
RESEARCH Open Access

Predicting gene function using similarity learning
Tu Minh Phuong1*, Ngo Phuong Nhung2

From IEEE International Conference on Bioinformatics and Biomedicine 2012
Philadelphia, PA, USA. 4-7 October 2012

Abstract

Background: Computational methods that make use of heterogeneous biological datasets to predict gene
function provide a cost-effective and rapid way for annotating genomes. A common framework shared by many
such methods is to construct a combined functional association network from multiple networks representing
different sources of data, and use this combined network as input to network-based or kernel-based learning
algorithms. In these methods, a key factor contributing to the prediction accuracy is the network quality, which is
the ability of the network to reflect the functional relatedness of gene pairs. To improve the network quality, a
large effort has been spent on developing methods for network integration. These methods, however, produce
networks, which then remain unchanged, and nearly no effort has been made to optimize the networks after their
construction.

Results: Here, we propose an alternative method to improve the network quality. The proposed method takes as
input a combined network produced by an existing network integration algorithm, and reconstructs this network
to better represent the co-functionality relationships between gene pairs. At the core of the method is a learning
algorithm that can learn a measure of functional similarity between genes, which we then use to reconstruct the
input network. In experiments with yeast and human, the proposed method produced improved networks and
achieved more accurate results than two other leading gene function prediction approaches.

Conclusions: The results show that it is possible to improve the accuracy of network-based gene function
prediction methods by optimizing combined networks with appropriate similarity measures learned from data. The
proposed learning procedure can handle noisy training data and scales well to large genomes.

Background
The increasing number of sequenced genomes makes it
important to develop methods that can assign functions
to newly discovered genes in a timely and cost-effective
manner. Traditional laboratory methods, while accurate
and reliable, would require enormous effort and time to
identify functions for every gene. Computational
approaches that utilize diverse biological datasets to
generate automated predictions are useful in this situa-
tion as they can guide laboratory experiments and facili-
tate more rapid annotation of genomes.
Existing computational approaches to gene function

prediction have relied on a variety of genomic and

proteomic data. Exploiting the similarities between DNA
or protein sequences to infer gene function was the first
approach tested and has been the most widely used
approach to date. Later, the usefulness of other types of
genomic and proteomic data in this problem is also
proved. Researchers have used microarray expression
data [1], protein 3D structures [2], protein domain con-
figuration [3], protein-protein interaction networks [4],
and phylogenetic profiles [5] to predict functions of
genes. Recently, inferring gene function simultaneously
from different types of biological data has been shown
to deliver more accurate predictions and has attracted
considerable research interests [6-16].
Many methods for inferring functions of genes from

heterogeneous datasets share a common framework in
which a functional association between genes is first con-
structed and then used as input for learning algorithms.

* Correspondence: phuongtm@ptit.edu.vn
1Department of Computer Science, Posts & Telecommunications Institute of
Technology, Hanoi, Viet Nam
Full list of author information is available at the end of the article

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

© 2013 Phuong and Nhung; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:phuongtm@ptit.edu.vn
http://creativecommons.org/licenses/by/2.0

A functional association can be represented as a network
with nodes corresponding to genes and edges represent-
ing the co-functionalities of gene pairs. In such a net-
work, each edge is usually assigned a weight representing
the strength of the co-functionality relationship between
the gene pair. A network of this kind is typical con-
structed in two steps. First, each dataset is used to create
an individual network that captures the co-functionality
of gene pairs, as implied by this dataset. For vectorial
data, one can calculate edge weights as the similarity
scores between genes using appropriate similarity metrics,
for example the Pearson correlation coefficient, and then
form the networks by means of neighboring node con-
nections. Data already given in forms of networks, for
example protein-protein interactions, are used directly.
The second step constructs a single combined association
network by integrating the individual ones. A strategy
commonly used in this step is to form the combined net-
work as a weighted sum of individual ones. Here, each
network is weighted according to its usefulness in pre-
dicting annotations for a group of genes that share a
known specific function. Previous studies have used var-
ious regression or other learning based algorithms to esti-
mate network weights.
Given a functional association network, the next step

is to use this network to propagate functional labels
from a group of annotated genes to other genes. There
are two main types of approaches for this step.
Approaches of the first type create a kernel function
from the co-functionality relationships encoded in the
network and use this kernel with kernel-based classifica-
tion algorithms [8,9,17]. In such approaches, genes with
known annotations serve as labeled examples for train-
ing. Approaches of the second type use graph-based
algorithms, which propagate labels from annotated
genes to other genes based on graph proximity. Meth-
ods in this group range from simple nearest neighbor
counting algorithms [16], to more sophisticated statisti-
cal methods such as graph-based semi-supervised learn-
ing algorithms [9], and Markov random fields [18] (see
[19] for a more complete list of methods). On a number
of benchmark datasets, graph-based and kernel-based
approaches have shown comparable prediction accuracy,
but graph-based approaches are generally faster [11,20].
The prediction accuracy of both graph-based and ker-

nel-based approaches largely depends on the ability of
the network to capture the functional associations
between genes. To improve the network quality, pre-
vious studies have focused on improving the integration
step, or more precisely, on learning optimized weights
for individual networks, and little effort has been applied
toward improving the combined networks after they are
constructed.

In this study, which is an extension of our previous
work [22], we assume that the network integration step
is already done and focus on optimizing the produced
network. Given a combined network and a set of anno-
tated genes that serve as training examples, we present a
method for learning networks of improved quality. This
is done in two steps: in the first step, the method learns
a measure of similarity between pairs of genes; in the
second step, the method reweights the network’s edges
using the similarity measure it just learned. Here, we are
inspired by previous work in ranking and multimedia
retrieval domains which improves search results by
learning a measure of semantic similarity from online
datasets and using it to rank multimedia objects [23,24].
In learning, the algorithm iteratively updates a similarity
function so that it gives higher scores to pairs of similar
objects and lower scores to dissimilar or randomized
pairs. When learning ends, semantically related objects
are more likely to get higher similarity scores. Once the
similarity scores are learned, we use them to re-weight
the edges of the input network.
In predicting gene function, discriminative learning

algorithms are challenged by the small number of posi-
tive genes (genes annotated to a given category) for
many categories, which is known as the problem of
learning with unbalanced data. This problem is less cri-
tical for similarity learning methods because they tend
to assume a weaker form of supervision than in classifi-
cation, in which no labels are provided. Moreover,
whenever genes annotated to functional categories are
available, the category labels induce a notion of similar-
ity across pairs, and this similarity can easily be incorpo-
rated into the learning process. Thus, similarity learning
offers a more flexible framework than classification algo-
rithms and can handle problems associated with unba-
lanced data in a natural way. Another challenge for gene
function prediction algorithms is speed, especially when
assigning functions in large genomes comprising tens of
thousands of genes. Here, we use a learning algorithm
that scales to the large genome size. The algorithm
achieves computational efficiency due to several factors.
It exploits sparse representations of genes when com-
puting similarity, it does not require a similarity func-
tion to be symmetric or positive, and it is based on an
online passive-aggressive algorithm that is known to
converge quickly after being presented with only a
handful of training examples.
We evaluated the effectiveness of the method (which

we call Similarity Learning of Association Networks
[SLAN]) in predicting Gene Ontology (GO) functional
categories of genes in yeast and human using several
datasets. As shown by the results, SLAN was able to
learn networks that yielded more accurate predictions,

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 2 of 12

as compared to predictions produced by fixed networks.
In a comparison with two state-of-the-art gene function
prediction methods, SLAN achieved higher prediction
accuracy even when given as input a combined network
produced by a simple integration method. The results also
show that the method scales well with the number of genes.

Methods
The proposed method predicts gene function using the
following steps: (i) learning a measure of functional
similarity between gene pairs; (ii) using this similarity
measure to form new association networks; and (iii)
inferring functions of genes from the new networks. In
the following sections, we first describe the algorithm
that learns similarity functions from data, and the
method for selecting training samples. Next, we describe
how new networks are constructed using the learned
functions. Then, we give a brief review of the algorithm
that predicts gene function from reconstructed net-
works. Finally, we describe the datasets and input net-
works used in our experiments.

The similarity learning algorithm
Assume there are n genes g1, ..., gn, the first d genes of
which have annotations in forms of GO terms, where
each GO term corresponds to a category of gene func-
tion, and the remaining genes are new, the annotations
of which are unknown and to be predicted. We also
assume we are provided as input a functional association
network with n nodes; each node corresponds to a gene,
and each (weighted) edge represents the evidence of a
functional association between the gene pair. Each edge
connecting gene gi and gene gj is assigned a positive
weight aij , which shows the strength of this association.
Such a network can be constructed from heterogeneous
datasets using network integration methods like the
one presented in [9,10]. Using the set of d genes with
known annotations as training data, our method esti-
mates a measure of semantic similarity that reflects the
functional relatedness between gene pairs. With the
learned similarity measure, we reconstruct the input
network and use the new network to predict function
for new genes. Note that, in the learning phase, the
method has access only to a fragment of network com-
prising d annotated genes, while in prediction it uses
the full network of n genes.
The similarity learning algorithm we use in this study

requires input objects be represented as vectors of real-
valued features. To transform genes into vectors of real
numbers, we apply a feature map , which
represents gene gl as the following column vector

(1)

where ali for i = 1,..,d are edge weights taken from the
input network. Intuitively, each gene is represented by
its similarities to the d annotated genes, according to
the given network.
Now, let training signals be given in the form of a set P

of gene triplets (g, g+, g-), where genes g and g+ are in a
stronger functional association than genes g and g-. The
goal is to learn a similarity function S(.,.) that assigns
higher similarity scores for pairs of more functionally
relevant genes, that is S(g, g+) >S(g, g-), ∀(g, g +, g-).
Here, we adopt the learning algorithm originally pro-

posed for image search applications [23]. The algorithm
learns a similarity function that has the bilinear form:

(2)

where is a parameter matrix. It is important
to note that, in practice, a widely used preprocessing
step is to sparsify the association network by keeping
only k strongest connections for each gene (k <<d). In
such a sparse representation, only k elements of feature
vector F(gi) are non-zero. Therefore, the computation
of function SW has complexity O(k2) regardless of d.
This property makes the computation of the similarity
function efficient when d is large.
In the learning phase, the algorithm estimates a para-

meter matrix W such that gene pairs in stronger func-
tional associations are assigned higher scores.
Specifically, for all triplets (g, g +, g-) ÎP , the algorithm
seeks to find a matrix W such that S(g, g+) is larger than
S(g, g-) with a safety margin of 1:

(3)

For triplet (g, g+, g-) the algorithm computes the fol-
lowing hinge loss function:

(4)

When the safety margin (3) is violated, this loss function
is positive, making a penalty to the objective function. The
algorithm then tries to minimize a training objective func-
tion that accumulates losses over all training data:

(5)

This objective function is minimized by applying the
Passive-Aggressive algorithm [24] iteratively over train-
ing triplets. First, the algorithm initializes W to some
matrix W0 (in our experiments, W0 was initialized to an
identity matrix). Then, in each iteration, the algorithm
selects at random a triplet (g, g+, g-) Î P and computes
the hinge loss according to (4). If lW (g, g+, g-) = 0, or,
equivalently, , no update is
made. Otherwise, it solves the following convex problem

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 3 of 12

with a soft margin:

(6)

subject to:

(7)

where ||.||Frob denotes the Frobenius norm, and ξ is a
slack variable. The intuition behind this update is to
keep Wi close to Wi-1 from the previous iteration while
minimizing the current loss. Here, “aggressiveness” para-
meter a controls the trade-off between the two objec-
tives. This optimization problem can be solved by the
Lagrange method, resulting in the following update:

(8)

where

(9)

and

where F(g)i denotes the i-th element of F(g).
This learning procedure continues until a stopping

condition is satisfied, and the corresponding W is
returned. In practice, one can select the best W by using
a heldout validation set: the accuracy is measured on the
validation set and learning stops when the accuracy
becomes saturated. As reported in [24], using this
method to select W provides good generalization while
reduces learning time.

Estimating pairwise similarities between training genes
The algorithm described in the previous section requires
training signals in forms of triplets (g, g+, g-). From the
set of d genes with known annotations it is important to
choose only right triplets so that genes g and g+ are
functionally similar while genes g and g- are not. For
cases in which each gene has a single function, selecting
such a triplet is straightforward in that pairs of genes
that share a function are more similar than pairs of
genes with different functions. This leads to a simple
strategy, in which one can select a gene g, find a gene
with the same function as g to provide an instance of g+,
then find a gene without that function to provide an
instance of g-. In practice, however, a gene can have
multiple functions or participate in multiple biological
processes. Moreover, genes are often annotated with
functions that form hierarchies, as in the case of GO or
FunCat categories [25,26]. These properties make it
more complex to quantify the functional similarity
between gene pairs when choosing triplets for training.

A number of methods and metrics have been pro-
posed to quantify the semantic similarity between GO
terms (see [28] for a review). In this study, we use
Resnik’s measure [26] - one of the most stable and
widely used similarity metrics for biomedical ontologies
like GO [27] - to estimate functional similarities. Resnik
defines the semantic similarity between a pair of GO
terms c1 and c2 as the information content (IC) of their
most informative common ancestor (MICA) according
to the GO graph:

The IC of a term is defined as the negative log of the
probability that this term appears in a collection of gene
annotations.
Since a gene can be annotated with multiple GO terms,

we estimate the similarity between a pair of genes by
combining the Resnik’s measures of their annotations.
There are several combination strategies including maxi-
mum, average, only exact matches, or sum of all pairs
[28]. Here we adopt the best-match average combination
method: we take only the best matched terms and esti-
mate their average Resnik-based similarities. This combi-
nation method has been reported to give intuitive and
stable results in several benchmarks [28]. In our experi-
ments, Resnik’s similarities between GO terms as well as
similarities between gene pairs were computed by using
the GoSemSim package [29].

Selecting training triplets for learning function specific
similarity measures
Using the learning procedure described in the previous
section, for each functional category C, we estimate a
parameter matrix WC. In the next step, WC will be used
to construct a new association network that is specific
for C. Note that, it is more computationally efficient to
estimate and store a single functional network for all
categories. However, because a gene can have multiple
functions, such a single network may be insufficient to
represent all the co-functionality relationships between
genes. Maintaining one separate network for each func-
tion can provide more information to make accurate
predictions.
Strategies for selecting training triplets
For a given functional category C, the following proce-
dure is used to select a gene triplet for training. First,
select at random a gene annotated with C, which will be
g. Then, select at random another gene also annotated
with C, which will be g+. Finally, select at random a
negative gene g-that satisfies the following: (i) it is not
annotated with C and any descendant term of C in the
GO graph, and (ii) its similarity score with respect to g
is lower than a threshold, where the similarity score r is
estimated using the method described in the previous

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 4 of 12

section. A threshold of 0.4 was used in our experiments,
meaning that two genes were deemed to be not function-
ally related if their similarity score was lower than 0.4.
While g and g+ are sampled uniformly, we consider

three ways to sample g- from those satisfying the two
above conditions:

- Uniform sampling. This strategy considers all nega-
tive genes equally.
- Sampling a negative gene less relevant to g with a
higher probability. The intuition behind this strategy
is that we update the similarity function so that it
returns true scores for the most dissimilar pairs of
genes first. A negative gene is sampled with prob-
ability (1-r)/z where r is the Resnik-based similarity
score between this gene and g, and z is the normali-
zation factor.
- Sampling a negative gene more relevant to g with
higher probability. This strategy attempts to first
update the similarity function on borderline genes,
that is, negative genes having similarity scores near
the threshold. Specifically, a negative gene is
sampled with probability r/z, where r is the similarity
score between this gene and g, and z is the normali-
zation factor.

We initialized W0
C to an identity matrix, i.e. W0

C = I,
and used a validation set to select the best WC: the pre-
diction accuracy was periodically measured on the vali-
dation set after a predefined number of iterations;
learning stopped when accuracy became saturated and
the corresponding WC was returned.

Constructing new networks
Once similarity functions are learned, the next step is to
construct new association networks, one per a GO term.
For each gene gi(i = 1..n) from the annotated and unan-
notated gene sets, we create its feature vector using
equation (1). Then, for each functional category C, we
use similarity function with matrix WC to compute
the C similarity score between genes gi and gj and use
this score as the weight a’ij of the edge connecting the
genes (note that we omit index C from a’ij for
simplicity).
Because is not symmetric, i.e. and

are not necessarily the same, we compute a’ij
as follows:

(10)

To sparsify the newly constructed networks we keep
only k connections with the largest weights for each
node and remove the remaining connections.

Inferring gene function
Given an association network , any of
existing graph-based classification algorithms can be
used to infer functions of unannotated genes. In this
study, we use the semi-supervised learning algorithm by
Zhou et al. [30] for this step.
Let y denote a label vector, each element yi of which

represents the prior knowledge about gene i having (or
not) the function of interest. We assign labels +1 to
positive genes, that is, genes known to have the given
function, and assign labels -1 to negative genes. Here,
we consider a gene negative if it is not annotated with
the given function and any of its descendants according
to the GO graph. Following Mostafavi et al. [10], we

assign a prior value for genes with

unknown annotations, where d- and d+ are the numbers
of negative and positive genes in the training set, respec-
tively. This prior value is used to reflect the class imbal-
ance nature of the gene function prediction problem, in
which the number of negative genes is typically much
larger than the number of positive genes.
The learning process consists of estimating a score fi

Î[-1,1] for each gene gi. Once this score is estimated,
the algorithm classifies the gene into having or not hav-
ing the given function by thresholding the score. Score
fi is obtained by minimizing the following objective
function:

(11)

where D is a diagonal matrix with and
and is the graph Laplacian matrix. This
objective function has two terms: the first term con-
strains score fi not to change much from prior label yi,
and the second term encourages adjacent nodes to have
similar scores. Parameter s trades off these two compet-
ing objectives. This optimization problem has the fol-
lowing solution:

(12)

Input networks
Up to this point, we assumed that the input combined
network was given. In practice, one can obtain such a
network by using any existing network integration
method. In our experiments, we considered a very sim-
ple integration method in which the combined network
is created by summing over individual networks, and all
the networks have the same weight. We sparsified the
networks by keeping only 50 edges with the largest
weights for each node and removing the rest. The

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 5 of 12

number of 50 edges for each node was chosen based on
the results from [11].

Datasets
We used two datasets in two species (yeast and human)
to evaluate the effectiveness of the proposed method.
The yeast dataset
The yeast dataset is provided by Barutcuoglu et al. [21]
and contains various genomic and proteomic data for
4524 yeast genes. There are four types of data: microar-
ray data, transcriptions factor binding sites, protein-pro-
tein interactions, and co-localization of gene products in
a cell. The interaction, co-localization, and binding site
data are binary, and microarray data are real-valued. 105
GO terms selected from the biological process vocabu-
lary of GO were used as labels to annotate the genes.
To ensure consistency among the training labels, all
annotations were up-propagated, that is if a gene is
assigned to a term in the GO graph, it is also assigned
to all ancestors of this term. This procedure was applied
in all our experiments.
The human dataset
We used the human dataset provided by Mostafavi et al.
[11]. This dataset contains various biological data col-
lected from eight sources for 13281 human genes. The
data include OMIM diseases associated with genes,
domain compositions, protein interactions, transcrip-
tional modification data, and gene expression data. Gene
expression data are real numbers while the other data
are binary. The genes in this dataset were annotated
with terms from the biological process vocabulary of
GO. The same procedure as used for the yeast dataset
was applied to up-propagate the annotations. To guar-
antee the same experimental conditions, we followed
the steps described in [11] to create individual networks
for the eight data sources. For each dataset, we com-
puted the association between a pair of genes as the
Pearson correlation coefficient (PCC) of the two feature
vectors representing these genes. We kept only positive
PCC values and set negative ones to zeros. For protein
interaction data, in addition to networks computed by
using PCC, we also used the interaction networks
directly.

Results and discussion
We used 3-fold cross validation to evaluate the effective-
ness of the proposed methodology (SLAN) in predicting
GO functional classes for the two datasets and com-
pared the results against those of two other methods
(we could not use more than three folds because some
GO terms had only three positive genes in the experi-
mented datasets). The performance of each method
under test was measured by computing the AUC score,
which is the area under the receiver operating

characteristic (ROC) curve. AUC is a measure of choice
when assessing the performance of methods that returns
continuous scores such as the method we use in the
prediction step. An AUC score of 1 corresponds to per-
fect classification with negative examples successfully
separated from positive ones, while random guessing
results in an AUC score of 0.5. For each split of a data-
set into training and test sets, we withheld 25% of the
training set to use as a validation set for determining
the stopping point of the learning algorithm. We com-
puted AUC scores on the validation set every 2000
iterations, and stopped learning once the accuracy
became saturated. In the following sections we report
the AUC scores averaged over three folds.
All three sampling strategies, i.e. uniform sampling,

sampling less relevant negative genes with higher prob-
abilities, and sampling more relevant negative genes
with higher probabilities yielded similar AUC scores but
the third strategy was significantly faster than the first
and second ones as it required fewer training iterations.
In the following section we report results when the
third sampling strategy was used.

Results on the yeast dataset
Comparison with SW
In the first experiment, we compared our method
(SLAN) with the SW method by Mostafavi and Morris
[11], using the yeast dataset. SW is a fast network-based
method that achieved leading prediction accuracy in a
number of gene function prediction benchmarks [11,20].
The SW algorithm integrates multiple networks, each of
which is computed from a dataset, into a single com-
bined network that it then uses to infer gene function.
In SW, a combined network is a weighted linear combi-
nation of individual networks. SW formulates the net-
work integration problem as a linear regression problem
and simultaneously optimizes the weights over a group
of related functional categories. Because our method
and SW use the same algorithm to predict gene func-
tion from an association network, the difference in net-
work quality is the only factor that makes the accuracy
of the two methods different. Thus, the superiority in
prediction accuracy of either method would mean that
this method produces networks of better quality. We
used the Matlab implementation of SW provided by its
authors with all parameters set to default values.
The AUC scores of SW and SLAN for 105 GO terms

are shown and compared in Figure 1. Out of 105 GO
terms, SLAN achieved higher AUC scores than SW for
77 GO terms, and SW scored higher or equally in the
remaining 28 cases. Over all 105 GO terms, SLAN
achieved an average AUC value of 0.882, and SW
achieved an average AUC value of 0.847. The result of a
Wilcoxon signed rank test showed that the difference in

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 6 of 12

AUC scores between SLAN and SW was significant,
with p-value = 1.36 × 10-8.
To understand the behavior of the algorithm, we

inspected intermediate results of the learning step. We
found that most GO terms, for which SLAN achieved
lower accuracy than SW, were associated with a similarity
learning step that stopped immediately because it
decreased the prediction accuracy. An explanation for
this result is that the similarity functions cannot capture
all the functional associations between genes, especially
when these associations are complex. A typical situation,
in which such complexity arises, is when each gene has
multiple functions which themselves are related. It is also
possible that the use of the graph-based algorithm that
predicts gene labels from a network may inherently cause
early cessation of the similarity learning step. This semi-
supervised algorithm relies on the global structure of the
network, which means that the solution depends on
every association, including associations between negative
genes. Since the similarity learning procedure ignores
such associations, it can decrease accuracy in some func-
tional classes. In such cases, further learning would lead

to undesired effects, which can be prevented by early
stopping with the help of a held-out set.
Comparison with hierarchical decision tree ensembles
In the second experiment, we compared our method
with CLUS-HMC-ENS [31] - a recently proposed
method that does not rely on association networks, thus
represents another class of gene function prediction
methods. CLUS-HMC-ENS takes as input vector repre-
sentations of genes and classifies genes into functional
groups by learning an ensemble of decision trees. The
trees are “hierarchical” in the sense that they exploit the
hierarchy nature of GO and each tree can make predic-
tions for all classes at once. We used the implementa-
tion of this ensemble method provided by its authors.
CLUS-HMC-ENS was run with all default settings - the
settings that provided the best performance in previous
experiments.
Figure 2 plots the AUC scores of CLUS-HMC-ENS

against those of SLAN for the yeast dataset. Over all 105
GO terms, the average AUC score of CLUS-HMC-ENS
was 0.831, which was lower than those of both SLAN
and SW methods. SLAN achieved higher AUC scores

Figure 1 AUC score comparison between SW and SLAN on the yeast dataset. Each point represents a GO term, showing AUC scores for
SW and SLAN on the x-and y-axes respectively. Points above the diagonal correspond to accuracy improvement by SLAN.

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 7 of 12

than the tree-based ensemble method for 85 out of 105
GO terms. Overall, SLAN performed significantly better
than CLUS-HMC-ENS in terms of AUC, according to a
Wilcoxon signed rank test (p-value = 2.08 × 10-10).

Results on the human dataset
In the next experiment, we evaluated and compared SLAN
and SW on the human dataset. This dataset contains more
GO terms than the yeast dataset, and the number of posi-
tive genes annotated to a term ranges from three to 100.
Because the prediction accuracy of a classification algo-
rithm depends on the size of training data, we grouped the
results into four categories corresponding to four groups
of GO terms with [3-10], [11-30], [31-100], and [3-100]
(overall category) positive genes, as done in [20]. In Figure
3, we summarize the average AUC scores of each method
for each of the four evaluation categories. As shown,
SLAN scored lower than SW for GO terms with [31-100]
positive annotations but achieved higher average AUC
scores than SW in [3-10] and [11-30] categories. The
results also show that SLAN produced more accurate pre-
dictions than SW for the overall category [3-100], which
included all the GO terms used in the dataset.

The fact that different methods achieve the best perfor-
mance in different evaluation categories, as observed in
this experiment, was also reported in [12], suggesting that
there is rarely a single method that delivers the best
result in all situations. A possible way to achieve superior
performance in all prediction scenarios is to use a combi-
nation of different methods. The superiority of SLAN
over SW in categories with small number of positive
annotations ([3-10] and [11-30] categories) shows its
appropriateness for scenarios when few positive training
examples are available. Despite the fact that SLAN
achieved lower AUC value than SW in one of three indi-
vidual categories, the superior accuracy of SLAN over all
the GO terms used (shown in [3-100] overall category)
demonstrates its ability to improve networks produced by
a simple network integration method with fixed and
equal network weights.

Prediction accuracy bias over the GO functional groups
The results above revealed differences in the performances
of the methods tested across GO terms. For some GO
terms, the proposed method showed better prediction
accuracy, whereas for other GO terms, it gave less accurate

Figure 2 AUC score comparison between CLUS-HMC-ENS and SLAN on the yeast dataset. Each point represents a GO term, showing AUC
scores for CLUS-HMC-ENS and SLAN on the x- and y-axes. Points above the diagonal correspond to accuracy improvement by SLAN.

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 8 of 12

predictions than other methods. Given this observation, we
asked on which GO terms there are the largest variations
in prediction accuracy between our and other methods. In
our investigation, AUC was used as the relative measure of
performance for comparing SLAN and SW. We calculated
the difference in the AUC scores between SLAN and SW
for each GO term, sorted GO terms in order of increasing
difference, and examined those GO terms with the largest

AUC differences. Because AUC = 0.5 corresponds to a ran-
dom guess, we set the minimum AUC score for each
method to 0.5 by using max(AUC, 0.5) in the comparison,
that is, ΔAUC = max(AUCSLAN , 0.5) - max(AUCSW, 0.5).
The lists of the GO terms with the largest |ΔAUC| for
the yeast and human datasets are given in Figures 4 and
Figure 5, respectively. The figures show large differences in
prediction accuracy for some GO terms, suggesting that

Figure 3 AUC score comparison between SW and SLAN on the human dataset. AUC scores are grouped into four evaluation categories
corresponding to four groups of GO terms with [3-10], [11-30], [31-100], and [3-100] (overall) positive genes. For each category, grey bars and
white bars show average AUC scores of SW and SLAN respectively. Error bars show the standard errors.

Figure 4 List of GO terms with the largest differences in predictability, as determined by SW and SLAN on the yeast dataset. GO terms
corresponding to the largest absolute values of ΔAUC = max(AUCSLAN, 0.5) - max(AUCSW, 0.5) are shown on the left, and the bars show the
values of ΔAUC on the right. For brevity, the maximum number of terms with negative and positive ΔAUC was set to 6 and 14, respectively.

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 9 of 12

Figure 5 List of GO terms with the largest differences in predictability, as determined by SW and SLAN on the human dataset. GO
terms corresponding to the largest absolute values of ΔAUC = max(AUCSLAN, 0.5) - max(AUCSW, 0.5) are shown on the left, and the bars show
the values of ΔAUC on the right. For brevity, the maximum number of terms with negative and positive ΔAUC was set to 10 and 50,
respectively.

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 10 of 12

each prediction method is more appropriate for certain
functional groups. For example, on the human dataset, the
term “response to active oxygen species [GO:0000302]”
was accurately predicted by SLAN, and poorly predicted
by SW. The difference in the AUC corresponding to this
term was nearly 0.5. In contrast, the term “regulation of
DNA replication [GO:0006275]” was accurately predicted
by SW, but poorly predicted by SLAN. We also observed
that the largest |ΔAUC| from the yeast dataset were smal-
ler than those from the human dataset, mainly because the
subset of GO terms used in the first dataset was smaller
and less diverse [21].

Computational time
As mentioned above, the third sampling strategy
required fewer training iterations than the other two in
all experiments, suggesting that one should optimize
the similarity function on more difficult training triplets
first. In this section, we report the computational time
when the third sampling method was used. On average,
training of the similarity functions over all 105 func-
tional classes on the yeast dataset using a uniformly
weighted network input saturated after 0.9 million
iterations (triplets) and took 15 minutes on a single
CPU of a modern PC running Linux. In contrast,
CLUS-HCM-ENS took more than 3 hours to learn an
ensemble of 50 decision trees on the same data set.
Since CLUS-HCM-ENS is much faster than other clas-
sifier-based methods that create one binary classifier for
each functional class [29], these results suggest that our
method compares favorably with classifier-based gene
prediction algorithms in terms of speed. On the human
dataset, similarity training stopped after 9.5 million
iterations on average and took less than two and a half
hours. The running time on the human dataset

indicated that although SLAN was slower than some
network learning approaches, such as the ones pro-
posed in [9,11], its computational complexity is accep-
table, even for gene function prediction in large
mammalian genomes.
Figure 6 shows the numbers of learning iterations for

different GO term groups (each group consisted of GO
terms with the same number of training iterations). As
shown, less than 16x103 iterations were required for
most GO terms before learning stopped. Despite the lar-
ger number of genes in the human dataset, the average
training time for a GO term on this dataset was com-
parable to that of the yeast dataset.

Conclusions
In this study, we propose a new method for optimizing
functional association networks that are used in predict-
ing gene function. While existing approaches focus on
constructing combined networks from individual ones,
the proposed method focuses on improving combined
networks already constructed. By using similarity learn-
ing algorithms originally developed for multimedia
search applications, our method can produce new asso-
ciation networks with improved prediction accuracy. In
experiments with yeast and human, the networks opti-
mized by our method yielded significant improvements
in terms of AUC scores, and the learning time was
acceptable even for the large human genome. The
results show that it is possible and useful to optimize
combined networks before using these networks for pre-
diction, and this optimization step can be performed by
learning appropriate similarity measures from data. The
proposed method can be applied to networks produced
by any integration algorithm, thus provides a good com-
plement for existing approaches. Other applications of

Figure 6 Distribution of training iterations across groups of GO terms. GO terms with the same number of iterations were grouped
together. The x-axis shows the number of iterations before the similarity learning algorithm stopped. The y-axis shows the number of GO terms
in each group. The left panel (A) includes results from the yeast benchmark. The right panel (B) includes results from the human benchmark.

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 11 of 12

similarity learning, for example in computing network
weights during the integration phase, will be investigated
in future work.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TMP conceived of the study, participated in its design, and drafted the
manuscript. NPN participated in study design, implemented the experiments,
analyzed the data, and helped to draft the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported by the National Foundation for Science and
Technology Development of Vietnam. We thank Dr. Michael Kress (CSI, NY
USA), and Dr. Pham Tho Hoan (HNUE, Hanoi, Vietnam) for providing
computational resources.
Based on “Using similarity learning to improve network-based gene function
prediction” by Nhung and Phuong which appeared in Bioinformatics and
Biomedicine (BIBM), 2012 IEEE International Conference on. ©2012 IEEE.

Declarations
The publication costs for this article were funded by the National
Foundation for Science and Technology Development of Vietnam.
This article has been published as part of BMC Genomics Volume 14
Supplement S4, 2013: Selected articles from the IEEE International
Conference on Bioinformatics and Biomedicine 2012: Genomics. The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcgenomics/supplements/14/S4.

Authors’ details
1Department of Computer Science, Posts & Telecommunications Institute of
Technology, Hanoi, Viet Nam. 2KRDB Research Center, Free University of
Bolzano, Bolzano, Italy.

Published: 1 October 2013

References
1. Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression network for

global discovery of conserved genetic modules. Science 2003,
302:249-255.

2. Polacco BJ, Babbitt PC: Single-step method of RNA isolation by acid
guanidinium thiocyanate-phenol-chloroform extraction. Bioinformatics
2006, 22:723-730.

3. Hegyi H, Gerstein M: The relationship between protein structure and
function: a comprehensive survey with application to the yeast genome.
J Mol Biol 1999, 288:147-164.

4. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al: A comprehensive
analysis of protein-protein interactions in Saccharomyces cerevisiae.
Nature 2000, 403:623-627.

5. Pellegrini M, Marcotte EM, Thompson MJ, et al: Assigning protein
functions by comparative genome analysis: protein phylogenetic
profiles. Proceedings of the National Academy of Sciences of the United States
of America 1999, 96:4285-4288.

6. Pavlidis P, Weston J, Cai J, Grundy WN: Gene functional classification from
heterogeneous data. In Proceedings of the Fifth Annual International
Conference on Computational Biology, April 22-25, 2001, Montreal S. Istrail, M.
Waterman, A. Clark 2001, 249-255.

7. Troyanskaya O, Dolinski K, Owen A, Altman R, D B: A Bayesian framework
for combining heterogeneous data sources for gene function prediction
(in Saccharomyces Cerevisiae). Proceedings of the National Academy of
Sciences of the United States of America 2003, 14:8348-8353.

8. Lanckriet GR, Deng M, Cristianini N, Jordan MI, Noble WS: Kernel-based
data fusion and its application to protein function prediction in yeast. In
Proceedings of the Pacific Symposium on Biocomputing, January 6-10, 2004,
Hawaii Russ B. Altman, A. Keith Dunker, Lawrence Hunter, Tiffany A. Jung,
Teri E. Klein 2004, 300-311.

9. Shin H, Scholkopf B: Fast protein classification with multiple networks.
Bioinformatics 2009, 21(Suppl 1):1159-1165.

10. Mostafavi S, Ray D, Warde-Farley D, et al: GeneMANIA: a real-time multiple
association network integration algorithm for predicting gene function.
Genome Biology 2008, 9(Suppl1):S4.

11. Mostafavi S, Morris Q: Fast integration of heterogeneous data sources for
predicting gene function with limited annotation. Bioinformatics, 2010,
Volume 26 14:1759-1765.

12. Guan Y, Myers C, Hess D, Barutcuoglu Z, Caudy A, et al: Predicting gene
function in a hierarchical context with an ensemble of classifiers.
Genome Biology 2008, 9(Suppl1):S3.

13. Kim W, Krumpelman C, Marcotte E: Inferring mouse gene functions from
genomic-scale data using a combined functional network/classification
strategy. Genome Biology 2008, 9(Suppl1):S5.

14. Gillis J, Pavlidis P: The role of indirect connections in gene networks in
predicting function. Bioinformatics, 2011, Volume 27 13:1860-1866.

15. Tian W, Zhang L, Tasan M, Gibbons F, King O, et al: Combining guilt-by-
association and guilt-by-profiling to predict Saccharomyces cerevisiae
gene function. Genome Biology 2008, 9(Suppl1):S7.

16. Yao Z, Ruzzo W: A Regression-based K nearest neighbor algorithm for
gene function prediction from heterogeneous data. BMC Bioinformatics
2006, 7(Suppl 1):S11.

17. Zhao XM, Wang Y, Chen L, Aihara K: Gene function prediction using
labelled and unlabeled data. BMC Bioinform 2002, 9-57.

18. Deng M, Zhang K, Mehta S, Chen T, Sun F: Prediction of protein function
using protein-protein interaction data. In Proceedings of the IEEE Computer
Society Bioinformatics Conference, August 14-16, 2002, Standford Markstein M,
Xu 2002, 197-206.

19. Sharan R, Ulitsky I, Shamir R: Network-based prediction of protein
function. Mol Syst Biol 2007, 3:88.

20. Pena-Castillo L, Tasan M, Myers C, Lee H, Joshi T, et al: A critical
assessment of Mus musculus gene function prediction using integrated
genomic evidence. Genome Biology 2008, 9(Suppl1):S2.

21. Barutcuoglu Z, Schapire R, Troyanskaya O: Hierarchical multi-label
prediction of gene function. Bioinformatics, 2006, Volume 22 7:830-836.

22. Nhung NP, Phuong TM: Using similarity learning to improve network-
based gene function prediction. Bioinformatics and Biomedicine (BIBM),
2012 IEEE International Conference on: 4-7 October 2012 2012, 1-6.

23. Chechik G, Sharma V, Bengio S: Large Scale Online Learning of Image
Similarity Through Ranking. Journal of Machine Learning Research 2010,
11:1109-1135.

24. Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y: Online passive-
aggressive algorithms. Journal of Machine Learning Research 2006,
7:551-585.

25. Obozinski G, Lanckriet G, Grant C, Noble W: Consistent probabilistic output
for protein function prediction. Genome Biology 2008, 9:S6.

26. Valentini G: True Path Rule Hierarchical Ensembles for Genome-Wide
Gene Function Prediction. IEEE/ACM Transaction on bioinformatics and
computational biology, 2011, Volume 8 3:832-847.

27. Resnik P: Using information content to evaluate semantic similarity in a
taxonomy. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, July 31-August 6, 1999, Stockholm Thomas Dean 1999,
448-453.

28. Pesquita C, Faria D, Falca A, Lord P, Couto F: Semantic Similarity in
Biomedical Ontologies. PLoS Computational Biology, 2009, Volume 5 7:
E1000443.

29. Yu G, Li F, Qin Y, Bo X, Wu Y, et al: GOSemSim: an R package for
measuring semantic similarity among GO terms and gene products.
Bioinformatics, 2010, Volume 26 7:976-978.

30. Zhou D, Bousquet O, Lal T, Weston J, Scholkopf B: Learning with local and
global consistency. In Proceedings of Advances in Neural Information
Processing Systems 16, December 8-13, 2003. Vancouver;Sebastian Thrun,
Lawrence K. Saul, Bernhard Schölkopf 2003:321-328.

31. Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, et al: Predicting gene
function using hierarchical multi-label decision tree ensembles. BMC
Bioinformatics, 2010, Volume 11 2.

doi:10.1186/1471-2164-14-S4-S4
Cite this article as: Phuong and Nhung: Predicting gene function using
similarity learning. BMC Genomics 2013 14(Suppl 4):S4.

Phuong and Nhung BMC Genomics 2013, 14(Suppl 4):S4
http://www.biomedcentral.com/1471-2164/14/S4/S4

Page 12 of 12

http://www.biomedcentral.com/bmcgenomics/supplements/14/S4
http://www.biomedcentral.com/bmcgenomics/supplements/14/S4
http://www.ncbi.nlm.nih.gov/pubmed/12934013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12934013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10329133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10688190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10688190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12826619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12826619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12826619?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14992512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14992512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16204126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20507895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20507895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21551147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21551147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613951?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16723004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16723004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18221567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18221567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17353930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17353930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18613946?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20479498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20479498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19649320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19649320?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20179076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20179076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20044933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20044933?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The similarity learning algorithm
	Estimating pairwise similarities between training genes
	Selecting training triplets for learning function specific similarity measures
	Strategies for selecting training triplets

	Constructing new networks
	Inferring gene function
	Input networks
	Datasets
	The yeast dataset
	The human dataset

	Results and discussion
	Results on the yeast dataset
	Comparison with SW
	Comparison with hierarchical decision tree ensembles

	Results on the human dataset
	Prediction accuracy bias over the GO functional groups
	Computational time

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Declarations
	Author details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

