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ABSTRACT
Structural features such as the shape, the lattice constant, the bond length, the total energy per 
cell, and the energy bandgap (Eg) of C13H8OS-X are studied by the calculating Partial Density Of 
States (PDOS), and DOS package of the Material Studio (MS) software. Calculations show that the 
bond length and the bond angle between atoms insignificant change as 1.316 Å to 1.514 Å for C-C, 
1.211 Å for C-O, 1.077 Å to 1.105 Å for C-H; bond angle of round one changes from 118.883° to 
121.107° for C-C-C, from 117.199° to 122.635° for H-C-C, from 119.554° to 123.147° for C-C-O and 
from 109.956° to 117.537° for C-C-H. When C13H8OS-X doped in the order of -Br, -Cu, -Kr, -Ge, -As, 
and -Fe then bond lengths, bond angles between atoms have a nearly constant value. Particularly 
for links C-X, there is a huge change in value, respectively 1.876, 1.909, 10.675, 2.025, 2.016, 2.014 Å; 
the total energy change from Etot = −121,794 eV to Etot = −202,859 eV, and the energy band gap 
decreases from Eg = 2.001 eV to Eg = 0.915 eV. The obtained results are useful and serve as a basis 
for future experimental research.
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1. Introduction

Polythiophenes are polymer conjugate materials that 
have been studied and used in many devices such as 
transistors, opto-electromagnetism, communication 
equipment, chemical/biological sensors [1–8], light- 
emitting diodes [9,10], photoelectric cells [11], photo
electron equipment [12,13], water-soluble sensors for 
detecting DNA, proteins and metal ions [14–16], ther
mal, optical and biological pigments [17–19] with 
structural, optical and electrochemical flexibility 
[20–25].

The reason is that these polymers can assemble spon
taneously through intermolecular bonds under the 
action of a suitable solvent or medium [26–32]. On the 
other hand, Cui et Kertesz [33] showed the existence of 
helix polythiophene by the semi-experimental method 
[33] and other scientific groups showed the existence of 
polymeric helix [34].

One group of researchers [35–37] has found 
a polymeric helix structure after the polythiophenes 
completed bonding with the client molecules and 
polymers. Other groups of researchers also sug
gested that non-ionic polythiophenes could fold in 
hydrophobic solvents [38,39]. These results are 

determined through Scanning Electron Microscopy 
(SEM) but they did not observe the diversity of 
materials [40].

Also, when studying the effect of doped or solvent 
on the bond lengths of polymer materials, it cannot be 
studied by X-ray diffraction method or SEM method 
[41,42].

In recent years, several researchers have used the 
Density Function Theory (DFT) method to study the 
structure, electronic structural properties, and transi
tion temperature of conjugated polythiophene deriva
tives of optical active conjugate polymers [43–47]. 
Besides that, we have successfully studied the effects 
of temperature, pressure, atoms number, annealing 
time on the structure of Al metal [48,49], alloys AlNi 
[50], NiCu [51], FeNi [52], NiAu [53], polyethylene [54], 
electronic structure of AuCu [55] and polymers by 
using DFT method to control band gap by replacing 
doped -S atoms with -Se atoms [56] or replacing -H 
atoms with -CH3, -NH2, -NO2 and -Cl [49,57–61] and 
4 H-xiclopenta [2,1-b,3; 4-b′] or replacing dithiophene 
S-oxide with derivatives -O, -S, S = O, -BH2, -SiH2 

[47,62–64]. Recently, we have used the DFT method 

CONTACT Dung Nguyen Trong dungntsphn@gmail.com Hanoi National University of Education, Faculty of Physics, Hanoi, Vietnam.

DESIGNED MONOMERS AND POLYMERS            
2021, VOL. 24, NO. 1, 53–62 
https://doi.org/10.1080/15685551.2021.1877431

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4629-0958
http://orcid.org/0000-0002-9517-8615
http://orcid.org/0000-0003-2928-0037
http://orcid.org/0000-0002-3267-0696
http://orcid.org/0000-0002-7706-1392
http://orcid.org/0000-0003-1311-7657
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15685551.2021.1877431&domain=pdf&date_stamp=2021-02-01


to study the effects of doped groups on the electrical 
structure and phase transition temperature of mono
thiophene C13H8OS-X (X = -H, -OH, -Br, -OC2H5, -OCH3) 
. The length of bond C-H = 1.09 Å in C13H8OS-H; the 
length of bond C-Br = 1.93 Å in C13H8OS-Br; the 
length of bond C-O = 1.45 Å, the length of bond 
C-C = 1.51 Å and the length of bond C-H = 1.10 Å in 
C13H8OS-OC2H5; the length of bond C-O = 1.44 Å and 
the length of bond O-H = 1.10 Å in C13H8OS-OCH3. 
The bond angle is 120° for C-C-C, 120° for H-C-C, 120° 
for C-C-O, 114° for C-S-C, and 109° for S-C-C. Similarly, 
the bandgap Eg of C13H8OS decreases to Eg 

= 1.621 eV by doped -Br and increases to 1.646, 
1.697, 2.04, and 1.920 eV by replacing with impurities 
-H, -OH, -OC2H5 or -OCH3. The obtained results show 
that substituents have a significant influence on the 
molecular shape, the bond length as well as the 
frequency range of polythiophene derivatives [57,64].

In this article, we continue to doped atoms of cycle 4 
including -H, -Br, -Cu, -Kr, -Ge, -As, and -Fe with the desire 
to synthesize new polythiophenes with the ability to 
improve their treatment, environmental stability, and 
electrical properties.

2. Method of calculation

Figure 1 shows the synthesizing process of poly (C13H8 

OS-X) (X = -H, -Br, -Cu, -Kr, -Ge, -As, -Fe). The structural 

and electronic structural properties of poly[3-(3-phenyl 
prop-1-ene-3-one-1-yl) thiophene] by the calculating 
Partial Density Of States (PDOS), DOS package of the 
Material Studio (MS) software, and their transition tem
peratures were simulated using DFT [65–68] in the fra
mework of DMol3 module [67] in the copyrighted 
Material Studio software, installed at the Center for 
Computational Science of the Hanoi National University 
of Education HNUE (Hanoi, Vietnam). The Generalized 
Gradient Approximation (GGA) package [69] with the 
PW91 parametrization for the exchange-correlation 
function [70,71] and the Monkhorst-Pack [72] k-point 
sampling were applied into a three-dimensional (3-D) 
unit cell of poly C13H8OS-H, C13H8OS-Br, C13H8OS-Cu, 
C13H8OS-Kr, C13H8OS-Ge, C13H8OS-As, C13H8OS-Fe with 
the lattice constants a = 27 Å, b = 13 Å, c = 6 Å, and the 
bond angles α = β = γ = 90°. The electron-electrons 
interaction was described by the Density Function Semi- 
core Pseudo-Potential [73] and to be considered as 
a homogeneous electron gas. The tolerance for energy 
was set at 1 × 10−6 eV, the displacement during the 
geometry optimization is at level 1 × 10−5 Ha/integer 
and 5 × 10−3 Å. The synthesis procedure of poly (C13H8 

OS-X) was shown in Figure 1.
To study the structural features and the bandgap of 

C13H8OS-X, we use simulations based on the Density 
Functional Theory (DFT) basis [74,75] included the 
Schrodinger model [76,77], the Hartree-Fock model 

Figure 1. The synthetic procedure of poly (C13H8OS-X), X is -Br, -Cu, -Fe, -Kr, -As, -Ge.
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[78,79], the Thomas-Fermi model [76], the Hohenberg 
theorem [76,80,81], and traditional Kohn-Sham theory 
[76,80,82]. We apply the General Gradient 
Approximation (GGA) [83], the Korringa-Kohn- 
Rostocker (KKR) [84], and the Linear-Muffin-Tin-Orbital 
(LMTO) [85] methods to evaluate calculations.

3. Results and discussion

3.1 Physical properties of C13H8OS-H calculated by 
molecular dynamics calculations

3.1.1 Structural property of C13H8OS-H
The optimized structures of poly (C13H8OS-H)2 are shown 
in Figure 2.

The stable structure of C13H8OS-H after running the 
NVE (Figure 2). The final shape of C13H8OS-H has C13H8 

OS-H poly structures with all C, H, S, O atoms are dis
tributed in a unit cell of the triclinic system with the 
corresponding cell sizes a = 27.0951 Å, b = 11.5351 Å, 
c = 6.1176 Å, α = β = 90° and γ = 94.42°. The distance 
between atoms in round one changes from 1.380 Å to 
1.41 Å for C-C, and from 1.060 Å to 1.119 Å for C-H. The 
distance between round one and round two changes 
from 1.316 Å to 1.514 Å for C-C, 1.211 Å for C-O, and from 
1.077 Å to 1.105 Å for C-H. The obtained results are in 
good agreement with the structural determination 

[57,64] for which C-C = 1.33 Å, C-O = 1.23 Å, and previous 
calculation [57,64]. The bond length in round two 
changes from 1.372 Å to 1.399 Å for C-C, 1.722 Å for 
C-S, and from 1.106 Å to 1.148 Å for C-H. The bond angle 
of round one changes from 118.883° to 121.107° for 
C-C-C, from 117.199° to 122.635° for H-C-C, from 
119.554° to 123.147° for C-C-O, and from 109.956° to 
117.537° for C-C-H. The bond angle of round two 
changes from 111.186° to 115.008° for C-C-C, from 
122.321° to 124.347° for H-C-C, 89.695° for C-S-C, from 
109.929° to 114.042° for S-C-C, and 122.983° for S-C-H.

3.1.2 Electronic Structure of C13H8OS-H

The bandgap is Eg = 2.255 eV (Figure 3a1) and the 
density of electrons of C13H8OS-H (Figure 3a2) has 
a maximum value of 23.5%. The density of electrons for 
C13H8OS-H is shown in Table 1.

The results of Figure 3b show that the phase transi
tion temperature zone of C13H8OS-H ranges from 567.5 K 
to 611.1 K, where the glass temperature Tg = 567.5 K and 
melting temperature Tm = 611.1 K. These values are 
larger than values obtained in [57,64]. The reason for 
this phenomenon is that we put the material into a force 
field with boundary conditions different from initial 
boundary conditions. The obtained density of electrons 
for C13H8OS-H is shown in Table 1.

Figure 2. The optimized structures of poly (C13H8OS-H)2 calculated by molecular dynamics calculations.

Table 1. The density of electrons for C13H8OS–H.
Energy levels (eV) −20 −15 −10 −5 −2.5 0 2.5 5 Result
Density of electrons (%) 2.334 6.625 9.423 19.462 8.925 4.011 2.629 4.151 Simulation [57,64]

4.099 3.110 5.631 16.394 5.606 9.703 6.044 5.684 Calculation
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According to Table 1, when the energy levels are 
−20, – 15, – 10, −5, −2.5, 0, 2.5, and 5 eV, the corre
sponding electron densities of C13H8OS-H are 4.099 %, 
3.110 %; 5.631 %, 16.394 %, 5.606 %, 9.703 %, 6.9044 %, 
and 5.684%.

3.2. The effect of doped on structural features of  
C13H8OS-X

The obtained results show that the distance between 
the atoms and the bond angle does not change sig
nificantly, and that is completely consistent with 

Figure 3. Band structures (a1), Density of states (a2); Phase transition temperature (b) zone for C13H8OS-H.

Figure 4. Optimized structures of Br-doped (a), Cu-doped (b), Kr-doped (c), Ge-doped (d), As-doped (e) and Fe-doped (f) C13H8OS-X 
models.
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previous simulations [57,64]. However, the distance 
between the doped atoms changes strongly for 
poly(C13H8OS-H) doped. Concretely this distance is 
1.116 Å for doped C-H (Figure 4a); 1.876 Å for doped 
C-Br (Figure 4b); 1.909 Å for doped C-Cu (Figure 4c); 
10.675 Å for doped C-Kr (Figure 4d); 2.025 Å for doped 
C-Ge (Figure 4e); 2.016 Å for doped C-As (Figure 4f); 

2.014 Å for doped C-Fe (Figure 4f). Structural features 
of pure and doped C13H8OS-X, X = H, Br, Cu, Kr, Ge, 
As, Fe are shown in Table 2, respectively.

3.3. The effect of doped on electronic structures of  
C13H8OS-X

Table 3 gives the valence electrons and the value of 
bandgap energy for doped C13H8OS-X. The bandgap 
energy for C13H8OS-X doped -H, -Br, -Cu, -Kr, -Ge, - 
As, -Fe decreases. The values of bandgap energy for 
doped C13H8OS-X are shown in Figure 6. The band 
structure and the density of states for C13H8OS-X 
doped -H, -Br, -Cu, -Kr, -Ge, -As, -Fe are shown in 
Figure 5, Figure 7 describes the density of states for 
metal-doped C13H8OS-X models with different ele
ments. The obtained results show that the molecules 
have the shape of box with precise cell sizes 
a = 27.095 Å, b = 11.535 Å, c = 6.118 Å for C13H8OS- 
H; a = 25.305 Å, b = 12.398 Å, c = 6.070 Å for C13H8 

OS-Br; a = 25.678 Å, b = 13.049 Å, c = 5.928 Å for C13 

H8OS-Cu a = 26.092 Å, b = 12.970 Å, c = 6.064 Å C13 

H8OS-Kr; a = 26.160 Å, b = 12.799 Å, c = 6.146 Å for 
C13H8OS-Ge; a = 26.348 Å, b = 12.913 Å, c = 6.112 Å 
for C13H8OS-As and a = 24.400 Å, b = 13.662 Å, 
c = 5.993 Å for C13H8OS-Fe. The bond angles of 
different poly(C13H8OS-X) derivatives are 123.017° 
with C-C-H of C13H8OS-H; 115.798° with C-C-Br of 

Table 2. Structural features of pure and doped C13H8OS-X, X = H, 
Br, Cu, Kr, Ge, As, Fe.

Model Doped element C-X bond lengths (Å)

PTH H 1.116
PTB Br 1.876
PTC Cu 1.909
PTK Kr 10.675
PTG Ge 2.025
PTA As 2.016
PTF Fe 2.014

Table 3. Bandgap values of pure and doped C13H8OS-X.

Model
Doped 

element
Valence electrons of 

doped elements
Estimated band 
gap energy (eV)

Total energy 
per cell (eV)

PTH H 1s1 2.255 −53,019
PTB Br 3d10 4s2 4p5 2.001 −193,091
PTC Cu 3d10 4s1 1.925 −142,278
PTK Kr 3d10 4s2 4p6 1.652 −202,859
PTG Ge 3d10 4s2 4p2 1.345 −166,018
PTA As 3d10 4s2 4p3 0.976 −174,664
PTF Fe 3d6 4s2 0.915 −121,794
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Figure 5. Band structure and density of states of Br-doped (a), Cu-doped (b), Kr-doped (c), Ge-doped (d), As-doped (e), and Fe-doped 
(f) with C13H8OS-X.
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C13H8OS-Br; 120.957° with C-C-Cu of C13H8OS-Cu; 
123.017° with C-C-Br of C13H8OS-Kr; 120.617° with 
C-C-Ge of C13H8OS-Ge; 125.009° with C-C-As of C13 

H8OS-As and 11.022° with C-C-Fe of C13H8OS-Fe. 
When the energy levels are −20, −15, −10, −7.5, 
−5, 0, 5 and 7.5 eV, the corresponding densities of 
electrons for C13H8OS-H are 4.099 %, 3.110 %, 5.631 
%, 16.394 %, 5.606 %, 9.703 %, 6.044 % and 5.684 %.

The density of electrons for C13H8OS-X doped the 
functional groups -Br, -Cu, -Kr, -Ge, -As, -Fe changes 
greatly. For example when the energy level at −20 eV, 
the density of electrons is 4.099% for C13H8OS-X doped 
-H, 3.262% for C13H8OS-X doped -Br,4.071% for C13H8OS- 
X doped -Cu, 0,014% for C13H8OS-X doped -Kr, 0% for C13 

H8OS-X doped -Ge and -As, 0.063% for C13H8OS-X 
doped – Fe. At −15 eV, the corresponding densities of 
electrons are 3.110%, 10.772%, 6.619%, 2.511%, 11.541%, 
9.02% and 3.785%. At −10 eV, the corresponding densi
ties of electrons are 5.631%, 11.681%, 8.704%, 10.836%, 
7.388%, 3.312% and 7.529%. At-5 eV, the corresponding 
densities of electrons are 16.394%, 18.743%, 21.630%, 
17.866%, 17.608%, 17.583% and 15.650%; At −2.5 eV, 
the corresponding densities of electrons are 5.606%, 
3.954%, 9.327%, 3.585%, 15.764%, 12.443% and 
11.425%. At 0, the corresponding densities of electrons 
are 9.703%, 6.343%, 7.909%, 7.806%, 12.238%, 15.230% 
and 7.020%. At 2.5 eV, the corresponding densities of 
electrons are 6.044%, 3.857%, 5.089%, 6.786%, 12.214%, 
2.208% and 6.016%. At 5 eV, the corresponding densities 
of electrons are 5.684%, 6.493%, 3.290%, 3.903%, 0, 0 and 
0. This shows that in the valence region, the density of 
electrons has the largest percentage extending the max
imum value at the energy range of −5 eV. Also, the 
bandgap Eg decreases for the doped in the order of -Br, - 
Cu, -Kr, -Ge, -As, and -Fe. Besides, the total energy Etot of 
the system decreases suddenly at -Kr, which shows that 
the Etot of the −4p subclass of the material decreases for 
increasing the subclass from −4p2 to −4p3, −4p5, and 
−4p6. The obtained results are used as the basis for future 
experimental research and used to predict the structural 
features and electronic structure of C13H8OS-X doped.

4. Conclusion

The effects of doped -H, -Br, -Cu, -Kr, -Ge, -As, and -Fe 
on structural features and the electronic structure of 
C13H8OS-X are studied by the GGA package PW91 of 
the Material Studio software copyrighted based on 
the DFT method. Structural features such as the 
lengths of the bonds C-H, C-Fe, C-Ge, C-C, C-Br, C-O, 
C-Cu, C-Kr, C-As and the bond angles H-C-H, H-C-C, 
C-C-C, C-Fe-H, C-Ge-C, C-Br-C, C-O-C, Cu-C-C, Kr-C-C, 
As-C-C do not change significantly. However, when 

Figure 6. Bandgap values of metal-doped C13H8OS-X models 
with different elements.

Figure 7. The density of states of metal-doped C13H8OS-X mod
els with different elements.
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then total energy change of system decrease from 
Etot = −121,794 eV to Etot = −202,859 eV; and the 
total energy and the bandgap of C13H8OS-X doped in 
the order of -H, -Br, -Cu, -Kr, -Ge, -As and -Fe decrease 
from Etot = – 121,794 eV to Etot = – 202,859 eV and 
from Eg = 2.001 eV to Eg = 0.915 eV respectively. This 
shows that the influence of benzene ring and impu
rities on electronic structure features and the band
gap of poly materials is important and these results 
are considered as a basis for future experimental 
research.
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