously had no known
regulator. The reconstructed regulons suggest functional
associations between both characterized and uncharacter-
ized genes (Supplementary Figure S14). For instance, as a
periplasmic protein, the physiological role of GltF in E. coli
is still unknown (3). Functional enrichment suggests that it
may transport inorganic ions or other metabolites. Future
experimental studies are needed to discover the functions of
these uncharacterized genes.

Third, detailing the functions of three of the ten regulons
adds to our understanding of the TRN in E. coli. The iron
response is a crucial characteristic in most enterobacteria,
as well as bacteria in general. Although Fur is a well-known
TF for the iron response, the discovery of YeiE as an active
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Figure 7. The model for the regulatory network integrating three candidate TFs (YiaJ, YdcI, and YeiE) and their biological functions in E. coli K-12
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and activates target genes nhaA, dtpA, lldP, and gltP that are responsible for proton transfer. (D) YeiE affects multiple transporters (amino acids, inorganic
ions, lipids) and metabolic processes, maintaining iron homeostasis at iron-limited conditions.

TF under low iron conditions adds to our understanding
of the overall iron response (Figure 7D). Low iron levels
are especially important in understanding the interactions
between pathogens and hosts (79,80). Transcriptional regu-
lation of ascorbate metabolism has been largely unknown,
and the discovery of the role that YiaJ plays helps fill this
knowledge gap (Figure 7A). The transcriptional repressor
YiaJ belongs to the IclR family and controls the hypothet-
ical ascorbate transport system (named yiaMNO) and four
genes (lyxK-sgbH-sgbU-sgbE) encoding ascorbate catalytic
enzymes (6,81).

Although the strengths of the presented workflow were
demonstrated in the study, there is room for improvement
to broaden the applicability of the workflow. More unchar-
acterized TFs will be discovered after further experimental
validation. The characterization of more TFs in databases
would allow for a larger training set, improving the predic-

tive power of machine learning methods like TFpredict. On
the other hand, while ChIP-exo is commonly used for the
mapping of TF-DNA interactions, its application to the elu-
cidation of regulon function is limited by the knowledge of
suitable conditions that activate a target TF. For non-model
bacteria, the lack of biochemical/biological function stud-
ies may limit the possibility of directly inferring the active
conditions from the functional studies. To address poten-
tial issues with predicting experimental conditions under
which a TF is expressed, previous studies have used con-
servation analysis, expression profiling data, fitness scores,
and investigated basal conditions to predict the conditions
for candidate TFs (Supplementary Figure S15) (56,82–84).
Furthermore, next-generation sequencing (NGS) technol-
ogy has led to an explosion of genomic data, annotations,
and expression studies (85), which would expand the avail-
ability of the data resources.
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In this study, we have presented a workflow for the sys-
tematic discovery of uncharacterized TFs, which enables the
reconstruction of their regulons. A study of an initial set
of 16 candidate TFs demonstrated that the workflow could
systematically elucidate TF functions in E. coli. This work-
flow also provides a path for the discovery of uncharacter-
ized gene functions that were found in the newly discovered
regulons. As more data is made available, the workflow pre-
sented here may pave the way towards a more robust dis-
covery of uncharacterized TFs.
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