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ABSTRACT In this article, we investigate patterns of microbial DNA contamination
in targeted 16S rRNA amplicon sequencing (16S deep sequencing) and demonstrate
how this can be used to filter background bacterial DNA in diagnostic microbiology.
We also investigate the importance of sequencing depth. We first determined the
patterns of contamination by performing repeat 16S deep sequencing of negative
and positive extraction controls. This process identified a few bacterial species domi-
nating across all replicates but also a high intersample variability among low abun-
dance contaminant species in replicates split before PCR amplification. Replicates
split after PCR amplification yielded almost identical sequencing results. On the basis
of these observations, we suggest using the abundance of the most dominant con-
taminant species to define a threshold in each clinical sample from where identifica-
tions with lower abundances possibly represent contamination. We evaluated this
approach by sequencing of a diluted, staggered mock community and of bile sam-
ples from 41 patients with acute cholangitis and noninfectious bile duct stenosis.
All clinical samples were sequenced twice using different sequencing depths. We
were able to demonstrate the following: (i) The high intersample variability
between sequencing replicates is caused by events occurring before or during the
PCR amplification step. (ii) Knowledge about the most dominant contaminant spe-
cies can be used to establish sample-specific cutoffs for reliable identifications. (iii)
Below the level of the most abundant contaminant, it rapidly becomes very
demanding to reliably discriminate between background and true findings. (iv)
Adequate sequencing depth can be claimed only when the analysis also picks up
background contamination.

IMPORTANCE There has been a gradual increase in 16S deep sequencing studies on
infectious disease materials. Management of bacterial DNA contamination is a major
challenge in such diagnostics, particularly in low biomass samples. Reporting a con-
taminant species as a relevant pathogen may cause unnecessary antibiotic treatment
or even falsely classify a noninfectious condition as a bacterial infection. Yet, there
are few studies on how to filter contamination in clinical microbiology. Here, we
demonstrate that sequencing of extraction controls will not reveal the full spectrum
of contaminants that could occur in the associated clinical samples. Only the most
abundant contaminant species were consistently detected, and we present how this
can be used to set sample specific thresholds for reliable identifications. We believe
this work can facilitate the implementation of 16S deep sequencing in diagnostic
laboratories. The new data we provide on the patterns of microbial DNA contamina-
tion is also important for microbiome research.
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Microbial DNA contamination from extraction kits and other PCR and sequencing
reagents (background bacterial DNA) is a major challenge in 16S rRNA amplicon

sequencing (16S deep sequencing) of polymicrobial infections (1, 2). Several studies
have demonstrated the risk for erroneously interpreting contaminating DNA as bacte-
ria originating from the sample (1, 3–5). In clinical microbiology, reporting a contami-
nant species as a relevant pathogen may cause unnecessary antibiotic treatment or
even falsely classify a noninfectious condition as a bacterial infection. Unfortunately,
many of the studies on infectious disease materials do not address background con-
tamination (6–8), and among those that do, the approaches vary. The most used
method is to sequence extraction controls along with the samples and remove those
bacteria from the sample reports which were also found in the controls (9–12).
However, the sensitivity of this method is reduced if bacteria truly present in clinical
samples are also present in the negative controls (2). Further, the specificity of this
approach relies on the assumption that sequencing of the negative controls provides
an exhaustive identification of contaminants.

Within microbiota research, a range of methods have been developed to diminish the
problem of background contamination (1, 2, 4, 13, 14), but many of these approaches are
not easily transferable to diagnostic laboratories. Despite the common aim of describing
bacterial flora, clinical microbiologists and microbiota researchers have partly divergent
challenges and goals. In microbiota research, typically large sets of the same sample type
are analyzed in multiple batches over a limited period. Combined with extensive use of
negative and positive controls, and even multiple sequencing techniques (14), this allows
labs to use pattern recognition and statistical calculations to filter their data sets (4).
Although they make considerable effort to ensure the overall quality of a data set, there
is less focus on the individual sample, and identifications are usually limited to the genus
level or above. In clinical microbiology, there is a broad spectrum of sample types with
highly divergent bacterial concentrations and compositions, and background contamina-
tion will vary over time with different batches of reagents and consumables. The focus is
always the individual patient and species level identification is normally required. Finally,
time to results and cost are crucial matters, limiting the room for extensive assessments
of background contamination.

Accurate filtering of background contamination is more critical in weakly positive
samples, where it constitutes a larger portion of the total bacterial DNA (1, 2).
Sequencing depth is another essential factor, in particular for strongly positive, polymi-
crobial samples where the use of too few reads may result in failure to detect low
abundance species. In clinical microbiology, especially in samples from normally sterile
body sites, the detection of a bacterium at any concentration is a priori considered
potentially relevant. A sample from a polymicrobial infection must be considered a
snapshot of a potentially dynamic process, and species present at low abundances in
the sample can flourish at the site of infection at a later stage, especially if antibiotic
treatment is directed only against the dominant flora. Also, the relative microbial abun-
dances in a sample cannot be assumed to be representative of the entire site of infec-
tion. For example, the abundance of a given species in pus aspirated from the necrotic,
anaerobic center of an abscess is not necessarily representative of the abundance of
the same species in the more oxygenated periphery on the transition to intact tissue.
Despite these issues, there has been little attention to the relationship between
sequencing depth and sensitivity.

In this study, we aim to describe and evaluate simple and transparent approaches
for dealing with contamination in 16S deep sequencing in clinical microbiology. We
base our suggestions on the observation that the presence of a few dominant contam-
inant species is highly consistent across all controls, while in the same controls the
presence of less dominant contaminant species seems to vary (15, 16). We use these
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most abundant contaminant species and their abundances in the corresponding clini-
cal samples to set sample-specific cutoffs for the number of reads needed to reliably
classify a species as a noncontaminant. We perform repeat sequencing of a set of
extraction controls, both before and after the 16S rRNA PCR amplification step, to
underpin our approach and to demonstrate sensitivity limitations that remain even in
deep sequencing. We further test the approach on a diluted, standardized staggered
mock community and on prospectively collected bile samples from patients with acute
cholangitis or noninfectious bile duct stenosis. To demonstrate the importance of
sequencing depth, all patient samples were sequenced twice with different sequenc-
ing depths in each replicate.

RESULTS
Experiment 1. Repeat sequencing of extraction controls. (i) Experimental design.

We first sought to understand the mechanisms behind the observed phenomenon
that the presence of a few dominant contaminant species is highly consistent across
all controls, while the presence of less dominant contaminant species seems to vary
(15, 16). To investigate this, we analyzed a set of extraction controls in a separate
sequencing run (Fig. 1). Three different samples were analyzed, two negative extrac-
tion controls (NEC1 and NEC2), consisting of PCR-grade water and lysis buffer, and one
weakly positive extraction control (PEC) containing Legionella pneumophila. To isolate
the impact of the PCR amplification of the sample template (amplicon PCR) from the
impact of the following index PCR and sequencing procedure, each of the three con-
trols was split into five replicates before the amplicon PCR (hereafter named “PCR repli-
cates”). One PCR replicate from each of the three controls was further split into five
replicates before sequencing (hereafter named “sequencing replicates”). All PCR and
sequencing replicates were then indexed and sequenced in the same run. We used the
results from this part of the study to formulate criteria for filtration of sequencing data
from clinical samples, which we further evaluated on a staggered mock community
and a collection of bile samples.

(ii) Results. The Venn diagrams in Fig. 2 illustrate the higher diversity between PCR
replicates compared to the sequencing replicates. Among the five PCR replicates of
one sample, most species were present in only a single replicate. Only four (NEC1 and

FIG 1 Illustration of workflow for PCR amplification and sequencing of the three extraction controls.
(A) All three samples were split into five replicates before 16S rRNA amplicon PCR, resulting in five
PCR replicates from each original sample after the PCR. (B) From each of the three groups of PCR
replicates, one of the five replicates was then split into five new replicates. (C) Index PCR and
sequencing were than performed for both PCR replicates and sequencing replicates on the same
sequencing run. One PEC sequencing replicate was lost due to technicalities, leaving 15 PCR
replicates and 14 sequencing replicates eligible for postsequencing analysis.
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NEC2 PCR replicates) or five (PEC PCR replicates) species were found in all five repli-
cates. In contrast, there were no differences between sequencing replicates originating
from the same PCR except for a single species missing in one replicate. This bacterium,
a Phenylobacterium sp., was also present in the latter replicate but by less than 50 reads
and consequently below our cutoff for a valid identification.

A few species dominated all replicates, whereas the majority of contaminants
appeared at relatively low abundances. The most abundant bacterium in each replicate
was represented by 19 to 33% of the total number of valid reads (Fig. 3). In all repli-
cates, Ralstonia pickettii and Cutibacterium acnes were the two most dominant species.
These were also the only bacteria present in all replicates from all groups.

In Fig. 4, we have defined a “frequency threshold rate” (FTR) as a percentage of the
most dominant contaminant bacteria in each replicate measured in the number of
sequencing reads. For example, if the most abundant contaminant bacterium is pres-
ent in 10,000 reads, then the 20% FTR is 2,000 reads. Figure 4 shows a steep decrease
in the number of bacterial identifications with an abundance above the FTR as the rate
increases from 0% to 50%, from.55 bacteria to#5 bacteria in each group of

FIG 2 Venn diagram of bacterial identifications in PCR replicates (A to C) and sequencing replicates (D to F), showing a high diversity between the PCR
replicates originating from the same sample, in contrast to the high similarity between the sequencing replicates originating from the same PCR. (A) Fifty-
five different bacteria were found in all five NEC1 PCR replicates combined. Only 4 (7%) identifications were shared between all five replicates, while 35
(64%) were found in only 1 of the 5 replicates. (B) Fifty-six different bacteria were found in all NEC2 PCR replicates in total. Only 4 (7%) identifications were
detected in all five replicates, and 39 (70%) identifications were found in only a single replicate. (C) Fifty-eight different bacteria were found in all PEC PCR
replicates in total. Five (9%) bacterial identifications were shared across all five replicates, including Legionella pneumophila, which was the positive control.
Forty-two (72%) identifications were detected in only a single replicate. (D and E) Bacterial identifications were identical in all sequencing replicates of both
NEC1 and NEC2. (F) Bacterial identifications were identical in all sequencing replicates of PEC except for one Phenylobacterium species which was identified
in only three out of the four replicates.
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FIG 3 BacterialAQ:fig composition in PCR (A to C) and sequencing (D to F) replicates of the extraction controls. A few species dominated in all
replicates. (A to C) The replicates from each sample show a high degree of variability. Only two species were present in every PCR replicate
from all three samples: Ralstonia picketti and Cutibacterium acnes. These two species were also the most abundant species in all PCR
replicates. (D to F) Bacterial identifications were identical in all sequencing replicates of NEC1 and NEC2, while one Phenylobacterium species
was identified in only three out of the four replicates of PEC. In those three replicates containing Phenylobacterium, it appeared with the
lowest number of reads (105, 51, and 90) and relative abundance (0.03%, 0.02%, and 0.04% of total number of reads, respectively) of all
bacterial identifications.
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FIG 3AQ:fig (Continued)
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replicates. The plot also shows the correlation between the FTR and the similarity
between the PCR replicates. The chance for the same bacterial species to be found in
all PCR replicates increases as the relative abundance of that bacterium increases. For
NEC1, bacteria with abundances above 50% of the dominant contaminant were pres-
ent in all replicates. The corresponding thresholds for NEC2 and PEC were 80% and
70%, respectively.

On the basis of these findings, we suggest the following criteria for filtering bacte-
rial contaminants in clinical samples. (i) Any bacterium appearing with a higher abun-
dance than the top five abundant contaminants, as determined by the sequencing of
negative and positive extraction controls, is accepted as a valid identification, even if it
occurs as a low abundance species in the controls. (ii) Bacteria present in frequencies
between 20% and 100% of the most abundant contaminant are accepted as likely valid
identifications, but only if they are also absent from all the negative controls. (iii)
Bacteria present in frequencies below 20% of the most abundant contaminant are
always rejected as invalid. (iv) In samples where none of the top five abundant contam-
inants are detected, all identifications are accepted as valid.

Detailed data from these experiments, including technical sequencing results and
sample diversity measures, is provided in Table S1 of the supplemental material.
Operational taxonomy unit (OTU) lists for all extraction control replicates can be found
in Table S2.

Experiment 2. Sequencing of a staggered mock community. (i) Experimental
design. Our next experiment included sequencing of a staggered mock community to-
gether with negative and positive extraction controls. The aims of this experiment
were twofold: (i) to assess the actual abundance of the contaminants detected in our
negative controls and to determine at what level the observed high variability in PCR
replicates occur and (ii) to assess the sensitivity and specificity of our suggested criteria
for filtering bacterial contaminants and to compare it to other common methods for
contaminant filtering.

We performed deep sequencing of three different dilutions of the staggered mock
community: a 1:10 dilution, representing a high bacterial load sample (16S PCR

FIG 4 Graph showing the correlation between a chosen frequency threshold rate and the resulting
number of accepted bacterial identifications and similarity between PCR replicates. The x axis shows
the frequency threshold rate (FTR) calculated as a percentage of the most dominant contaminant
bacteria in each replicate measured in the number of sequencing reads. The left y axis shows the
total number of accepted bacterial species for all five PCR replicates for each control when only
bacteria represented by more reads than the chosen FTR were accepted. The right y axis shows the
mean sample to sample Jaccard index of the five PCR replicates when only bacteria represented by
more reads than the chosen FTR cutoff were accepted.
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threshold cycle [CT] value of 11.2), and a 1:105 and a 1:106 dilution, representing low
bacterial load samples (16S PCR CT values of 27.3 and 31.7, respectively). The theoreti-
cal composition of bacterial cells and the estimated 16S rRNA copy counts in each of
these dilutions is presented in Table S3. The 1:10 dilution was split into two PCR repli-
cates (1:10_1 and 1:10_2) and the 1:105 dilution and 1:106 were split into four PCR repli-
cates each (1:105_1 to 1:105_4 and 1:106_1 to 1:106_4) before the PCR amplification
step. A negative and a positive extraction control were split into five PCR replicates
each before the PCR amplification step and sequenced together with the mock com-
munity samples.

(ii) Results. (a) Mock community result variability. The total number of accepted
reads from the mock community samples after quality filtering was 3,606,622. Each
sample had between 186,375 and 586,295 reads, and the relative proportion of DNA
contaminants increased with subsequent dilutions (Fig. 5A). No contaminant microbes
were identified in the high bacterial load sample (Fig. 5A). In the replicates from the
1:105 dilution, contamination constituted 2 to 3% of the total number of reads,

FIG 5 Analysis of mock community dilutions. (A) Number of reads per sample and distribution of reads from mock community
and DNA contaminants. The absolute and relative amount of reads from DNA contaminants increases with the subsequent
dilutions. (B) Identified mock microbes in each of the three dilutions investigated, and the variation (range) in relative abundance
of each identified bacteria between the different PCR replicates within each dilution. The species identified in the most diluted
sample showed a higher variation in relative abundance between PCR replicates.
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increasing to 24 to 32% in the 1:106 dilution replicates. Figure 5B shows the variation
in relative abundance between the PCR replicates for each identified mock community
bacterium and how the variability increases in the higher dilutions. Twelve of the 15
bacterial species present in the mock community were identified in each of the 1:10
diluted replicates, representing 100% of the identified OTUs in both samples. The three
mock community species that were not detected were those with the lowest abundan-
ces, ranging from 0.00009% to 0.0065% of the total microbial content of the mock
community (Table S3). In the 1:105 dilution, the same 12 bacterial species were identi-
fied in two out of four PCR replicates, while the least abundant of these species,
Methanobrevibacter smithii, remained undetectable in two PCR replicates. In the 1:106

dilutions, the 11 most abundant mock community species were identified in all four
PCR replicates. An OTU table for all mock community PCR replicates and extraction
controls is provided in Table S4.

(b) Assessment of the abundance of laboratory contamination. The absolute abun-
dances of all OTUs found in the first replicate of the 1:105 and 1:106 dilutions are pre-
sented in Fig. 6. Using the calculated concentration of mock community species as a
reference, we see that the most dominating contaminants appeared at concentrations
around 10 16S copies per 2ml template, corresponding to about 500 cells per ml in the
original sample (Table S3). The less abundant contaminants appeared in concentra-
tions close to or less than a single 16S copy per 2ml PCR template, approaching the
lower limit of detection in the PCR. This corresponded to an initial concentration of up
to 100 bacterial cells per ml sample (Table S3).

(c) Composition of the five negative and five positive extraction control replicates. The
mean number of species identified in each of the extraction controls were 18 (range,
12 to 23) with C. acnes and R. picketti being the only species consistently detected in
all negative and positive extraction control replicates. As in experiment 1, these two
species were the most dominant contaminants in all replicates, and we observed the
same high diversity between PCR replicates originating from the same extraction con-
trol. Eighty-three different species were found in the 10 replicates combined
(Table S4). The mean Jaccard distance was 0.80 (range, 0.65 to 0.87) for the negative
extraction control replicates and 0.76 (range, 0.65 to 0.81) for the positive extraction
control replicates. Forty out of 58 species from the negative extraction controls were
found in a single replicate only. The corresponding number for the positive extraction
control replicates was 35 out of 52.

(d) Filtering contaminants based on our suggested criteria versus other common meth-
ods for contaminant filtering. For the first replicate of the 1:105 and 1:106 mock commu-
nity dilutions, five different methods for removing contaminants were evaluated: (i)
our suggested criteria, (ii) removing all OTUs found in one preselected negative and
one preselected positive extraction control replicate, (iii) removing all OTUs found in
all five negative extraction control PCR replicates and all five positive extraction control
PCR replicates, and (iv and v) use of Decontam prevalence-based contaminant identifi-
cation, including both the isContaminant and the isNotContaminant function which are
both recommended for low biomass samples (4). Results are presented in Fig. 7.
Filtering using our suggested criteria had a sensitivity and specificity for the identifica-
tion of mock community bacteria in the two dilutions combined of 83% and 97% with
an overall test accuracy of 93%. One out of 39 contaminants were wrongly classified as
a mock community microbe, and four mock community microbes were wrongly classi-
fied as contamination (M. smithii in the 1:105 dilution, and Bifidobacterium adolescentis,
Clostridioides difficile, and Akkermansia muciniphila in the 1:106 dilution). Filtering using
a single preselected negative and positive extraction control gave a sensitivity of
100%, a specificity of 39%, and a test accuracy of 61%. Filtering using all 10 extraction
controls had a sensitivity of 100%, a specificity of 64%, and a test accuracy of 77%.
Filtering using Decontam isContaminant function had a sensitivity of 100%, a specificity
of 39%, and a test accuracy of 61%. Filtering using Decontam isNotContaminant func-
tion increased specificity to 77%, giving a test accuracy of 86%.
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FIG 6 The abundance of all species found in the first replicate of the 1:105 and 1:106 dilutions. The theoretical numbers of 16S
copies of each mock community species in 2 ml PCR template are shown as white numbers on blue rectangles. The most

(Continued on next page)
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Sequencing of bile samples from patients with acute cholangitis and bile duct
stenosis. Forty-one patients with either acute cholangitis (n=15) or noninfectious bile
duct stenosis caused by bile duct stones (n=26) were analyzed. Patient characteristics
together with culture and sequencing results are summarized in Table 1. Bacterial
loads were categorized as high in 15 samples, moderate in 8, and low in 18 (Table 2).
Each sample was split into two replicates before 16S rRNA sequencing and were
sequenced using different sequencing depths (16S rRNA replicate 1 and 16S rRNA rep-
licate 2). Table 3 gives an overview of technical sequencing results for the two sets of
replicates. Five sequencing runs were performed to include all samples.

(a) Identifying and filtering bacterial contaminants in the 16S rRNA replicates. The
combined number of extraction controls analyzed in all clinical sequencing runs were
18. An OTU table for all these is provided as Table S5. The top five abundant species in
each extraction control in each of the sequencing runs were identified. If any of these
were found in a clinical sample, the most abundant of them defined a level from where
contamination could be expected to occur in that sample and were used to filter con-
taminants as described for experiment 1. Based on this, OTUs were categorized as ei-
ther valid, likely valid, or contaminant. One or more of the most abundant contaminant
species from the controls were identified in 22 and 24 of the 41 samples in the two
16S PCR replicate runs, respectively (Table 2). As shown in Table 2, detection of con-
taminant bacteria was inversely correlated with the bacterial load of the samples.

FIG 7 Comparison of five different methods for filtering DNA contaminants for a 1:105 and 1:106

dilution replicate of the mock community. Method 1 is our suggested method. Method 2 is filter all
OTUs found in one NEC and PEC. Method 3 is filter OTUs found in all 10 extraction controls. Method
4 is Decontam prevalence based isContamintant function. Method 5 is Decontam prevalence-based
isNotContaminant function.

FIG 6 Legend (Continued)
dominating contaminants were found in the same concentration as mock microbes with a theoretical concentration of
approximately 10 16S copies per 2 ml PCR template. This corresponds to approximately 100 cells per ml in the original sample,
or about 500 16S copies per 100 ml extracted DNA. The less abundant contaminants appear in the same concentration as mock
microbes with a theoretical concentration close to or less than only a single 16S copy per 2 ml PCR template. This corresponds
to an initial concentration of less than 100 bacterial cells per ml sample.
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(b) Comparison of 16S rRNA PCR replicates from the clinical samples. The total number
of accepted identifications for all samples in 16S replicate 1 was 209 (173 valid and 36
likely valid). The corresponding number for replicate 2 was 295 (239 valid and 56 likely
valid). The mean species richness was significantly higher in replicate 2 (Table 3).
Figure S1 in the supplemental material shows a prevalence bar chart per sample for 16S
rRNA replicate 2, categorized according to our filtering criteria. Verifications by other
methods (culture, corresponding 16S rRNA replicate, or rpoB sequencing) are also indi-
cated in the figure. An OTU table for all samples in both replicates is provided in Table S6.

Discrepancies between the two replicates were observed for 22 (53.7%) of the 41
samples (Fig. 8). Ninety-four bacterial identifications, from now on called singletons,

TABLE 1 General characteristics, culture, and sequencing results of all included patients

Characteristic, culture, or sequencing result

No. (%) of patients or indicated value for characteristic or result

Acute cholangitis Noninfectious bile duct stenosis
No. of patients 15 26

General characteristics
Male 9 (60) 7 (27)
Mean age, yrs 73 54
SD; median; range 10; 71; 58–95 17; 51; 20–83

Previous biliary interventions 5 (33) 10 (39)
ERCP with papillotomy 4 (27) 3 (12)
ERCP without papillotomy 0 1 (4)
Choledocus stent still in place 1 (7) 0
Choledocus stent removed 0 1 (4)
Cholecystectomy 0 7 (27)

Ongoing antibiotic therapy at time of sampling 14 (93) 2 (8)
Concomitant acute pancreatitis 1 (7) 0
Concomitant acute cholecystitis 3 (20) 0

Culture and sequencing results
CT valuea for sample, mean 19.8 25,6
SD; median; range 5,1; 19.2; 12.5–27.9 7.5; 28.4; 12.2–33.4

CT valuea for NECb, mean 32.7 33.4
SD; median; range 1.3; 32.9; 29.7–34.6 1.1; 33.7; 31.3–35.5

Growth in blood culture (of tested) 4 (7)
Samples with detected bacteria by sequencingc 15 (100) 21 (81)
Samples with growth of bacteria in bile culture 14 (93) 17 (65)
Polybacterial samples by culture 8 (53) 9 (35
Polybacterial samples by sequencingc 14 (93) 15 (58%)
Mean species richness by sequencingc 5,7 8,1
SD; median; range 3.1; 6.0; 1–13 12.8; 3.0; 0–59

Mean species richness by culture 2.1 1.7
SD; median; range 1.4; 2,0; 1–6 1.8; 1,0; 0–5

aCycle threshold of SYBR green real-time 16S rRNA PCR.
bNegative extraction control.
cAll valid and likely valid identifications included, irrespective of whether they were identified in only one or in both of the two 16S rRNA replicates.

TABLE 2 Samples where contaminant bacteria were identified, categorized by the bacterial
load of the sample

Bacterial load of sample

No. of samples where contaminant bacteria
were identified

Replicate 1 Replicate 2
High (n= 15) 0 0
Moderate (n=8) 4 6
Low (n=18) 18 18

Total (n= 41) 22 24
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were made in only one replicate (Fig. 8 and Table S6). As expected, most singleton
findings were found in the replicate with the highest sequencing depth (Fig. 8), and all
singleton findings were among bacteria with either a low relative abundance or from
samples with a low bacterial load (Table S6).

TABLE 3 Overview of the two 16S rRNA sequencing replicates of the 41 bile samples

Characteristic(s) 16S rRNA replicate 1 16S rRNA replicate 2 P valuec

Valid reads,a mean (median) 67,608 (50,999) 229,904 (198,331) ,0.001
Range 16,179–221,713 52,068–583,052

Accepted reads when identified contaminants excluded, mean (median) 53,289 (33,192) 185,522 (166,919) ,0.001
Range 0–221,713 0–583,052

Total no. of bacterial identificationsb 208 291
Mean no. of bacterial identifications per sampleb (median) 5.1 (3.0) 7.2 (4.0) ,0.001
Range 0–26 0–59

aAccepted reads per sample after quality filtering.
bAfter exclusion of identified contaminants.
cStudent’s t test for continuous, normal distributed variables. Mann-Whitney U-test for continuous, skewed variables.

FIG 8 Venn diagram for each clinical sample, comparing the bacterial findings in the two
sequencing replicates. There were discrepancies in bacterial findings between the two replicates for
22 (53.7%) of the 41 samples. Ninety-four bacterial identifications were made in only one of the two
replicates. Out of these, 90 (96%) were found in the sample with the highest sequencing depth.
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(c) Microbial findings in bile samples. When summarizing the microbial findings, we
included all valid and likely valid identifications from both replicates. A summary of all
bacterial findings, grouped at the genus level, is presented in Table 4.

All samples from patients with acute cholangitis contained bacteria as determined
by both culture and sequencing (Table 1 and Fig. S1). For patients with noninfectious
bile duct stenosis, 21 out of 26 (81%) samples contained bacteria as determined by
sequencing. Among these, four samples were culture negative.

Compared to culture, sequencing found a much higher species richness in most
samples (Tables 1 and 4). In the acute cholangitis group, 84 microbial identifications
were made by sequencing whereof only 26 (30%) were cultured (Table 4). One identifi-
cation, Granilucatella adiacens, was made solely by culture. In the group of noninfec-
tious bile duct stone patients, 215 identifications were made by sequencing, whereof
only 40 (19%) were cultured. Four unique identifications, one Staphylococcus epidermi-
dis, one Staphylococcus warneri, one Corynebacterium pseudodiphtericum, and one
Enterococcus faecalis were made by culture only.

DISCUSSION

In this study, we investigate patterns of microbial contamination in targeted ampli-
con sequencing and their implications for postsequencing filtering of results. We dem-
onstrate how the most dominant contaminant species can be used to establish sam-
ple-specific cutoffs for reliable identifications. We also show how sample bacterial load
and sequencing depth affect sequencing results.

Sequencing of negative controls does not reveal all contaminants.Most current
approaches for identifying and filtering contaminant bacteria rely on the assumption
that sequencing of appropriate extraction controls will reveal the full spectrum of
background contaminants that could possibly occur in the associated clinical samples
(1–4). Our results contradict this assumption. We found that less than 10% of the con-
taminant species were detectable in all five replicates from the same negative control
when split before the PCR amplification step (Fig. 2).

Recently, Erb-Downward et al. described the same PCR replicate variability (17).
They suggested that the phenomenon occurred because of sequencing errors, possibly
due to underloading of the flow cell and very low cluster densities. On the basis of
data from both pre- and post-PCR replicates, we provide an alternative hypothesis,
that the major contributor to the variation between pre-PCR replicates is the random
inclusion of low abundance contaminant microbial DNA during pipetting of the PCR
template. While a few contaminants, having a relatively higher concentration, will
always be part of the PCR template, the majority of contaminants will be present at
such low concentrations that they will only occasionally be included. They are under
the law of small numbers (18), where a random sample is not likely to reflect the popu-
lation from which it is drawn, and the similarity between different samples is low. This
would explain why we robustly detect the most abundant contaminant taxa across all
samples and extraction controls in a sequencing run, whereas the presence and iden-
tity of less abundant background contaminants vary from sample to sample (Fig. 3; see
also Tables S1, S2, and S4 in the supplemental material). Further, the negative-control
replicates that were split after the 16S PCR, i.e., after massive amplification of any low
abundance target and therefore with expected low intersample variability, showed a
very high homogeneity (Fig. 2 and Tables S1 and S2). The latter finding contradicts the
hypothesis by Erb-Downward et al. (17). It is essential to acknowledge the difference
between pre- and postamplification replicates, and only the latter is useful for address-
ing the reproducibility of the sequencing technology itself.

Lower limit of detection. When the DNA input of a given species in a sample is
getting close to one copy per PCR, it will, like the low abundance contaminants, be
under the law of small numbers. This thus constitutes a lower limit of detection for 16S
deep sequencing as a method. Our sequencing of the mock community illustrates this
point. From the 1:105 dilution, we identified M. smithii in only 2 out of four PCR
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TABLE 4 Identified bacteria by sequencing compared to conventional culture

Condition, parameter, and bacterial speciesa

Identifications by 16S rRNA sequencing Growth by culture

Total no. % of all microbial detections No. % of identified by 16S rRNA sequencing
Acute cholangitis (15 patients)
Total no. of identifications 84 26 31
Gram negative 27 32 9 33
Klebsiella spp. 8 9.5 2 25
Escherichia coli 7 8.3 6 86
Campylobacter spp. 3 3.6
Enterobacter spp. 2 2.4
Haemophilus parainfluenzae 2 2.4
Aggregatibacter spp. 2 2.4
Hafnia alvei 1 1.2 1 100
Moraxella osloensis 1 1.2
Serratia odorifera 1 1.2

Gram positive 42 50 15 35
Enterococcus spp. 11 13.1 9 82
Streptococcus spp. 10 11.9 3 30
Lactobacillus spp. 6 7.1 1 17
Actinomyces spp. 4 4.8
Granulicatella adiacens 2 2.4
Rothia mucilaginosa 2 2.4
Staphylococcus spp. 2 2.4 1 50
Abiotrophia defectiva 1 1.2
Bacillus halodurans 1 1.2
Cellulosimicrobium sp. 1 1.2 1 100
Corynebacterium provencense 1 1.2
Kocuria sp. 1 1.2

Anaerobic 15 18 2 14
Fusobacterium spp. 4 4.8
Veillonella spp. 4 4.8
Clostridium perfringens 4 3.6 2 67
Bifidobacterium dentium 1 1.2
Cutibacterium avidum 1 1.2
Finegoldia magna 1 1.2
Intestinibacter bartlettii 1 1.2

Noninfectious bile duct stenosis (26 patients)
Total no. of identifications 215 40 19
Gram negative 44 21 16 36
Escherichia spp. 7 3.3 6 86
Klebsiella spp. 7 3.3 5 71
Haemophilus spp. 6 2.8 1 17
Campylobacter spp. 3 1.4
Enterobacter spp. 3 1.4
Neisseria spp. 3 1.4
Citrobacter/Cronobacter 2 0.9
Pseudomonas aeruginosa 2 0.9
Aeromonas sp. 1 0.5 2 200
Bergeyella sp. (HMT-322) 1 0.5
Capnocytophaga gingivalis 1 0.5
Citrobacter amalonaticus 1 0.5 1 100
Hafnia alvei 1 0.5
Hymenobacter sp. 1 0.5
Kluyvera ascorbata 1 0.5
Pluralibacter gergoviae 1 0.5
Proteus sp. 1 0.5
Pseudolabrys sp. 1 0.5
Serratia marcescens 1 0.5 1 100

Gram positive 75 35 21 28
Streptococcus spp. 35 16.3 8 23
Actinomyces spp. 13 6.0 2 15
Enterococcus spp. 7 3.3 6 86
Granulicatella adiacens 4 1.9

(Continued on next page)
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replicates. The theoretical abundance of M. smithii in the 1:105 dilution was 67 cells per
ml, corresponding to a little less than one copy in 2ml PCR template (Table S3).

Comparison of filtering methods. The major strength of our method for filtering
contaminants is its high specificity, found to be 97% when evaluated on mock commu-
nity dilutions (Fig. 7). As expected, the use of a single negative and positive extraction
control had a very low specificity (39%) (method 2; Fig. 7). The law of small numbers
implies that increasing the number of extraction controls should provide a more com-
plete description of the background contaminants, and including OTUs found in all 10
extraction controls (method 3; Fig. 7) did result in filtering of more true contaminants.
However, many of the low abundance contaminants were still not flagged, and the
specificity of this method remained low (64%).

Our findings might explain why promising postanalytic methods for removing con-
taminants, like the R-package Decontam, still display reduced specificity in low

TABLE 4 (Continued)

Condition, parameter, and bacterial speciesa

Identifications by 16S rRNA sequencing Growth by culture

Total no. % of all microbial detections No. % of identified by 16S rRNA sequencing
Rothia mucilaginosa 4 1.9 2 50
Saccharibacteria (TM7) spp. 4 1.9
Staphylococcus spp. 3 1.4 2 67
Gemella spp. 2 0.9
Corynebacterium sp. 1 0.5
Kocuria palustris 1 0.5
Leuconostoc lactis 1 0.5 1 100

Anaerobic 96 45 3 3
Veillonella spp. 18 8.4
Prevotella spp. 14 6.5 1 7
Fusobacterium spp. 7 3.3
Oribacterium spp. 6 2.8
Leptotrichia spp. 5 2.3
Clostridium spp. 5 2.3 1 20
Bifidobacterium spp. 4 1.9
Stomatobaculum longum 3 1.4
Peptostreptococcus spp. 3 1.4
Atopobium parvulum 2 0.9
Bacteroides spp. 2 0.9 1 50
Lachnoanaerobaculum spp. 2 0.9
Megasphaera micronuciformis 2 0.9
Alloprevotella tannerae 1 0.5
Alloscardovia omnicolens 1 0.5
Anaerococcus vaginalis 1 0.5
Bilophila wadsworthia 1 0.5
Catabacter hongkongensis 1 0.5
Catonella morbi 1 0.5
Colibacter massiliensis 1 0.5
Cryptobacterium curtum 1 0.5
Dialister pneumosintes 1 0.5
Eggerthella lenta 1 0.5
Eubacterium sulci 1 0.5
Finegoldia magna 1 0.5
Fretibacterium fastidiosum 1 0.5
Lachnospiraceae (G-2) sp. 1 0.5
Mogibacterium sp. 1 0.5
Parasutterella excrementihominis 1 0.5
Parvimonas micra 1 0.5
Porphyromonas pasteri 1 0.5
Selenomonas sp. 1 0.5
Slackia exigua 1 0.5
Solobacterium moorei 1 0.5
Veillonellaceae [G-1] sp. 1 0.5

aMicrobes that could be identified only to a species group or genus level are listed at the genus level. For microbes that could be identified to the species level, and where
there were no other species identified within the same genus, the species name is listed.
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biomass/highly diluted samples (4, 5, 13). Decontam filtering of contaminant taxa had
a specificity of 39% and 77%, respectively, in our mock community experiments
(Fig. 7). The prevalence-based method in Decontam, which is recommended for low
biomass samples (4), relies on the assumption that contaminating taxa are likely to
have a higher prevalence in control samples than in true samples. Our results indicate
that this assumption may be true only for the more abundant contaminant bacteria.
Low abundance contaminant taxa that appear randomly in the negative extraction
controls might not be recognized as contaminants.

The sensitivity of our suggested filtering method on the diluted mock communities
was 83%. The mock community microbes wrongly classified as contaminants were
those present in concentrations close to the absolute lower limit of detection, having a
theoretical copy number ranging from ,1 to 9 copies per 2ml PCR template. Thus, this
delineates the lower limit of detection for our filtering method. Many of the bile sam-
ples from the noninfectious patients also had low bacterial loads. They contained bac-
teria known to be part of the human oral microbiota, possibly reflecting contamination
of the sampling catheter during the endoscopic retrograde cholangiopancreatography
(ERCP) procedure. In some of these samples (e.g., samples 23 and 28 [see Fig. S1 in the
supplemental material]), due to the low bacterial loads, many human oral bacteria
were categorized as background contaminants by our filtering approach.

A major concern when subtracting all findings in the negative controls (1, 2, 13) is
the situation where a species truly present in the sample is also found in the bacterial
background. Our method allows for correct classification of these as relevant if they
are represented by more reads than the most abundant contaminants. For the specific
situation where the infection is caused by a species that is also among the dominant
contaminants, one must look at alternative approaches. It is possible to calculate a
sample-specific cutoff for differentiating between true and contaminant bacteria by
using a combination of sequencing depth (number of reads) and the CT values of the
sample and the corresponding negative control in the 16S rRNA PCR (DCT) (19).
Although specific, this approach has a lower sensitivity.

Another suggested approach for contaminant filtering is to have an expert review
of the samples and remove taxa that are considered biologically unexpected (1, 20).
This method will however fall short if contaminant species are also biologically plau-
sible, like many of the species identified in our extraction controls (e.g. Anaerococcus
sp., Actinomyces sp., Corynebacterium sp., Cutibacterium acnes, Staphylococcus sp.,
Finegoldia magna, Haemophilus sp., Pseudomonas sp., Prevotella sp., Streptococcus sp.,
and Moraxella sp.) (Tables S2 and S4). However, combining our suggested filtering
method with expert removal of biologically unexpected findings could possibly fur-
ther increase the accuracy of results. In such a setting, clinically plausible findings
below the cutoff of a valid identification could also be reported, but with more cau-
tion and as part of a broader clinical assessment.

Using the most abundant contaminant to establish a cutoff for likely valid identifi-
cations represents a dynamic approach taking into account both sequencing depth
and the relative level of contamination in each individual sample. This is in contrast to
some approaches based on a fixed cutoff, either a specified read count or a specified
proportion of the total number of sequencing reads in each sample (21, 22). Such
approaches will not be expedient for filtering samples with diverse bacterial loads or
with dissimilar sequencing depths.

Setting the lower cutoff for acceptable bacterial identifications. We removed
any species represented by less than 20% of the reads of the most abundant contami-
nant. This was a pragmatic cutoff, based on the observation that, with our reagents,
inclusion of random background contaminants seemed to increase exponentially
below this threshold (Fig. 4). However, as seen in Fig. 4, contaminants could occasion-
ally occur at abundances up to 80% of the dominant background bacteria. We must
therefore assume that some of the bacteria defined as “likely valid” in our clinical sam-
ples could represent contaminants. A likely example of this is the soil bacterium
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Hymenobacter sp., found in sample 41 with an abundance of 33% compared to the
most abundant contaminant (Fig. S1).

The relative number of reads representing a given bacterium in a sample will fluctu-
ate somewhat from sequencing run to sequencing run. Such variations will be more
pronounced among low abundance bacteria since they, like the background contami-
nants, are more affected by random differences in the number of target DNAs pipetted
for the amplification PCR. This is illustrated by the repeat sequencing of mock commu-
nity dilutions, where the interreplicate variations in relative species abundances were
higher in the most diluted samples (Fig. 5B). Low abundance species will therefore be
vulnerable for accidentally falling below the cutoff in some runs, explaining why alto-
gether 27 bacteria were validly detected in only one of the 16S rRNA replicates among
the “low bacterial load” bile samples (Fig. 8).

The relationship between bacterial load, sequencing depth, and diagnostic
sensitivity. Background contamination is described as mainly constituting a challenge
in low biomass samples, and many studies report the inverse relationship between the
bacterial load of a sample and the relative abundance of contaminating DNA (1–3, 5).
We will argue that the absence of contaminant species in data from a high biomass
sample is actually an indication of inadequate sequencing depth. If you are not seeing
any contaminants, there may remain undiscovered species with lower abundances
that you could have detected using a higher number of reads (as in our sequencing of
the 1:10 dilution of the mock community). This is well exemplified by our repeated 16S
rRNA sequencing of clinical samples, where all except 1 out of 62 singleton findings
were made in the replicate with the highest sequencing depth (Fig. 8). All these extra
identifications were also, as expected, among the low abundance species in their sam-
ples with relative abundances of,1% of the total number of accepted bacterial reads
(Fig. S1). Sample 38 (moderate bacterial load, CT value of 22.5) represented the most
extreme example (Fig. S1). For this sample, the number of accepted reads increased
from 17,966 reads in the first replicate to 188,744 in the second. With this increase, we
were able to identify 32 additional species and, as an indication of sufficient depth,
small amounts of contamination (113 reads/0.001% with Ralstonia picketti). The high
number of reads needed for robust description of polymicrobial clinical infections is
emphasized by our data. For samples with moderate to high bacterial loads, even a
sequencing depth of hundreds of thousands reads was frequently insufficient to start
seeing contaminant bacteria (Table 2 and Fig. S1).

Cross-contamination. Another possible source of contamination in target ampli-
con sequencing is cross-contamination between samples (2). The level of cross-con-
tamination is difficult to determine with certainty. To minimize the risk of sequencing
noise and cross-contamination disturbing our results, we rejected all OTU clusters con-
taining less than 50 sequences. This is a similar or even more strict criterion than other
studies have used (9, 19, 22–24).

Limitations.We believe the general principles outlined in the study will be transfer-
able to other clinical labs. However, background contamination will vary between labs,
between extraction kits and PCR reagents, and even between batches of the same
extraction kits and PCR reagents (2). Every lab should analyze and monitor the pattern
of contamination in their own sequencing results if adopting our approach for filtering
of contaminants and adjust their filtering cutoffs according to their findings.
Adjustments could include, e.g., the number of “top contaminants” or the “frequency
threshold rate.”

Conclusion. In this study, we demonstrate the limitations of simply using microbial
identifications in negative controls as the basis for filtering background bacterial con-
tamination. The main concern regarding this strategy until now has been that the neg-
ative controls may contain bacteria that are also truly present in the clinical samples or
that the negative controls may be contaminated with DNA from the clinical samples
during the sequencing process (1, 2, 13) and that true findings therefore will be dis-
carded as contaminants. We demonstrate that due to the law of small numbers, the
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risk of accepting contaminants as true findings should be of equal concern using this
strategy.

We suggest using the most abundant background contaminant species to define a
level in each sample from where identifications might represent contamination. Below
this level, again due to the law of small numbers, it rapidly becomes very demanding
to discriminate between background and true findings. The most abundant contami-
nant DNA can also serve to evaluate sequencing depth. Adequate sequencing depth
can be claimed only when the analysis also picks up background contamination.

MATERIALS ANDMETHODS
Inclusion of patients and collection of bile samples. This was a prospective, single-center study

performed at Haukeland University Hospital, Bergen, Norway. The study was approved by the regional
ethical committee (2015/65). Written informed consent was obtained from all participants.

From July 2015 to April 2017, bile samples were collected from all patients undergoing endoscopic
retrograde cholangiopancreatography (ERCP). Patients diagnosed with either acute calculous cholangi-
tis, defined according to the Tokyo Guidelines 2013 (25) (TG13) criteria for a definite diagnosis or nonin-
fectious bile duct stone were included for further analysis.

Bile samples were immediately placed in sterile sample glass and sent to the laboratory for analysis
after sampling. Upon arrival to the laboratory, DNA was extracted directly from 400ml of bile as
described previously (15, 16, 26). The eluate was stored at 280°C for later deep sequencing analysis. All
samples were also routinely cultured according to our previously described laboratory guidelines (16).

Endoscopic retrograde cholangiography and pancreatography procedure. The intestine was
rinsed with a solution of water and Minifom before procedure. ERCP was performed with the patient in
the supine position. The patient was sedated with midazolam and pethidine, and if needed supple-
mented with buscopan for bowel relaxation. A side-viewing, sterilized, endoscope (Evis Exera III
Duodenovideoscope, Olympus TJF – Q190V, Olympus) was used. Wire guided selective bile duct cannu-
lation was performed with use of a guidewire (Dreamwire 0.035 in., 260 cm; Boston Scientific, Costa Rica)
passed through a sterile sphincterotome catheter (Jagtome RX 44; Boston Scientific, Costa Rica). The
position in the bile duct was confirmed by X-ray to identify the position of the catheter and guide wire
before aspiration of approximately 2 to 5ml bile. If there was any concern about the location of the
guidewire, the sphincterotome was gently advanced over the guidewire, and a small amount of contrast
was injected to delineate the anatomy. If there were any difficulties with cannulation of the ampulla of
Vater, normal saline was injected to dilate the bile duct. Normal saline injections was also used to flush
the bile ducts if bile aspiration attempts yielded little or no fluid in return on the catheter.

Mock community dilution. A staggered mock community from ZymoBIOMIC were used
(ZymoBIOMICS Gut Microbiome Standard, catalog no. D6331; Zymo Research Corp., Irvine, CA, USA).
This mock community consists of 19 bacterial strains representing 15 bacterial species (Faecalibacterium
prausnitzii, Veillonella rogosae, Roseburia hominis, Bacteroides fragilis, Prevotella corporis, Bifidobacterium
adolescentis, Fusobacterium nucleatum, Lactobacillus fermentum, Clostridioides difficile, Akkermansia muci-
niphila, Methanobrevibacter smithii, Salmonella enterica, Enterococcus faecalis, Clostridium perfringens, and
Escherichia coli strains JM109, B-3008, B-2207, B-766, and B-1109) and two fungal species (Saccharomyces
cerevisiae and Candida albicans). The mock community was diluted with microbial DNA-free water
(Qiagen) in seven rounds of a serial 10-fold dilution prior to DNA extraction. The dilutions were analyzed
with a SYBR green real-time 16S rRNA PCR using a previously described protocol (15) to obtain a semi-
quantitative measure of the bacterial load of each dilution. A dilution with high bacterial load (1:10) and
two different dilutions with low bacterial load (1:105 and 1:106) were selected for further analysis.
Negative and positive extraction controls were included and followed all processing steps.

Gene targets. In all bile samples, mock community samples, and extraction control samples, the 16S
rRNA gene V3-V4 region was sequenced (see Table S8 in the supplemental material). For selected bile
samples, a part of the rpoB gene were also sequenced in a separate sequencing run to obtain a higher
taxonomic resolution for Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus species
identified by the 16S rRNA sequencing (16). Species identified at a higher taxonomic level with partial
rpoB gene sequencing compared to partial 16S rRNA gene sequencing (V3-V4) are listed in Table S7. All
primers used were the same as described previously (16), except for a modification of one of the two for-
ward RpoB_ESS primers to obtain better coverage of Enterococcus raffinosus (Table S8). All primers are
listed in Table S8.

Sequencing procedure. The Illumina Miseq system (Illumina, Redwood City, CA) was used for
sequencing. The sequencing protocol was a modified version of the of the Illumina 16S Metagenomic
Library Preparation protocol (27) as described previously (15, 16). Briefly, the sequencing workflow
included the following stages. The target genes were amplified in an amplicon PCR using the same tem-
perature profile for all targets. An overview of the PCR mixture for the different gene targets and the
temperature profile of the amplicon PCR is provided in Table S8. After PCR cleanup of the amplicon PCR
product with use of AMPure XP beads, the next step was attachment of dual indices and Illumina
sequencing adapters in an index PCR. The index PCR product underwent a similar cleanup, followed by
a fluorometric quantification of the DNA content of each sample using Qubit 3.0 fluorometer (Fisher
Scientific) and the QubitR dsDNA (double-stranded DNA) HS (high-sensitivity) assay kit (0.2 to 100 ng).
Samples were then diluted using 10mM Tris (pH 8.5) to reach a final concentration of 4 nM, before they

Managing Contamination in Deep Sequencing ®

May/June 2021 Volume 12 Issue 3 e00598-21 mbio.asm.org 19

https://mbio.asm.org


were pooled together into a final library pool that was denatured, diluted, and mixed with a Phix control
before loaded on the Miseq system as described in the Illumina protocol (27).

For the 16S rRNA amplicon sequencing of bile samples, each sample was split into two replicates
(16S rRNA replicate 1 and 16S rRNA replicate 2) after DNA extraction and then processed in different
PCR amplification and sequencing runs. The second replicate from each sample was sequenced with
fewer samples per sequencing run to obtain a higher sequencing depth.

Assessing the bacterial load in the bile samples. A semiquantitative measure of bacterial load in
each sample was calculated using the CT value from the SYBR green real-time 16S rRNA PCR, following
the same protocol as for the mock community experiment. According to their CT value, samples were
categorized as having either high bacterial load (CT values ranging from lowest to 19), moderate bacte-
rial load (CT values ranging from 20 to 24) or low bacterial load (CT values ranging from 25 to highest).

Extraction controls. Each sample was processed together with a parallel negative extraction control
consisting of lysis buffer and PCR-grade water. For the bile samples, all negative extraction controls
were mixed into two or three pools before sequencing, depending on the number of samples included
in the sequencing run. In addition, a weakly positive extraction control consisting of Legionella pneumo-
phila suspended in PCR-grade water was included.

Postsequencing processing. The Miseq Reporter software was used for removing primers,
demultiplexing, and generating FASTQ files for each sample. AdapterRemoval 2.2.2 (28) was used for
trimming adapter sequences and low-quality bases and to merge the forward and reverse FASTQ
files of each sample, using the following command: AdapterRemoval –file1 ,reads_1.fq. --file2
,reads_2.fq. --basename ,mymergedfile. --threads 7 –trimns –trimqualities –minquality 20 –col-
lapse – adapter-list ,adapters..txt –gzip.

Downstream analysis was then performed using the RipSeq next-generation sequencing (NGS) soft-
ware (Pathogenomix, Santa Cruz, CA) (15, 16) (de novo clustering into operational taxonomic units
[OTUs] using a 99% similarity threshold). A chimera check was performed with the RipSeq online tool.

Taxonomic assignment. OTUs were assigned using the RipSeq online BLAST search against the
RipSeqs curated database “Pathogenomics Prime 16S” (16S), “Pathogenomix rpoB_ESS,” ”Pathogenomix
rpoB_Ent,” and “GenBank Bacteria 1 – All bacterial targets, Valid Species and Pubmed” (rpoB). OTUs that
did not match a reference sequence using these RipSeq curated databases were manually assigned by
performing a BLAST search against the GenBank NCBI database and the Human Oral Microbiome
Database (www.homd.org). OTUs mapping to the same reference species were merged.

Criteria used for taxonomy assignments for both 16S rRNA and rpoB gene were the same as
described previously (16) (for 16S rRNA species-level identification, $99.3% homology with a high-qual-
ity reference, and minimum distance .0.7% to the next alternative species). OTUs obtaining species-
level homology but with an insufficient distance to the next species were assigned to a species group or
listed as a slashed result. OTUs that did not assign to any known species were indicated as “Unknown
bacteria #.” A full list of all species groups and of the best BLAST search match in GenBank NCBI data-
base for all OTUs termed as “Unknown bacteria #” is found in Table S9.

Secondary filtration of sequencing results. A lower cutoff for the number of representative
sequences required to retain an OTU is recommended as a secondary filtration to diminish problems
related to sequencing noise and cross-contamination of samples (9, 19, 22–24, 29). We rejected OTUs
represented by fewer than 50 reads. Further filtering of bacterial background DNA from the sequencing
results is outlined in Results.

Statistical analysis. Statistical analyses were performed using SPSS 25 (IBM Corp.) and the R pro-
gramming language (30). Clinical and microbial characteristics of categorical and continuous data were
analyzed with Pearson’s chi-squared test and Student’s t test, respectively. Mann-Whitney U-test was
used for continuous, skewed variables. Figures illustrating microbial distribution were produced using
the R-packages “VennDiagram” (31) version 1.6.0 and “ggplot2” (32) version 3.2.1. Diversity analyses
were performed using the R-package “phyloseq” (33) version 1.30.0. Rarefaction of data used in diversity
measures was performed using the phyloseq package in R with the following arguments: rarefy_even_depth
(Otu_table, sample.size = min(sample_sums(Otu_table)), rngseed = TRUE, replace = TRUE, verbose = TRUE).

Data availability. The source data from experiment 1 and experiment 2 have been deposited in the
European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB44556 (https://www.ebi
.ac.uk/ena/browser/view/PRJEB44556).

Other source data of this study are available from the corresponding author upon request. Not all
patient data are publicly available due to restrictions from the Regional Ethical Committee.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.5 MB.
TABLE S1, PDF file, 0.2 MB.
TABLE S2, XLSX file, 0.02 MB.
TABLE S3, PDF file, 0.2 MB.
TABLE S4, XLSX file, 0.02 MB.
TABLE S5, XLSX file, 0.02 MB.
TABLE S6, XLSX file, 0.1 MB.
TABLE S7, PDF file, 0.1 MB.
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TABLE S8, PDF file, 0.2 MB.
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