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Background: Distinguishing ICU patients with candidaemia can help with the precise

prescription of antifungal drugs to create personalized guidelines. Previous prediction

models of candidaemia have primarily used traditional logistic models and had

some limitations. In this study, we developed a machine learning algorithm trained

to predict candidaemia in patients with new-onset systemic inflammatory response

syndrome (SIRS).

Methods: This retrospective, observational study used clinical information collected

between January 2013 and December 2017 from three hospitals. The ICU patient data

were used to train 4 machine learning algorithms–XGBoost, Support Vector Machine

(SVM), Random Forest (RF), ExtraTrees (ET)–and a logistic regression (LR) model to

predict patients with candidaemia.

Results: Of the 8,002 cases of new-onset SIRS (in 7,932 patients) included in the

analysis, 137 new-onset SIRS cases (in 137 patients) were blood culture positive for

candidaemia. Risk factors, such as fungal colonization, diabetes, acute kidney injury, the

total number of parenteral nutrition days and renal replacement therapy, were important

predictors of candidaemia. The XGBoost machine learningmodel outperformed the other

models in distinguishing patients with candidaemia [XGBoost vs. SVM vs. RF vs. ET vs.

LR; area under the curve (AUC): 0.92 vs. 0.86 vs. 0.91 vs. 0.90 vs. 0.52, respectively].

The XGBoost model had a sensitivity of 84%, specificity of 89% and negative predictive

value of 99.6% at the best cut-off value.

Conclusions: Machine learning algorithms can potentially predict candidaemia in the

ICU and have better efficiency than previous models. These prediction models can be

used to guide antifungal treatment for ICU patients when SIRS occurs.
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INTRODUCTION

Invasive fungal diseases (IFDs) are life-threatening infections,
and their morbidity and mortality have increased in recent

decades (1, 2). The most common microorganisms that cause

IFDs are Candida species (3). Among IFDs, the incidence of

candidaemia ranges between 2.4 and 15 in 100,000 individuals
and has increased by 50% over the past 10 years (4–6).
Approximately 45% of Candida bloodstream infections occur
in critical care units and have become a leading cause of
death among ICU patients (7). Previous studies have proven
that early optimal antifungal treatment can decrease patient
mortality (8–10). A definitive diagnosis of candidaemia mainly
relies on blood culture (11–13), which takes time and can thus
cause a delay in timely treatment of patients. Early recognition
is very difficult, and the indiscriminate use of antifungal
agents can cause drug resistance and increase the patient’s
economic burden. Therefore, we need a method to identify
patients with candidaemia that can be performed faster than
blood cultures.

Some predictive models for candidaemia have been proposed
(14, 15), such as the Candida colonization index (CI) (9) and
Candida score (CS) (16). However, most of the models used
limited sample sizes because of the extremely low incidence
of candidaemia (5, 6). Three predictive models (15, 17, 18)
were built with large sample sizes and had a good negative
predictive value of 99%, but the sensitivity and positive
predictive value (PPV) were poor. When the specificity reached
more than 80%, the sensitivity was only 40.5–51.4%, and the
PPV varied from 4 to 9%. Previous studies tended to use
traditional modeling methods, but the effectiveness of the models
was insufficient.

Clinically, patients with candidaemia lack specific symptoms
and signs. Systemic inflammatory response syndrome (SIRS)
is often used to trigger clinicians to start anti-infection
treatment. When a patient develops SIRS, clinicians will often
use antibacterial drugs initially, but antifungal drugs are rarely
used timely and accurately, likely causing delays in treating
patients with candidaemia. Therefore, doctors must determine
the probability of candidaemia when a patient presents with
SIRS. Additionally, no predictive model has used SIRS as
the starting point to determine the possibility that a patient
has candidaemia.

Machine learning algorithms can be applied to help
understand large quantities of existing data and to make
predictions about new data. Previous studies have used machine
learning methods to diagnose or distinguish different types of
diseases (19, 20). Because of the extremely low incidence of
candidaemia, the development of a prediction model requires
a very large sample size and must overcome the imbalance
between positive and negative results. Machine learning may
provide advantages in the construction of prediction models for
candidaemia among ICU patients.

Therefore, this study aimed to establish a new prediction
model to determine the possibility of candidaemia in
patients with SIRS with machine learning algorithms to
improve the efficiency of predictive models and help with

precisely prescribing antifungal drugs in the creation of
personalized guidelines.

MATERIALS AND METHODS

Study Design
This multicenter, retrospective study was performed
using data from three hospitals (Peking Union Medical
College Hospital, The Affiliated Hospital of Qingdao
University, The First Affiliated Hospital of Fujian
Medical University) obtained between January 2013 and
December 2017.

Blood culture results and various influencing factors were
retrospectively collected from the corresponding hospital
information systems from patients who had been hospitalized in
the ICU.

First, the patients’ data from three hospitals were combined.
Second, all the data were randomly divided into a training
set and a validation set. The classic 2–8 principle was used
to divide the data set: 80% for model training and 20% for

TABLE 1 | Risk factors for previous researches.

Risk factors

Basic information Age

Sex

Colonization

Length of ICU stay

Length of hospital stay

Primary or combined diseases Diabetes

Acute renal injury

History of fungal infection

Pancreatitis

Severe Sepsis

Malignant tumor

HIV/AIDS

Laboratory tests BDG: beta-D-glucan

NEUT#≤1.5 × 109/L

LYM#≤1 × 109/L

Treatment Total parenteral nutrition

Mechanical ventilation

Central venous catheter

Abdominal surgery

Broad-spectrum antibiotic use

Corticosteroid therapy or

immunosuppressive use

Chemotherapy drug use

Renal replacement therapy

Organ transplant

Days of total parenteral nutrition

Days of

mechanical ventilation

Days of central venous catheter

Days of renal replacement therapy
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model evaluation. Machine learning methods were used to train
the prediction models with the data from the training set, and
then the prediction models were applied to the data from the
validation set to evaluate their efficiency.

Ethics Approvals
Ethics approval was provided by the ethics committee of Peking
UnionMedical CollegeHospital. All of the data were anonymized
before sharing with researchers.

Patients
Patients who were admitted to the above target hospitals and
had new-onset SIRS from 2013 to 2017 were selected as the
subjects of the study. New-onset SIRS needed to meet the
following criteria: (1) SIRS occurred in the ICU; (2) blood culture
was obtained during the course of SIRS; (3) no previous SIRS
within 24 h.

Diagnostic Criteria
SIRS was defined when at least two of the following criteria
were met (21): (1) body temperature >38◦C or <36◦C; (2) heart
rate > 90 beats/min; (3) respiration rate > 20 times per min or
hyperventilation (PaCO2 < 32 mmHg); and (4) leukocyte count
> 12 × 109/L or < 4 × 109/L or neutrophil (rod granulocyte)
percentage > 10%.

SIRS can occur many times during a single hospitalization.
To avoid repeat measurement, we identified new-onset SIRS
as SIRS that occurred after ICU admission and after at least
24 h of a previous SIRS event if multiple SIRS events occurred.
SIRS-related candidaemia was defined if a Candida species was
identified from blood samples collected within SIRS.

Laboratory Tests
Two automated blood culture systems were used during the
study period: a BactecTM system (Becton Dickinson, Sparks,
Maryland, USA) and a Bact/Alert R©3D system (bioMérieux,
Marcy l’Etoile, France).

Data Collection and Risk Factor Definitions
We identified 28 risk factors with strong clinical significance
with candidaemia by searching previous studies (see Table 1).
The risk factors are mainly divided into four groups: basic
patient factors, primary or combined diseases, laboratory tests,
and treatment. We retrospectively collected the data involved
in the research in the electronic medical record systems of
the three hospitals. Colonization was defined as the presence
of Candida species in non-significant samples taken from
one or more body sites, including the oropharynx, stomach,
urine, or tracheal aspirates (16). Samples were collected after
ICU admission and before the collection of blood samples.
Colonization information was collected based on the judgement
of clinicians and clinical requirements. We retrospectively
collected data about colonization from the ICU database,
and not all of the patients had actively collected cultures
from the oropharynx, stomach, urine, or tracheal aspirates. A
previous history of fungal infection was defined as patients
with invasive fungal disease before this hospitalization that
was recorded in the history of past illness or reported by the
patients themselves.

1,3-β-D-glucan (BDG) was defined as positive with a cut-
off value of 80 pg/ml (22). The measurement occurred after
ICU admission and before blood samples were collected. If there
was more than one BDG result, the BDG closest to the SIRS
was chosen.

FIGURE 1 | Flowchart for enrollment.
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TABLE 2 | Distribution of 28 risk factors.

Risk factor Status IC negative IC positive p value

Total 7,865 137

Age, mean (SD) 57.3 (17.5) 57.64 (17.52) 0.859

Colonization (%) No 7,346 (93.4) 93 (67.9) <0.001

Yes 519 (6.6) 44 (32.1)

Length of ICU stay, mean (SD) 3.15 (5.58) 13.70 (28.28) <0.001

Length of hospital stay, mean (SD) 7.19 (9.97) 18.32 (29.27) <0.001

Diabetes (%) No 6,331 (80.5) 105 (76.6) 0.308

Yes 1,534 (19.5) 32 (23.4)

Acute kidney injury (%) No 4,461 (56.7) 67 (48.9) 0.081

Yes 3,404 (43.3) 70 (51.1)

Pancreatitis (%) No 7,655 (97.3) 133 (97.1) 1.000

Yes 210 (2.7) 4 (2.9)

Malignant tumor (%) No 6,424 (81.7) 102 (74.5) 0.040

Yes 1,441 (18.3) 35 (25.5)

Sepsis(%) No 7,767 (98.8) 133 (97.1) 0.178

Yes 98 (1.2) 4 (2.9)

History of fungal infection(%) No 7,859 (99.9) 134 (97.8) <0.001

Yes 6 (0.1) 3 (2.2)

HIV(%) No 7,851 (99.8) 137 (100.0) 1.000

Yes 14 (0.2) 0 (0.0)

BDG positive(%) No 7,684 (97.7) 80 (58.4) <0.001

Yes 181 (2.3) 57 (41.6)

NEUT#≤1.5 × 109/L(%) No 7,730 (98.3) 128 (93.4) <0.001

Yes 135 (1.7) 9 (6.6)

Broad-spectrum antibiotic use (%) No 905 (11.5) 6 (4.4) 0.014

Yes 6,960 (88.5) 131 (95.6)

Corticosteroid therapy or immunosuppressive use (%) No 6,140 (78.1) 90 (65.7) 0.001

Yes 1,725 (21.9) 47 (34.3)

Chemotherapy drug use (%) No 7,808 (99.3) 136 (99.3) 1.000

Yes 57 (0.7) 1 (0.7)

Total parenteral nutrition (%) No 6,296 (80.1) 73 (53.3) <0.001

Yes 1,569 (19.9) 64 (46.7)

Mechanical ventilation (%) No 2,692 (34.2) 28 (20.4) 0.001

Yes 5,173 (65.8) 109 (79.6)

Central venous catheter (%) No 2,096 (26.6) 14 (10.2) <0.001

Yes 5,769 (73.4) 123 (89.8)

Renal replacement therapy (%) No 6,823 (86.8) 93 (67.9) <0.001

Yes 1,042 (13.2) 44 (32.1)

Abdominal surgery (%) No 7,417 (94.3) 117 (85.4) <0.001

Yes 448 (5.7) 20 (14.6)

Organ transplant (%) No 7,852 (99.8) 137 (100.0) 1.000

Yes 13 (0.2) 0 (0.0)

Days of total parenteral nutrition mean (SD) 0.50 (1.45) 2.29 (3.60) <0.001

Days of mechanical ventilation mean (SD) 2.23 (3.04) 5.43 (5.37) <0.001

Days of central venous catheter mean (SD) 2.96 (3.66) 6.69 (5.73) <0.001

Days of renal replacement therapy mean (SD) 0.38 (1.41) 1.57 (3.18) <0.001

Sex (%) Male 4,811 (61.2) 86 (62.8) 0.769

Female 3,054 (38.8) 51 (37.2)

LYM# ≤ 1 × 109/L (%) No 1,608 (20.4) 8 (5.8) <0.001

Yes 6,257 (79.6) 129 (94.2)
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Model Training
The code of the model training part of this study is written in
python (python 3.7.0).We divided the data into a training set and
test set, 80% for model training, and 20% for model evaluation.
We used stratified division to ensure the distribution of positive
and negative cases. In order to deal with the imbalance of sample
categories, the SMOTE algorithm is used in this study (the
mechanism of SMOTE is listed in theAppendix). The training set
was used to construct five prediction models (logistic regression
model, support vector machine model, random forest model,
extratree model and XGBoost model). A detailed description
of the five models is provided in the Appendix. Parameter
tuning is performed for each model to improve the efficiency of
the models.

Model Evaluation
The test set was used to evaluate the performance of five
different models. We have used five model evaluation index,
including sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV) and area under curve (AUC), to
compare the performance of fivemodels. Themodel with the best
efficiency was chosen as the final model.

RESULTS

Study Population
In total, 3,1070 new-onset SIRS incidents for 28,143 patients
were included in this study. Excluding 876 new SIRS cases that
occurred in 860 patients younger than 14 years old, 9,303 SIRS
cases developed outside the ICU, and 20,891 new SIRS cases
remained. Among these cases, 8,002 had corresponding blood
culture results, among whom 137 were positive for Candida in
blood culture and 7,865 were negative or were positive for a
pathogen other than Candida. The flowchart of enrolment is
described in Figure 1.

The patients were all from the ICU, the median age was 57.4
years [39.9–74.9], and 61.2% were male.

Risk Factor Screening
We selected 28 risk factors through literature search, conducted
retrospective data collection and analyzed the distribution of risk
factors in different groups (Table 2).

Prediction Model Construction Using
XGBoost
The area under the curve (AUC) for the XGBoost model ranged
from 0.57 to 0.91 using different risk factors as measured by
the importance score as input (Table 3). By comparing the
effectiveness of models incorporating different numbers of risk
factors, we chose 15 important risk factors to train the prediction
models. The importance score of the 15 risk factors is shown
in Figure 2.

Performance of the Models
The efficiency of the five different models is shown in Table 4,
and the model receiver operating characteristic (ROC) curves
are shown in Figure 3. When we set the cut-off value to 0.030,

TABLE 3 | Efficiency of XGBoost model with different number of risk factors.

Number of risk factors AUC Sensitivity Specificity PPV

22 0.891 0.77 0.89 0.12

20 0.891 0.77 0.89 0.12

19 0.891 0.81 0.85 0.09

18 0.889 0.84 0.85 0.1

17 0.887 0.84 0.86 0.11

16 0.906 0.81 0.88 0.12

15 0.909 0.81 0.89 0.12

14 0.906 0.81 0.89 0.13

13 0.894 0.77 0.88 0.12

12 0.887 0.77 0.89 0.12

11 0.904 0.81 0.87 0.11

10 0.891 0.81 0.86 0.1

9 0.894 0.81 0.86 0.1

8 0.871 0.77 0.89 0.12

7 0.867 0.77 0.88 0.11

6 0.860 0.77 0.85 0.1

5 0.731 0.61 0.85 0.07

4 0.744 0.65 0.84 0.08

3 0.691 0.52 0.87 0.08

2 0.669 0.45 0.86 0.06

1 0.567 0 1 0

FIGURE 2 | The 15 features with the highest relative gain for model predicting

candidemia.

XGBoost achieved the best performance with a sensitivity of 84%,
a specificity of 89% and a negative predictive value of 99.6%.
Additionally, the XGBoost model achieved the best prediction
performance among themachine learningmodels and traditional
regression model.

DISCUSSION

This study established a machine learning candidaemia
prediction model that could be implemented in a computer
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TABLE 4 | Performance of models.

Method Cut-off

value

Sensitivity Specificity PPV NPV AUC

LR 0.019 0.58 0.49 0.02 0.98 0.521 ± 0.028

RF 0.056 0.71 0.92 0.15 0.99 0.911 ± 0.015

SVM 0.016 0.87 0.64 0.05 1 0.863 ± 0.022

XGBoost 0.03 0.84 0.89 0.13 0.996 0.924 ± 0.013

ET 0.044 0.77 0.9 0.13 0.995 0.904 ± 0.014

LR, Logistic regression; RF, Random Forest; SVM, Support Vector Machines;

ET, ExtraTree.

FIGURE 3 | ROC of models. LR, Logistic regression; RF, Random Forest;

SVM, Support Vector Machines; ET, ExtraTree.

program. When an ICU patient develops SIRS, real-time bedside
assessment of the possibility of developing candidaemia can
guide the appropriate use of antifungal drugs. To our best
knowledge, this is the first machine learning-based model
developed to predict candidaemia. The final model was proven
to have better performance than previous prediction models.
Because the machine learning model had a very high negative
predictive value larger than 99%, a negative result can effectively
exclude people without candidaemia, preventing the use of
antifungal therapy.

Comparison of Different Candidemia
Prediction Models
Although predictive models for candidaemia have improved in
the last few decades, most were trained by traditional logistic
regression, and some have not been validated in large validation
cohorts (8, 9).

Five well-accepted candidaemia prediction models were
developed from 1994 to 2016 (9, 10, 16–18). Three of them
(15, 17, 18) had a large sample size and a good negative
predictive value from 99.7 to 99.9%, but the sensitivity and
positive predictive value were poor. Although the specificity

reached more than 80%, the model sensitivity was only 40.5–
51.4%, and the PPV varied from 4–9%. Leon et al constructed
the “Candida score”, which achieved a sensitivity of 89%, a
specificity of 74% and an AUC of 0.847 (16). Another study
also produced a model with good efficiency (9). However, these
two models were only developed using data from patients
with Candida colonization. Consequently, the models can only
be used with restricted populations. In the present study, the
XGBoost model had very high efficiency with an AUC of
0.92, a sensitivity of 84%, a specificity of 89%, and a negative
predictive value of 99.6%. The PPV was not sufficiently high
(13%) but was better than that of other prediction models
(15, 17, 18). Because the machine learning model had a very
high negative predictive value of 99.6%, a negative result can
effectively exclude people without candidaemia, indicating that
antifungal therapy should not be used. Because of the low
number of patients with candidaemia in this study, the positive
predictive value was not sufficiently high. A positive result would
indicate a probability of the patient developing candidaemia of
13%, which still substantially increases the probability of the
effective use of antifungal drugs. Our model can be combined
with other predictionmethods with high positive predictive value
to conduct a second evaluation of patients who are positive
according to the machine learning model to further improve the
detection efficiency.

Machine Learning Models in China
Because of the low incidence of candidaemia, previous
prospective studies lacked a large sample size and demonstrated
an imbalance between positive and negative samples. The
FIRE study in the UK was a multicenter prospective study
on invasive fungal disease and included 60,778 admissions
from 96 critical care units (18). Although the study yielded
good results, it required considerable economic and labor costs.
The use of a database to establish machine learning models
not only reduces the economic cost of research but also
improves the effectiveness of the resulting predictive models. The
validation cohort proved that the XGBoost model could achieve
the best prediction performance among the different machine
learning models and traditional regression models with an AUC
of 0.92.

SIRS as a Starting Point
In clinical practice, the presence of SIRS in ICU patients
often leads to suspected infection. SIRS meets clinical
needs and has high clinical operability as the starting
point to guide antifungal therapy. Additionally, the
incidence of SIRS in ICU patients is >80% (23); thus, the
proposed prediction model should apply to a wide range
of individuals. The innovative use of SIRS as a trigger
point to create a candidaemia prediction model, combined
with machine learning algorithms, will maximize the use
of ICU big data and improve the immediacy and accuracy
of prediction.
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Useful Software for Clinical Practice
Because this study used a machine learning method to
establish the candidaemia predictive model, the test results
cannot be determined simply by the weighted scores of the
risk factors but must be calculated using a program. When
an ICU patient becomes afflicted with SIRS, the clinician
can input the corresponding risk factor values into the
program, which can automatically output a positive or negative
prediction result, thereby achieving real-time prediction at
the bedside.

Risk Factors Related to Candidaemia
The most important risk factors in this predictive model
included fungal colonization, diabetes, acute kidney
injury, total parenteral nutrition and renal replacement
therapy, which are consistent with previous studies
(8, 24–27). However, some risk factors mentioned in
previous studies were not included in our prediction
model, such as the APACHE II score (9, 28) and
severe sepsis (16).

Limitations
First, to ensure the accuracy of the study, we excluded SIRS
patients without blood samples and only enrolled new-onset
SIRS patients with blood cultures obtained during the course
of SIRS. We acknowledge that the exclusion of the 12,894 SIRS
without blood samples may introduce biases and influence the
performance of the prediction model. However, the data of
8,002 SIRS for analysis were relatively large in the prediction
model. Additionally, the incidence of candidaemia in all SIRS
patients was approximately 0.65% (137/20,891), which was
similar to that in previous studies (0.15–0.65%) (29, 30).
Second, blood cultures were not obtained for 12,894 patients
with SIRS. In clinical practice, the presence of SIRS in ICU
patients often leads to suspected infection. However, SIRS is
not the only indicator to trigger blood sample culture in
clinical practice. Individual differences exist in the standard and
clinical practice of blood culture. Hence, it was reasonable to
observe an SIRS rate >50% without blood sample culture in
the present study. Third, the study population only comprised
ICU patients. Therefore, the results may not be generalizable
to non-ICU patients. Fourth, the number of positive samples
included in this study was relatively small because of the
extremely low incidence of candidaemia, possibly affecting the
effectiveness of the prediction model. Therefore, we used the
SMOTE mechanism to improve the imbalance of positive and
negative samples and improve the efficiency of the model. Fifth,
including patients from three hospitals may have increased the
bias between the hospitals. By adopting strict and consistent
risk factor evaluation standards, this bias could be reduced,
and the multicenter nature of the research can improve
sample representativeness. Sixth, some of the risk factors did
not demonstrate significant differences because of their low
incidence, such as chemotherapy drugs. These risk factors are
less common in the overall ICU population; therefore, their
importance is difficult to judge. Additionally, the data concerning
colonization were collected retrospectively, possibly influencing

the accuracy of this risk factor and efficiency of the model.
In the present study, the negative predictive value of BDG
was high, partly because of the low incidence of candidaemia.
The high negative predictive value will partly contribute to the
good efficiency of the prediction model with an NPV of 99.6%.
Finally, retrospective studies have inherent data biases. Although
the ICU database can ensure some measure of accuracy, the
efficiency of the prediction model must be further evaluated in
the future.

Conclusion
The machine learning prediction model for candidaemia has
good efficiency and can guide antifungal treatment in ICU
patients when new-onset SIRS occurs.

TAKE-HOME MESSAGE

Approximately 45% of Candida bloodstream infections occur in
critical care units and have become a leading cause of death
among ICU patients. Previous prediction models of candidaemia
mostly used traditional logistic models and had some limitations.
In this study, we developed a machine learning algorithm
trained in predicting candidaemia in patients with new-
onset systemic inflammatory response syndrome (SIRS) with
good performance.
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