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Comprehensive analysis of
aerobic glycolysis-related genes
for prognosis, immune features
and drug treatment strategy in
prostate cancer

Wei He, Xiang He and Enhui Li*

Urology and Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital,
Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
Background: The dysregulated expression of aerobic glycolysis-related genes is

closely related to prostate cancer progression and metastasis. However, reliable

prognostic signatures based on aerobic glycolysis have not been well established.

Methods: We screened aerobic glycolysis-related gene modules by weighted

gene co-expression network analysis (WGCNA) and established the aerobic

glycolysis-related prognostic risk score (AGRS) by univariate Cox and lasso-

Cox. In addition, enriched pathways, genomic mutation, and tumor-infiltrating

immune cells were analyzed in AGRS subgroups and compared to each other.

We also assessed chemotherapeutic drug sensitivity and immunotherapy

response among two subgroups.

Results: An aerobic glycolysis-related 14-gene prognostic model has been

established. This model has good predictive prognostic performance both in the

training dataset and in two independent validation datasets. Higher AGRS group

patients had better immunotherapy response. Different AGRS patients were also

associated with sensitivity of multiple prostate cancer chemotherapeutic drugs.

We also predicted eight aerobic glycolysis-related small-molecule drugs by

differentially expressed genes.

Conclusion: In summary, the aerobic glycolysis-derived signatures are promising

biomarkers to predict clinical outcomes and therapeutic responses in prostate cancer.
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Introduction

Prostate cancer (PC) is the third most common cancer of

all tumors and the second most common cancer in men

worldwide. In 2020, globally, 1,414,259 people worldwide had

PC and 375,304 patients died of PC (1). Although time-to-

biochemical recurrence (BCR), Gleason score, and prostate-

specific antigen (PSA) doubling time are important prognostic

factors (2), these factors also have their limitations. Therefore,

it is urgent to find a better method to predict tumor prognosis

and therapy response.

One of the main reasons why tumors are difficult to treat is

that tumor cells have a robust ability to survive in harsh

environments by changing their energy metabolism, which

is known as “metabolic reprogramming” . Metabolic

reprogramming is generally considered a downstream

consequence of tumor development. However, increasing

evidence suggests that metabolism in turn can support

oncogenic signaling to promote tumor malignancy (3–5).

Aerobic glycolysis (AG) is a typical example, which is

characterized by increase in glucose uptake and the production

of lactate and was initially described as the “Warburg effect” (6).

It can provide the energy and material needs of the rapid growth

of tumor cells (7). Many previous studies have shown that

aerobic glycolysis contributes to many malignant features of

tumors (8–10).

In our study, we performed AG-level estimation on

samples in The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/), screened out AG-related genes

using weighted gene co-expression network analysis

(WGCNA), and finally established a 14-gene signature and

validated it in multiple independent datasets. In addition, we

also analyzed the response to immunotherapy by IPS scoring

and immune checkpoint molecule expression analysis.

Multiple chemotherapeutic drugs were related with AG. We

predicted some small-molecule drugs showing therapeutic

effects on PC. The analysis procedures in this study are

summarized in Figure 1.
Abbreviations: PC, Prostate cancer; BCR, biochemical recurrence; PSA,

prostate-specific antigen; AG, aerobic glycolysis; TCGA, The Cancer

Genome Atlas; WGCNA, weighted genes co-expression network analysis;

GEO, Gene-Expression Omnibus; OS, over survival; TPM, transcripts per

million; TCIA, The Cancer Immunome Atlas; AGRS, aerobic glycolysis risk

score; ssGSEA, single-sample gene set enrichment analysis; KM, Kaplan-

Meier; the ROC, received operating characteristic; AUC, the area under the

receiver operating characteristic curve; KEGG, Kyoto Encyclopedia of Genes

and Genomes; IC50, the half maximal inhibitory concentration; CMap, the

Connectivity Map; HPA, Human Protein Atlas; MM, Module membership;

GS, Gene significance.
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Materials and methods

Data acquisition

Public gene-expression data and clinical information were

searched in the Gene Expression Omnibus (GEO; https://www.

ncbi.nlm.nih.gov/gds/) and TCGA databases. The eligible

criteria of the dataset included 1) owning over survival (OS)

time information and 2) at least 100 PC samples. We removed

the datasets that did not meet the criteria by checking them one

by one carefully and gathered two patient cohorts from GEO. In

total, we gathered three patient cohorts for this study: TCGA-

PRAD, GSE134160 (11), and GSE70770 (12). Two GEO datasets

were processed expression matrices downloaded from GEO. All

microarray data included in our study were log2 transformed

and Z-score transformed. Data files of count expression of

TCGA-PRAD and clinical data were downloaded by using the

“TCGAbiolinks” package in R (13). The RNA-seq data were

converted to transcripts per million (TPM). We used TCGA-

PRAD dataset as the training dataset because of its large sample

size and rich genomic information. Moreover, another two

datasets from different platforms were used as independent

validation sets, namely, GSE134160 and GSE70770. TCGA-

PRAD somatic mutation data were downloaded from TCGA

using the package “TCGAbiolinks” in R. Somatic mutation data

were analyzed using R package “maftools” (14). The multiple

gene sets were obtained from the MSigDB database (http://www.

gsea-msigdb.org/gsea/msigdb/index.jsp). A total of 2,071

metabolism-related genes were obtained from the ccmGDB

database (15). We downloaded the IPS of TCGA-PRAD

cohort from The Cancer Immunome Atlas (TCIA) (https://

tcia.at/home).
Screening of aerobic glycolysis-related
genes and establishment of risk model

The pathway level of multiple gene sets in TCGA-PRAD

were quantified based on a single-sample gene set enrichment

analysis (ssGSEA) algorithm by the “GSVA” package in R (16);

the method parameter in the algorithm was set to GSVA and

ssgsea. From this, we got the scores of multiple gene sets in all

samples. Based on the results above, WGCNA was performed

using the “WGCNA” R package (17). First, we used TPM gene

expression profiles and calculated the median absolute deviation

of each gene separately, obtained the top 25% genes for further

analysis, and removed outlier genes and samples using the

goodSamplesGenes method of WGCNA and further used

WGCNA to build a scale-free co-expression network. We

calculated that the highest b value is 9, and the minimum

number of genes in the module was set to 50. The gene

network of the key module was extracted, and the network
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FIGURE 1

Schematic diagram of the study design.
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map was drawn using Cytoscape 3.6.1, and then the degree data

of each RNA in the network were downloaded. Then, univariate

Cox regression analysis was performed on the screened gene

expression profiles after the Z-score. The genes with P < 0.01

(Wald test) were defined to be related to OS. Then, we used the R

software package “glmnet” to perform the LASSO-Cox analysis.

In addition, we also set up 10-fold cross-validation to obtain the

optimal model. The AG risk score (AGRS) of each sample was

obtained by multiplying the obtained coefficient by the gene

expression value.
Aerobic glycolysis model validation

The optimal cutoff value was confirmed by R package

“maxstat”, setting the minimum number of grouping samples

to be greater than 25% and the maximum number of samples to

be grouped less than 75%. The patients were divided into high-

risk group and low-risk group, and the Kaplan–Meier (KM)

method with the log-rank test was used to further analyze the

prognostic differences between the two groups. The prognostic

or predictive accuracy of gene panels was assessed using time-

dependent receiver operating characteristic (ROC) analysis. The

area under the curve (AUC) at different cutoff times was used to

measure the accuracy of prognosis or prediction. We integrated

prognostic and clinicopathological features to construct a

nomogram to visually assess the patients’ 3-, 5-, and 7-year

survival rate in TCGA-PRAD.
Estimation of immune cells

The proportions of 22 immune cell types in PC samples were

estimated using the CIBERSORT algorithm (https://cibersortx.

stanford.edu/) with batch-corrected mode, relative mode, and

1,000 permutations of b mode (18). The Wilcoxon test was used

to find the significantly different immune cells among

different groups.
Gene enrichment analysis and gene set
enrichment analysis

For gene set functional enrichment analysis, we used the

KEGG rest API (https://www.kegg.jp/kegg/rest/keggapi.html) to

obtain the latest gene annotations of the Kyoto Encyclopedia of

Genes and Genomes (KEGG) Pathway and performed

enrichment analysis sing the R package “clusterProfiler” to

obtain the results of gene set enrichment. A P value of < 0.05

was considered statistically significant. We downloaded the

GSEA software (version 4.3) from the gene set enrichment

analysis (GSEA: http://software.broadinstitute.org/gsea/index.

jsp) website and set the “c2.cp.kegg.v7.1.symbols.gmt gene
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sets” as the reference set. All samples were divided into two

groups based on the AGRS median, which is used as input for

the phenotype file. A NOM P-value < 0.05 was considered

statistically significant.
Additional bioinformatic and
statistical analyses

The DESeq2 package in R was used to identify the

differentially expressed genes (19). Differences between the two

groups were compared using violin plots, and the Wilcoxon test

was used. The half-maximal inhibitory concentration (IC50) was

estimated by R package “pRRophetic” (20). The Connectivity

Map (CMap, https://clue.io/) was used to predict the small

candidate molecules based on differentially expressed genes.

All of the above analyses were performed using the R software

(version 4.0.2, http://www.rproject.org). Statistical significance

was set at P < 0.05.
Gene expression verification

To visualize the differences in clinical expression of key gene

proteins, we investigated the expression of these genes in PC

tissue and normal tissue in the Human Protein Atlas (HPA)

database. Furthermore, to verify the expression levels of 14

mRNAs, we performed differential gene expression analysis on

tumor tissues and normal tissues in TCGA-PRAD. In addition,

we collected 20 pairs of PC samples and adjacent normal

samples in our hospital to analyze the RNA expression

differences of these genes using rt-PCR, all of which were

approved by the patients’ informed consent and the ethics

committee of Zhejiang Provincial People’s Hospital. TRIzol

(Thermo Fisher, USA) was used to extract the total RNA in

the sample, and the “Reverse Transcription RR047A Kit (Takara,

Japan) was used to convert it into cDNA. Finally, the RR820A kit

(Takara, Japan) was used to perform rt-PCR analysis on the

7900HT system (Thermo Fisher, USA), and the ACTB gene was

used as the internal reference gene to calculate the expression of

hub genes with each pair of tissues.
Result

Characteristics of different aerobic
glycolysis levels

Regardless of the method used to assess AG, high AG was

associated with poorer prognosis (Figures 2A, B), which was

inconsistent with our previous thought. These findings showed

that AG was a risk factor for overall survival in PC. Based on the

ssGSEA results, we divided TCGA-PRAD patients into high and
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FIGURE 2

The characteristics between different aerobic glycolysis levels. (A, B) Kaplan–Meier plots indicating high aerobic glycolysis level patients have a
shorter survival time. (C) The scatter plot shows a significant correlation between the glutamate metabolism and the aerobic glycolysis metabolism.
(D) The scatter plot shows a significant correlation between the pentose phosphate metabolism and the aerobic glycolysis metabolism. (E) The
scatter plot shows a significant correlation between the lactic acid metabolism and the aerobic glycolysis metabolism. (F) The scatter plot shows a
significant correlation between the fatty acid metabolism and the aerobic glycolysis metabolism. (G) Relative proportion of infiltrating immune cells
in low- and high- aerobic glycolysis level prostate cancer patient of TCGA-PRAD cohort. “*, **, ***” stands for statistically significant.
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low groups by median. GSEA results showed that the high AG

level group was mainly enriched in tumor-related pathways,

immune-related pathways, and various metabolic-related

pathways (Supplementary Materials). The associated metabolic

pathways include alanine aspartate and glutamate metabolism,

pentose phosphate pathway, glycosphingolipid biosynthesis-

lacto and neolacto series, and biosynthesis of unsaturated fatty

acids, and the correlation analysis also proved that aerobic

glycolysis is related to these three energy metabolisms

(Figures 2C–F). Immune-related pathways mainly include

leukocyte trans-endothelial migration, T-cell receptor signaling

pathway, natural killer cell-mediated cytotoxicity, and B-cell

receptor signaling pathway. We performed CIBERSORT, and

the violin plot showed significant differences in a variety of

immune cells including B cells, T cells CD4, T cell gamma delta,

NK cells, macrophages M0, macrophages M1, dendritic cells

resting, and mast cells (Figure 2G).

WGCNA: The top 25% most variable genes were used for

WGCNA, and 18 modules were identified (Figures 3A, B).
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Among these modules, the blue modules (r = 0.49, P = 4e-31)

exhibited the highest correlation with AG (Figure 3C). Module

membership (MM) was set to 0.8, and gene significance (GS)

was set to 0.25. According to this criterion, we screened out the

hub genes in which the blue modules were related to the AG

trait. The gene network of the blue module was extracted and the

network was built using Cytoscape, and the genes with a degree

greater than 20 were extracted. We took the intersection of the

two obtained gene sets and finally obtained 513 genes.
Establishment and validation of the
aerobic glycolysis prognostic signature
for overall survival in prostate cancer

First, gene expression data were transformed by Z-score. Then,

the univariate Cox regression method was used to identify genes

that were associated with prognosis and we found 24 genes with P <

0.01. Subsequently, the LASSO Cox algorithm was applied to
B

CA

FIGURE 3

(A) Analysis of the scale‐free fit index of the matrix. (B) Clustering dendrograms of top 25% genes, with dissimilarity based on topological
overlap, together with assigned module colors. (C) Scatter plots of the gene significance and module membership in blue modules. The x-axis
indicates the module membership (MM) which quantifies how close a gene is to a given module. The y-axis indicates the gene significance
which is correlated with clinical traits.
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identify the most robust prognostic genes. The optimal l value of

0.00200006822207054 was selected (Figures 4A, B). Finally, the risk

scores of each PC patient were calculated using the following

method: AGRS = -4.47765657690985*CLOCK+1.293844464

67155*NUP160+0.846130542021257*MIS18BP1+1.0644746

1483067*DYNC1LI2-0.137000461457667*MAPK1+1.574745

98539145*SETD2-4.05360227520656*ARID4B+0.56625

7977207755*ARID1A+1.13167548982397*ZNF654+12.0526

647311552*SYNJ1+3.88187142257071*C18orf25-2.81564

312424355*MBTPS2-0.577996066831003*XIAP-6.43690

052943485*ZNF678. The K-M plot demonstrated that the high

AGRS group had unfavorable OS compared with the low AGRS

group (P =5.3e-6, Figure 4C). Moreover, the AUC values for 3-, 5-,

and 7-year OS were 0.96, 0.97, and 0.94 (Figure 4D), respectively,

which were good classification results. To verify the effectiveness of

this model, a risk score was calculated in the GSE134160 cohort and

GSE70770 cohort. Surprisingly, results from two independent

cohorts revealed that the high-risk group had a worse prognosis

than the low-risk group (Figures 4E, G). Moreover, the AUC of

AGRS in the two independent cohorts also proved that the risk

score model has an excellent prognostic prediction effect

(Figures 4F, H).
Aerobic glycolysis prognostic signature
can be utilized as an independent
prognostic factor in prostate cancer

Considering the importance of aerobic glycolysis in the

prognosis of prostate cancer, we further analyzed the

relationship between 14 aerobic glycolysis prognostic

signatures and clinical features of prostate cancer including

age, pathological T stage, race, and Gleason score. Among

them, only the ARGS differed significantly between different

Gleason scores (Figures S1–S4).

As the AGRS was significantly correlated with high

malignancy, we sought to determine whether the AGRS was a

clinically independent prognostic factor for PC patients through

multivariate Cox regression analyses. The AGRS and other

clinical features, including age, Gleason, pathological T stage,

and prostate-specific antigen (PSA), were enrolled as covariates

to perform the analysis. By combining the above prognostic

factors, we constructed a nomogram that serves as a clinically

relevant quantitative method by which clinicians can predict

mortality in PC patients (Figures 5A, B). Each patient will be

assigned a total of points by adding points for each prognostic

parameter. The overall C-index of the model is 0.96, 95% CI

(0.90-1), P-value = 2.40e-44. The capacity of the nomogram to

distinguish survival was tested using AUC values (Figure 5C). In

the calibration analysis, the prediction lines of the nomogram for

3-, 5-, and 7-year survival probability were extremely close to the

ideal performance (45° line) (Figures 5D–F), indicating a high

accuracy of the nomogram.
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Comprehensive analyses of multiple
characteristics between different
risk groups

To illustrate the underlying biological characteristics of the

different aerobic glycolysis risk groups, we performed GSEA in

TCGA-PRAD cohort. The results showed that the high-risk

group is mainly enriched in multiple immune-related pathways,

including viral protein interaction with cytokine and cytokine

receptor, natural killer cell-mediated cytotoxicity, IL-17

signaling pathway, Th1- and Th2-cell differentiation, Th17-cell

differentiation, T-cell receptor signaling pathway, leukocyte

trans-endothelial migration, and PD-L1 expression and PD-1

checkpoint pathway in cancer (Supplementary Materials). In

addition, the low-risk group was also significantly enriched in

oxidative phosphorylation, ribosome and protein export, and

thermogenesis (Supplementary Materials).

CIBERSORT along with the LM22 matrix was used to assess

immune cell infiltration in the low- and high-risk groups of

TCGA-PRAD. Figure 6A indicates that B cells, CD4+ and CD8+

T cells, macrophages, and mast cells were the predominant

infiltrating immune cells in PC. We found that B cell naïve, T

cells CD8, T cells CD4 memory resting, T cells CD4 memory

activated, T cells follicular helper, T cells regulatory (Tregs),

monocytes, macrophages M0, macrophages M1, macrophages

M2, dendritic cells resting, and dendritic cells activated

differently between the two groups (Figure 6A).

To investigate whether there was evidence of differences at

the genomic level between low- and high-risk PC patients, we

investigated the distribution differences of somatic alterations.

Waterfall plots integrated with 20 highly variant mutant genes

were utilized to show the mutation landscape. As shown in

Figure 6B, among the top 20 mutated genes, the high-risk group

appears to have a higher mutation rate relative to the low-risk

group. The mutation rates of these top 20 mutated genes differed

in both groups (Figure 6B). Although there were only 124

samples in the high-risk group and 371 samples in the low-

risk group, the apparently high-risk group had a much higher

mutation rate.

Previous studies have suggested that aerobic glycolysis

significantly affects cellular metabolism (21). We therefore

explored the metabolomic variations between the two risk

groups by analyzing the expression of 2,071 metabolism-related

genes (Supplementary Materials) obtained from the ccmGDB

database (15). We first performed differential expression

analysis between the two groups, log2 fold change was set to

0.5, and P-value was set to 0.05. By taking the intersection of

differentially expressed genes and metabolism-related genes, we

obtained 79 genes that were highly expressed in the high-risk

group. Next, we carried out KEGG enrichment analysis of

upregulated metabolism-related genes. The high-risk group

showed enrichment of steroid hormone biosynthesis,

arachidonic acid metabolism, alpha-linolenic acid metabolism,
frontiersin.org
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FIGURE 4

Development and validation of AGRS in TCGA-PRAD cohort. (A, B) The LASSO Cox regression algorithm was used to identify the most robust
prognostic genes. (C, D) Patients were divided into high-risk and low-risk subgroups based on best cutoff. Kaplan–Meier analysis demonstrated that
patients with higher AGRS exhibited worse overall survival in TCGA-PRAD, ROC curves showing the predictive efficiency of the AGRS on the 3-, 5-, and
7-year survival rate. (E, F) Kaplan–Meier analysis and ROC curves in the GSE135160 cohort. (G, H) Kaplan–Meier analysis and ROC curves in the
GSE70770 cohort.
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and many metabolism-related pathways (Figures 6C, D and

Supplementary Materials). High-risk groups were also associated

with multiple drug metabolism-related pathways (Figure 6C),

which means AGRS may predict drug efficacy. We also found

that the HIF-1 signaling pathway was also significantly enriched in

the high-risk group (Figure 6D), which also demonstrated a close

relationship between aerobic glycolysis and tumor hypoxia.
Frontiers in Oncology 09
ARGS-based treatment strategy for
prostate cancer

We collected 23 immune checkpoint molecules and analyzed

their gene expression differences between the two groups. The

results showed that all immune checkpoint molecules were

significantly overexpressed in the high-risk group (Figure 7A).
B C

D E F

A

FIGURE 5

The nomogram was generated to improve risk stratification and estimate survival probability. (A) The comprehensive nomogram for predicting
probabilities of PC patients with 3-, 5-, and 7-year OS in TCGA-PRAD cohort. (B, C) Kaplan–Meier analysis and ROC curves of 3-, 5-, and 7-year
OS for this nomogram. (D–F) The calibration plots for predicting PC patients with 3-, 5-, and 7-year OS in TCGA-PRAD cohort.
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In addition, the immunogenicity of two risk subgroups was

evaluated by IPS analysis. Higher IPS scores were positively

correlated with the increased immunogenicity (22). The IPS-

CTLA4, IPS-PD1, and IPS-PD1-CTLA4 scores were higher in

the high-risk group (Figure 7B). The above analysis results show

that the high-risk group had a better response to immunotherapy.

The above analysis of metabolic genes indicated that the high-

risk group was associated with multiple drug metabolism
Frontiers in Oncology 10
pathways, which led us to consider whether AGRS could be

used as a marker for predicting drug response. The Cancer

Genome Project (CGP) database was used to predict the

chemotherapeutic response of two subtypes to commonly used

chemotherapeutic drugs. There are eight prostate cancer

chemotherapy drugs in this database, of which five

chemotherapy drugs are significantly different in the estimated

IC50 between the two subgroups (Figures 8A–H). The high-risk
B

C D

A

FIGURE 6

Comprehensive analyses of different risk groups. (A) Relative proportion of infiltrating immune cells in low- and high-AGRS prostate cancer
patient of TCGA-PRAD cohort. (B) Top 20 most frequently mutated genes were illustrated in TCGA-PRAD. (C, D) Enrichment analysis of
metabolic genes in different risk subgroups. “* ,**, ***” stands for statistically significant.
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patients were more sensitive to the anticancer drugs etoposide,

cisplatin, and rapamycin. The low-risk patients were more

sensitive to the anticancer drugs bicalutamide and 5-fluorouracil.

The CMap database was used to screen out small-molecule

drugs showing therapeutic effects on PC. Based on the 169

upregulated and 88 downregulated genes, eight potential small-

molecule drugs targeting genes were identified (Figures 8I–P).

The structural diagrams of these molecules were also

downloaded from CMap.
Verification of 14 genes in this model

We verified the expression levels of 14 genes from protein

and mRNA levels. In the 20 pairs of clinical samples we

collected, rt-PCR results showed that ZNF678, ARID1A,

XIAP, MIS18BP1, and MBTPS2 were highly expressed in

tumor tissues. Moreover, C18orf25, NUP160, DYNC1LI2,

SYNJ1, MAPK1, and CLOCK were lowly expressed in tumor

tissues (Figure 9A). The HPA database suggested that C18orf25,

DYNC1LI2, SYNJ1, MAPK1, and ARID4B are highly expressed

in normal tissues, and CLOCK, SETD2, ZNF654, XIAP,

MIS18BP1, and MBTPS2 are highly expressed in prostate

cancer tissues (Figure 9B). These results were consistent with

our analysis.
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Discussion

The main source of energy for cells is glucose. Glucose is

metabolized to pyruvate by glycolysis, and pyruvate is

oxidatively metabolized to CO2 in the tricarboxylic acid (TCA)

cycle, and a large amount of ATP is generated by oxidative

phosphorylation. However, glycolysis is active in tumor cells,

even when oxygen is abundant, and this is the Warburg effect.

Many previous studies have proved aerobic glycolysis to prostate

cancer progression, metastasis, and drug resistance (23–26).

There is no previous literature on the analysis of aerobic

glycolysis-related genes to predict the prognosis of prostate

cancer. Therefore, in this study, we focused on finding aerobic

glycolysis-related genes and exploring whether they could be

used as prognostic markers.

ssGSEA analysis results demonstrate that aerobic glycolysis

not only is associated with prostate cancer prognosis but also

significantly correlates with multiple energy metabolism

pathways. This may imply that aerobic glycolysis may influence

how tumors metabolize energy.We usedWGCNA to screen genes

related to aerobic glycolysis, then screen genes by MM and GS,

and network in which hub genes were more closely connected to

other genes. This makes the screened genes as relevant as possible

to aerobic glycolysis without losing important genes. In the end,

we got a signature consisting of 14 genes for predicting prognosis.
B

A

FIGURE 7

The estimation of two prognostic subtypes in immunotherapy response. (A) The expression of 23 immune checkpoint molecules in two
prognostic subtypes (the y-axis indicates expression log2 transformed TPM). (B) The association between IPS and risk score.
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Whether in the training dataset or in independent datasets, AGRS

has good performance in predicting prognosis, which indicates a

clinical application.

To explore the underlying mechanisms of the AGRS model,

GSEA was performed to explore KEGG pathways among the two

risk groups. Aberrant activation of multiple immune-related

pathways, including viral protein interaction with cytokine and

cytokine receptor, natural killer cell-mediated cytotoxicity, IL-17

signaling pathway, Th1- and Th2-cell differentiation, Th17-cell

differentiation, T-cell receptor signaling pathway, leukocyte

transendothelial migration, and PD-L1 expression and PD-1

checkpoint pathway in cancer, in high-risk groups is associated

with worse prognosis in prostate cancer, which is consistent with

immune cell analysis among different risk groups. High-risk
Frontiers in Oncology 12
groups had more abundant immune cell infiltration. However, T

cells regulatory (Tregs) are also significantly higher than those in

the low-risk group, so although the immune cells in the high-risk

group are more abundant, most of them have lost their normal

functions, or have become accomplices of tumors.

In our genomic mutation analysis, we found a higher rate

of gene mutation in the high-risk group and identified specific

gene mutations that were associated with aerobic glycolysis.

NLRP3 has been shown by many studies to be related to the

activation of inflammasomes in macrophages (27–29). JAK1

was found to have a higher mutation rate in the high-risk

group, which is consistent with the GSEA results showing that

the JAK stat signaling pathway was enriched in the high-

risk group.
B C D

E F G H

I J K L

M N O P

A

FIGURE 8

The estimation of chemotherapy response and potential therapeutic drugs for prostate cancer. (A–H) The chemotherapy response of two
prognostic subtypes for eight common chemotherapy drugs. (I–P) The molecular structure of the eight small-molecule drugs for prostate
cancer: (I) homosalate, (J) ingenol, (K) cinobufagin, (L) azacitidine, (M) BX-795, (N) mirin, (O) prostratin, and (P) anisomycin.
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In addition, we analyzed the differences in metabolic genes

between different subgroups, and analyzed the enrichment

pathways of differentially metabolized genes, and found that

the high-risk group was enriched in two drug metabolism-

related pathways, which also indicated that maybe AGRS
Frontiers in Oncology 13
could be used to predict chemotherapy drug sensitivity. Based

on predictions from GCP data, we found that the high-risk

patients were more sensitive to the anticancer drugs etoposide,

cisplatin, and rapamycin, and the low-risk patients were more

sensitive to the anticancer drugs bicalutamide and 5-
FIGURE 9

Verification of the expression of aerobic glycolysis-related signatures in normal and tumor tissues. (A) Immunohistochemistry of aerobic
glycolysis-related signatures in normal prostate tissue and prostate cancer tissue. (B) rt-PCR verified the expression of aerobic glycolysis-related
signatures in 20 pairs of prostate cancer clinical samples. All data are displayed as means ± SD; mean values for the normal group were
normalized to 1.0; two-sided unpaired Student’s test was applied. **P < 0.01 and *P < 0.05 vs. normal group.
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fluorouracil. Furthermore, the CMap database was employed to

identify small-molecule drugs for PC. The drugs include PKC

activator (ingenol and prostratin), ATPase inhibitor

(cinobufagin), DNA methyltransferase inhibitor (azacitidine),

DNA synthesis inhibitor (anisomycin), IKK inhibitor (BX-795),

HSP inducer (homosalate), and A exonuclease inhibitor (mirin).

These potential therapeutic agents may kill cancer cells through

the aerobic glycolysis approach.

In the above analysis, we found that a variety of immune

cells differed between the two risk subgroups. We therefore

assessed whether AGRS could predict immunotherapy response.

Interestingly, we found that the 23 immune checkpoint

molecules we found were all highly expressed in the high-risk

group. Furthermore, patients in the high-risk subgroup

presented with higher IPS scores. The immunogenicity of two

risk subgroups was evaluated by IPS analysis. Higher IPS scores

are positively correlated to the increased immunogenicity. The

above results indicate that patients in the high-risk group have a

better response to immunotherapy.

Our research also inevitably has some limitations. Our

analysis data are for tumor tissue as a whole, but tumor tissue

contains not only cancer cells but also other non-cancer cells

such as immune cells.
Conclusion

Our study illustrates the crucial role of aerobic glycolysis in

PC. An aerobic glycolysis gene-related prognostic model has

been established and has good performance. AGRS can also be

used to guide a patient’s drug treatment strategy.
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