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Abstract: Graded cellular material is a superb sandwich candidate for blast alleviation, but it has
a disadvantage for the anti-blast design of sacrificial cladding, i.e., the supporting stress for the
graded cellular material cannot maintain a constant level. Thus, a density graded-uniform cellular
sacrificial cladding was developed, and its anti-blast response was investigated theoretically and
numerically. One-dimensional nonlinear plastic shock models were proposed to analyze wave
propagation in density graded-uniform cellular claddings under blast loading. There are two shock
fronts in a positively graded-uniform cladding; while there are three shock fronts in a negatively
graded-uniform cladding. Response features of density graded-uniform claddings were analyzed,
and then a comparison with the cladding based on the uniform cellular material was carried out.
Results showed that the cladding with uniform cellular materials is a good choice for the optimal mass
design, while the density graded-uniform cladding is more advantageous from the perspective of the
critical length design indicator. A partition diagram for the optimal length of sacrificial claddings
under a defined blast loading was proposed for engineering design. Finally, cell-based finite element
models were applied to verify the anti-blast response results of density graded-uniform claddings.

Keywords: cellular sacrificial cladding; density distribution design; shock wave; analytical model;
blast alleviation

1. Introduction

Cellular materials have been popularly regarded as an ideal anti-blast/cushion material due to
their superior energy absorption capability and shock mitigation [1–4]. The primary applications
of cellular materials are energy protectors (such as helmets and shields) and packaging of fragile
components. Under blast/impact loading, cellular materials can undergo a large deformation and
simultaneously dissipate shock energy with a low transmitted stress. Thus, sandwich structures
with cellular materials as core materials appear to be gradually within our sight. Cellular sacrificial
cladding, a kind of sandwich structure, is composed of two cover plates and a cellular material core,
where the function of the cover plates is to improve the flexural rigidity of sacrificial cladding and to
avoid nonuniform blast loading. When subjected to impact/blast loading, cellular sacrificial cladding
can absorb enormous energy with a layer-wise deformation mode and can protect the main structure
behind the cladding from destruction [5,6].

It is a crucial point to understand the mechanical behavior of cellular material for guiding the
anti-blast design of cellular sacrificial cladding. Under impact/blast loading, cellular material deforms
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with two typical features, namely deformation localization and stress enhancement, which can be well
characterized by shock models [7–15]. A shock model was first proposed by Reid and Peng [7] to
describe the dynamic behavior of the wood based on a rate-independent, rigid-perfectly plastic-locking
(R-PP-L) idealization, and it has been subsequently applied to many other porous materials [8,16–18],
such as honeycomb [16], metal lattice [17] and aluminum foam [8,18]. Recently, Zheng et al. [12]
explored the deformation mechanism related to the nonlinear plastic hardening effect of cellular
materials and proposed a rate-independent, rigid-plastic hardening (R-PH) idealization to characterize
the quasi-static compression stress-strain behavior. The R-PH material model can well fit the nominal
stress-strain curve of cellular materials. Ding et al. [2] further demonstrated that the R-PH model is
more precise than the R-PP-L model to evaluate the anti-blast properties of the sacrificial cladding
with uniform cellular material.

In the structural design of cellular sacrificial cladding, researchers gradually looked forward to
graded cellular materials due to their designable properties. Ma and Ye [19] proposed a double-layer
foam cladding with different densities, and the further study of Liao et al. [20] showed that
the double-layer sacrificial cladding was more efficient than the single-layer sacrificial cladding.
Karagiozova and Alves [21] analyzed the wave propagation in layered cellular solids under impact
loading, and their results suggested that the weakest material should be placed near the stationary
end to ensure a smaller stress transmitted to the main structure. Recently, the dynamic response of
continuous graded cellular materials was investigated and the results illustrate that their dynamic
energy absorption can be improved [22–29], compared to the homogenous rod. The anti-blast behavior
of graded cellular sacrificial cladding is studied in the literature [30–34], which brought some beneficial
understandings, e.g., the thickness of the graded cladding needing to absorb the blast loading is smaller
with a more significant density gradient parameter. However, the supporting stress that the stress at
the supporting end of the structure, for graded cellular claddings (including both the positive and
negative density distribution cases) under dynamic loading cannot maintain a constant level and is
greatly affected by the density arrangement and dynamic loading intensity. It is disadvantageous for
the blast alleviation design of graded cellular materials. Therefore, a neotype double-layer cellular
cladding composed of a graded cellular layer and a uniform cellular layer, where the uniform foam
layer maintains a constant transmitted stress suffered by the main structure and the graded foam layer
increases the energy absorption properties, is proposed in this paper and is applied as an anti-blast
structure. Thus, it can give full play to the functions of graded and uniform layers to ensure its
blast alleviation.

In this paper, the anti-blast responses of density graded-uniform sacrificial cellular claddings
are investigated with shock models based on the rate-independent R-PH idealization. The outline
is structured as follows. The problem of density graded-uniform cellular cladding suffered by blast
loading is described in Section 2. Then, in Section 3, the governing equation is derived to investigate the
shock front motion in the density graded-uniform cellular cladding. The main results and discussion
about the anti-blast responses of density graded-uniform cellular claddings are given in Section 4.
A comparison between the cell-based finite element (FE) results and the theoretical prediction is
performed in Section 5, followed by conclusions in Section 6.

2. Theoretical and Numerical Models

2.1. Problem Description

We consider a new double-layer cellular cladding, namely graded-uniform cellular sacrificial
cladding, as the impact alleviation, as shown in Figure 1a. According to the density distribution of the
graded cellular layer, the graded-uniform cellular sacrificial cladding can be distinguished into two
cases: positively and negatively graded-uniform cellular sacrificial claddings (called “PG-U cladding”
and “NG-U cladding” for short, respectively). In this study, we only consider the linear density
distribution of the graded cellular cladding, and the lowest density of the graded foam is equal to the
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density of the uniform foam. Thus, the density distribution of the graded-uniform cellular sacrificial
cladding can be expressed as

ρf(X) = ρ(X)ρS =

 2ρ0ρS
2−|γ|

[1 + γ(X/L2 − 1/2)], 0 ≤ X ≤ L2

ρ0ρS, L2 < X ≤ L
(1)

where X is the Lagrangian coordinate, L2 is the length of the graded layer, L is the total length of the
graded-uniform sacrificial cladding, ρ(X) represents the relative density distribution, ρ0 is the relative
density of uniform cellular cladding, γ = 2(ρ(L2) − ρ(0))/(ρ(L2) + ρ(0)) is the density-gradient parameter
and ρs is the density of the base material. For the case of γ > 0, the density increases linearly along the
graded foam rod with a slope of 2ρsρ0γ/(2L − |γ|L2), and for the case of γ < 0, the density decreases
linearly with the same slope. Two cover plates added to the cladding are used to increase the flexural
capacity of the cladding, and the mass per unit area of the plates are m2 and m1. The thicknesses of
both cover plates are negligible in the theoretical analysis.
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Figure 1. (a) Sketch of density graded-uniform cellular cladding for blast alleviation and (b) its
density distribution.

The blast loading can be approximated as a plane pressure wave when the explosion takes place
at a certain distance away from the cladding. In general, the blast pressure can be assumed to be an
exponential attenuation wave [32,33,35,36], written as

p(t) = P0e−t/τ (2)

where t is the time, P0 is the initial peak of the blast loading and τ is the decay time of the blast
loading. The impulse of the blast can be obtained as P0τ. It should be noted that the blast loading
considered here takes into account the fluid-structure interaction effects, which are the interactions
between the blast pressure produced by the explosion and the motion of the cover plate of the cellular
sacrificial cladding.

2.2. Stress-Strain Relations of Cellular Materials

Due to the difficulty of obtaining the dynamic stress-strain relations of cellular materials,
the quasi-static stress–strain curve is often used to evaluate and design the cellular cladding for
engineering projects. The stress-strain curve of cellular materials under quasi-static compression
presents three distinct regions, namely an elastic region, a long plateau plastic region and a densification
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region. Several simplified idealizations were therefore proposed to characterize the collapse behavior
of cellular materials. The R-PP-L idealization [7,8] is the most popular one, and it only contains two
material parameters, i.e., plateau stress and locking strain. However, it is demonstrated that the
R-PP-L idealization can only provide a first-order approximation for the deformation behavior of
cellular materials owing to the constant locking strain assumption [2]. The densification region of the
quasi-static stress-strain curve presents a strongly nonlinear plastic hardening phenomenon [12,37],
which may be more directly reveal the unreasonableness of the R-PP-L idealization for cellular materials.
Here, the rate-independent R-PH idealization proposed by Zheng [12] is implemented to characterize
and predict the energy absorption of cellular materials, as shown in Figure 2. The R-PH idealization
can depict the stress-strain curves well, and it can be given by

σ(ε) = σ0(ρ) +
C(ρ)ε

(1− ε)2 (3)

where σ0(ρ) and C(ρ) are the initial crushing stress and the strain hardening parameter, respectively,
which are related to the local relative density ρ(X).
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model [31] and the R-PP-L and R-PH idealizations.

3. Blast Alleviation of Graded-Uniform Cellular Sacrificial Claddings

In the case of a material subjected to an increasing velocity from zero, if the material has an
upward concave stress–strain relation, a series of plastic waves initially propagate from the impact
end, and transform into a shock wave later when the loading velocity is high enough [38]. According
to the experience, the material at the blast end of a cellular sacrificial cladding could reach a high
speed in a very short time. To pursue the authenticity of the material models and blast loading [6,23],
we assume that the shock wave can be formed as soon as an increasing velocity from zero acts on the
cellular sacrificial cladding. The rationality of this hypothesis will be illustrated by the cell-based finite
element results in Section 5.

According to the R-PH model, the elastic wave speed is infinite, and the shock wave speed is
finite and determined by the slope of Rayleigh line [8]. It indicates that the shock wave cannot catch
up with the elastic wave, and the stress ahead of the shock front is equal to σ0(ρ). Thus, the physical
quantities ahead of the shock front can be expressed as {vA, εA, σA} = {v, 0, σ0(ρ)}. If the velocity ahead
of the shock front is determined, the physical quantities behind the shock front {vB, εB, σB} can be
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obtained with the aid of Equation (3) and the conservation relations of mass and momentum across the
shock front [39], which are {

vB(t) = vA(t) + vSh(εB(t) − εA(t))
σB(t) = σA(t) + ρρSvSh(vB(t) − vA(t))

(4)

where vSh is the shock front speed and ρ is the local relative density in cellular material at the shock
front position.

Several kinds of sacrificial claddings, serving as a protective function from blast or impact
loads, were proposed and investigated theoretically, experimentally and numerically in the
literature [5,6,19–34], such as single, double, triple and graded cellular sacrificial claddings. However,
deformation patterns of those sacrificial claddings under impact loading are different and highly
dependent on the density distribution of sacrificial cladding. Under impact loading, the single, uniform
cellular layer deforms layer-by-layer, and only one shock wave can be found propagating from the
proximal end to the distal end. To enhance the blast/impact resistant capacity, double and triple
cellular claddings [21] are proposed, and double shock waves and triple shock waves can be found
respectively under impact loading. The deformation pattern of the graded cellular layer is more
complicated [22,24,25,40], and a variety of forms of shock wave propagation are possible according to
the density distribution in the graded cladding. Therefore, figuring out the deformation mode of the
sacrificial layer is the top priority of the anti-blast analysis of sacrificial cladding.

3.1. Positively Graded-Uniform Cellular Sacrificial Cladding (PG-U Cladding)

Consider a unit strip of a sacrificial cladding comprising a positively graded cellular layer and a
uniform cellular layer, as shown in Figure 3. Once a blast loading is applied to the PG-U cladding,
a shock wave initiates at the proximal end and travels through the cladding with a finite speed. If there
is no other shock wave, stress imbalance would appear at the distal layer. Thus, it is assumed that
two plastic shock waves simultaneously initiate in a PG-U cladding, i.e., one traveling in the proximal
layer and the other propagating in the distal layer, then the proximal layer and the distal layer deform
simultaneously. Before the shock wave arrives at the end of the distal layer, the stress at the support
end (stress transmitted to the protected structure) is limited to σ0(ρ0), which can be set as the allowable
stress of the protective structure from damage, and it can be roughly achieved when the distal layer is
sufficiently thick.
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Figure 3. (a) The deformation diagram and (b) the stress distributions of PG-U cladding subjected to
blast loading.

Assuming the cover plate is a rigid body and the origin of the X coordinate is at the proximal end,
as shown in Figure 3a. X1 and X2 are used to denote the Lagrangian coordinates of Shock 1 and Shock
2. Thus, the velocities of the two shock fronts S1 and S2 can be written as

S1 =
dX1

dt
, S2 =

dX2

dt
(5)

According to Equation (4), the mass and momentum conservation conditions across Shocks 1 and
2 are {

v1 − v2 = S1ε1

σ1 − σ0(ρ(X1)) = ρSρ(X1)S1(v1 − v2)
(6)

and {
v2 = S2ε2

σ2 − σ0(ρ(X2)) = ρSρ(X2)S2v2
(7)

where {v1, ε1, σ1} represent the velocity, strain and stress behind Shock 1, respectively, and {v2, ε2, σ2}
are those behind Shock 2, respectively.

The momentum conservation of the cover plate m2 and Region 1 at time t gives

p(t) − σ1 = (m2 + ρS

∫ X1

0
ρ(x)dx)

dv1

dt
(8)

and the similar momentum conservation of Region 2, middle plate m1 and Region 3 through time
interval dt leads to

σ0(ρ(X1)) − σ2 = (m1 + ρS

∫ L2

X1

ρ(x)dx + ρSρ0(X2 − L2))
dv2

dt
(9)

Combining Equations (3) and (5)–(9), we have dX1
dt = v1 − v2 + c1

dX2
dt = v2 + c2

(10)
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and 
dv1
dt =

p(t)−σ0(ρ(X1))−ρSρ(X1)(v1−v2)(v1−v2+c1)

m2+ρS
∫ X1

0 ρ(x)dx
dv2
dt =

σ0(ρ(X1))−σ0(ρ(X2))−ρSρ(X2)v2(v2+c2)

(m1+ρS
∫ L2

X1
ρ(x)dx+ρSρ0(X2−L2))

(11)

where c1 =
√

C(ρ(X1))/ρSρ(X1) and c2 =
√

C(ρ(X2))/ρSρ(X2).
Thus, the governing equations of the anti-blast response of PG-U cladding at Stage I are controlled

by Equations (10) and (11). However, there is no explicit solution to those differential equations. In this
study, they are solved numerically with a fourth-order Runge-Kutta scheme with the initial conditions
X1 = 0, X2 = L2 and v1 = v2 = 0.

At Stage I, the velocity of Region 1 increases sharply and then decreases slowly due to the
resistance of the rod for the force competition of blast loading p(t) and stress behind Shock 1, σ1.
The common velocity v2 of Regions 2 and 3 is increasing due to the difference of the stress ahead of
Shock 1 σ0(ρ(X1)) and the stress behind Shock 2, σ2. When v1 = v2, Shock 1 vanishes while Region 1,
Region 2 and Region 3 with the cover plates m1 and m2 move as an entirety towards the distal end.
At this moment, Stage II commences. With the application of the mass and momentum conservation
relations across Shock 2, Equations (10) and (11) can be rewritten as

dX2

dt
= v2 + c2 (12)

and
dv2

dt
=

p(t) − σ0(ρ0) − ρSρ0v2(v2 + c2)

m1 + m2 + 2ρSρ0L2/(2− γ) + ρSρ0(X2 − L2)
(13)

The deformation at Stage II is governed by Equations (12) and (13), and the initial conditions are
X1 = x11, X2 = x12, v1 = v2 = v11 = v12, where x11, x12, v11 and v12 are the Lagrangian coordinates of
Shocks 1 and 2, the velocities of Regions 1 and 2 at the end of Stage I, respectively. The typical stress
distribution along the cladding at Stage I and II are depicted in Figure 3b. It is obvious that the stresses
at the undeformed regions do not exceed the local initial crushing stress, which illustrates that the
assumption of double shock waves is self-consistent.

3.2. Negatively Graded-Uniform Cellular Sacrificial Cladding (NG-U Cladding)

It is supposed that there exist three shock fronts simultaneously propagating in the NG-U cladding
at Stage I, as shown in Figure 4a. Under blast loading, Shock 1 propagates from the proximal end to the
distal end, while Shock 2 and Shock 3 initiate at the interface between the graded layer and uniform
layer, i.e., they are the same disturbance contributed to the crushing at the weakest point. Then Shock
2 propagates towards the proximal end, and Shock 3 propagates oppositely towards the distal end.
This assumption will be validated by the FE simulations in Section 5. In the process of propagation,
the compacted part of Region 1 and cover plate m2 move forward with a velocity of v1, Region 2
moves with velocity v2 and Region 3 with v3. These velocities satisfy the relationship numerically:
v1 > v2 > v3 at stage I.

Similar to the analysis in Section 3.1, the shock front velocities of S1, S2, and S3 are

S1 =
dX1

dt
, S2 =

dX2

dt
, S3 =

dX3

dt
(14)

where X1, X2 and X3 are the shock position measured from the proximal end of cladding. Considering
the fact that Shock 1 and Shock 3 are right-spreading waves and Shock 2 is the left-spreading wave,
the conservation conditions across Shocks 1, 2 and 3 take the forms:{

v1 − v2 = S1ε1

σ1 − σ0(ρ(X1)) = ρSρ(X1)S1(v1 − v2)
(15)
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{
v2 − v3 = −S2ε2

σ2 − σ0(ρ(X2)) = −ρSρ(X2)S2(v2 − v3)
(16)

and {
v3 = S3ε3

σ3 − σ0(ρ0) = ρSρ0S3v3
(17)

where {v1, ε1, σ1}, {v2, ε2, σ2}, {v3, ε3, σ3} represent the velocity, strain and stress behind Shocks 1, 2 and
3, respectively. Further application of the momentum conservation relations of compacted Region 1
and m2, Region 2 and Region 3, respectively, we have

p(t) − σ1 = (m2 + ρS

∫ X1

0
ρ(x)dx)

dv1

dt
(18)

σ0(ρ(X1)) − σ0(ρ(X2)) = ρS

∫ X2

X1

ρ(x)dx
dv2

dt
(19)

and

σ2 − σ3 = (m1 + ρS

∫ L2

X2

ρ(x)dx + ρSρ0(X3 − L2))
dv3

dt
(20)

Therefore, substituting Equations (3), (15)–(17) into Equation (14) yields
dX1
dt = v1 − v2 + c1

dX2
dt = −(v2 − v3 + c2)

dX3
dt = v3 + c3

(21)

where c3 =
√

C(ρ(X3))/ρSρ(X3). Substituting Equations (3), (15)–(17) into Equations (18)–(20) yields

dv1
dt =

p(t)−σ0(ρ(X1))−ρSρ(X1)(v1−v2)(v1−v2+c1)

m2+ρS
∫ X1

0 ρ(x)dx
dv2
dt =

σ0(ρ(X1))−σ0(ρ(X2))

ρS
∫ X2

X1
ρ(x)dx

dv3
dt =

σ0(ρ(X2))+ρSρ(X2)(v2−v3)(v2−v3+c2)−σ0(ρ0)−ρSρ0v3(v3+c3)

m1+ρS
∫ L2

X2
ρ(x)dx+ρSρ0(X3−L2)

(22)

Thus Equations (21) and (22) are the governing equations of NG-U cladding at Stage I, and its
initial conditions are X1 = 0, X2 = X3 = L2 and v1 = v2 = v3 = 0. It is noteworthy that the acceleration of
Region 2, dv2/dt, is a constant determined by the density-gradient parameter γ in graded layer. Thus an
initial constraint dv1/dt|t = 0 > dv2/dt|t = 0 (i.e., (P0 − σ(ρ(0)))/m2 > − 4γk1σSρ0/(2+γ)L2ρS when using
Equation (27)) should be satisfied to guarantee the shock propagation assumption in NG-U cladding.
When speed v1 drops to equal v2, Shock 1 vanishes, and Shock 2 remains to propagate towards the
proximal end for the velocity difference between Region 2 and Region3, i.e., Stage II commences.

Thus, the governing equations for Stage II are dX2
dt = −(v2 − v3 + c2)

dX3
dt = v3 + c3

(23)


dv2
dt =

p(t)−σ0(ρ(X2))−ρSρ(X2)(v2−v3)(v2−v3+c2)

m2+ρS
∫ X2

0 ρ(x)dx
dv3
dt =

σ0(ρ(X2))+ρ(X2)(v2−v3)(v2−v3+c2)−σ0(ρ0)−ρ0v3(v3+c3)

m1+ρS
∫ L2

X2
ρ(x)dx+ρSρ0(X3−L2)

(24)

The initial conditions of Stage II are X1 = x11, X2 = x12, X3 = x13, v1 = v2 = v11 = v12 and v3 = v13,
where x11, x12, x13, v11, v12 and v13 are the Lagrangian coordinates of Shocks 1, 2 and 3, the velocities of
Regions 1, 2 and 3 at the end of Stage I, respectively.
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Figure 4. (a) The deformation diagram and (b) the stress distributions of NG-U cladding subjected to
blast loading.

The velocity of Region 2 continues to decline until it satisfies the condition of v2 = v3 > 0, and then
Shock 2 vanishes, i.e., Stage III commences. At this moment, Regions 1, 2, 3 and the cover plates m1

and m2 move as an entirety towards the distal end, as shown in Figure 4a. Similarly, the governing
equations of the deformation at Stage III are

dX3

dt
= v3 + c3 (25)

dv3

dt
=

p(t) − σ0(ρ0) − ρSρ0v3(v3 + c3)

m1 + m2 + 2ρSρ0L2/(2 + γ) + ρSρ0(X3 − L2)
(26)
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The initial conditions are X1 = x21, X2 = x22, X3 = x23, v1 = v2 = v3 = v21 = v22 = v23, where x21, x22,
x23, v21, v22 and v23 are the Lagrangian coordinates of Shocks 1, 2 and 3, the velocities of Regions 1, 2
and 3 at the end of Stage II, respectively. The governing equations of Stage I, Stage II and Stage III can
also be solved by using the Runge-Kutta method. The stress distribution along the cladding at Stage I,
II and III are also checked in Figure 4b, and the stresses at undeformed Regions do not exceed the local
initial crushing stress.

4. Results and Discussion

4.1. Critical Length

The critical length, which defined as the minimum length of cellular sacrificial cladding to fully
absorb the energy induced by the blast loading, is a vital target parameter to evaluate the cladding.
However, the critical length of graded-uniform claddings cannot be directly obtained because it depends
on the initial length L2 and the shock propagation behavior on the uniform layer within the end time.
The end time tm can be obtained by the law of momentum conservation that the impulse induced
by the blast loading should equal to the impulse absorbed by the sacrificial cladding, i.e., P0τ = σ0tm.
In order to obtain the critical length of graded-uniform sacrificial cladding, two constraints [20] are
introduced to optimize the design of the thickness distribution of the PG-U and NG-U claddings.

Constraint I is that the proximal layer (graded cellular layer) is fully compacted exactly when the
shock waves in this layer vanish. In detail, Shock 1 just reaches the end of the proximal layer when
it vanishes for PG-U cladding, and Shock 2 just reaches the stop position of Shock 1 in the proximal
layer when it vanishes for NG-U cladding. Applying this condition constrains, we can determine the
optimal length of the proximal layer of graded-uniform cladding.

Constraint II is that the distal layer is fully compacted at the instant when the blast loading is fully
absorbed. Thus, the thickness of the distal layer can be determined by the final stop position of the
shock front in the uniform layer, i.e., Shock 2 for the PG-U cladding and Shock 3 for the NG-U cladding.

By considering Constraints I and II, the critical thickness distribution of graded-uniform cladding
can be determined when the blast loading and cover plates are defined.

4.2. Propagation of Shock Wave in the Cladding

It is reported that the properties of cellular material can be denoted as functions of its relative
density [41–44]. The two material parameters of R-PH model can also be expressed in power-law
forms related to the relative density ρ, written as{

σ0(ρ) = k1σSρ
n1

C(ρ) = k2σSρ
n2

(27)

where σS is the yield stress of the matrix materials, and k1, k2, n1, n2 are fitting parameters. Recently,
Cai et al. [31] obtained the coefficients in Equation (27) by fitting the quasi-static compression curves of
Voronoi honeycombs (as used in this paper to model the cellular materials) as k1 = 0.439, k2 = 0.127,
and n1 = n2 =2. The solid material of Voronoi honeycombs for the present study is assumed to be elastic,
perfectly plastic with Young’s modulus 66 GPa, Poisson’s ratio 0.3, yield stress 175 MPa and density
ρs = 2700 kg/m3. Sacrificial claddings with specific density distribution are applied to demonstrate
the propagation of shock waves in claddings for blast alleviation. Here, the mass per unit area of the
cover plate is m1 = m2 = 2.7 kg/m2, the initial peak and decay time of the blast loading are P0 = 20 MPa
and τ = 0.15 ms. The density of uniform cellular cladding ρ0 = 270 kg/m3, and the density-gradient
parameter γ = 2/3 and −2/3 corresponding to PG-U and NG-U claddings, respectively. Thus, the critical
thickness distribution of PG-U cladding can be determined as L2 = 91.6 mm and L = 272 mm; while the
critical thickness of NG-U cladding as L2 = 140 mm and L = 298 mm.

For the PG-U cladding, the time history of the velocities of Regions 1 and 2 (v1 and v2) and
propagation behaviors of the shock fronts are depicted respectively in Figure 5a,b. At Stage I, the velocity



Materials 2020, 13, 5616 11 of 19

of Region 1 (equals the velocity of cover plate m2), v1, first increases and then decreases. Meanwhile,
the velocity of Region 2, v2, increases from 0 until it reaches the same speed of velocity v1. Then, Region
1 and Region 2 move together, and Stage II commences. From the shock propagation, see Figure 5b,
Shock 1 just reaches the end of the proximal layer when Stage I comes to an end, which satisfies the
condition of Constraint I. At Stage II, there exists only one shock wave, Shock 2, propagating to the
support end (protected structure end). The cover plates m1 and m2 are moving with the same velocity
v2, and the position difference of those two plates is the thickness of the compressed graded layer.
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For the NG-U cladding, three shock waves are propagating simultaneously in the cladding once
the blast loads. Similarly, the duration of Stage I is determined by the condition that the increasing
velocity of Region 2 reaches the decreasing Region 1 velocity, i.e., v2 = v1. Then Shock 1 vanishes and
Stage 2 begins. The end time of Stage II is determined by v3 = v2, which is also the commencement for
Stage III. At Stage III, the part behind Shock 3 moves together, and its velocity is gradually reduced to
zero due to the alleviation of the undeformed uniform layer, as shown in Figure 5c. The shock front
propagation behavior of NG-U cladding is depicted in Figure 5d. Three shock fronts are described by
the black, red and blue lines respectively, and they disappear at the end time of Stage I, Stage II and
Stage III, respectively. The sum distance swept by Shocks 1 and 2 is just the thickness of graded layer
L2, and this is precisely caused by Constraint I as mentioned above.

4.3. Parametric Analysis

The total mass and length of sacrificial cladding are two principal target indicators, which are
associated with the cladding structural parameters, such as the attached mass distribution of cover
plates and the density-gradient parameter γ. Considering the case that the total mass per unit area
of the two cover plates in density graded-uniform claddings, i.e., m = m1+m2, is kept constant at
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m = 5.4 kg/m2, the critical length of the cladding decreases first and followed by a rise with the
increasing of |γ|. By comparison with the uniform cellular materials cladding (called as “SU cladding”
for short) [2], where the cover mass is equal to m and relative density of cellular materials is ρ0,
the results indicate that the critical length of the density graded-uniform cladding is shorter than that
of SU cladding within a certain range of |γ| variation, as shown in Figure 6. Furthermore, there exists a
minimum length for each density graded-uniform cladding under a defined loading and cover mass.
Notably, the changing trend of the critical length of density graded-uniform cladding with increasing
of |γ| is not coincidental under different ratio of proximal cover plate mass to the middle one, η = m2/m1.
From the perspective of the minimum critical length of cladding, the case of η = m2/m1 = 100 is more
suitable for engineering design. In other words, the mass per unit area of the cover plate should all be
concentrated on the proximal end, which has an advantage over the design of the critical length.

In fact, the blast loading can be treated as an impulse loading, so the mass per unit area of the
cover plate indirectly decides the work done by the blast loading. Thus, a direct result can be deduced
that the critical length of the sacrificial cladding decreases with increasing of the mass per unit area
of cover plates, and it is verified by the numerical results, as shown in Figure 6. However, the total
mass of the cladding presents an opposite law with the variation of the mass of cover plate. Under a
fixed cover plate mass m, the critical length of PG-U cladding decreases first and then increases until it
reaches the critical length value of SU cladding with the increasing of density-gradient parameter γ.
At the same time, the total mass of PG-U cladding always shows a downward trend until it reaches
the boundary of SU cladding. Therefore, the SU cladding is an excellent choice for the mass design
indicator. In contrast, the PG-U cladding is more advantageous when choosing a large γ from the
perspective of the critical length design indicator. There is a region in the total mass-critical length
figure characterizing PG-U cladding should be preferred compared with SU cladding in critical length
design. Two lines surround this region: one is indicated by SU cladding, the other is the boundary line
where the critical length of PG-U cladding is equal to that of SU cladding. Similar results can be found
for NG-U cladding. However, its variation curves of total mass and critical length cannot reach to the
boundary of SU cladding with increasing of |γ|, and they are interrupted by the failure line which is
determined by (P0 − σ(ρ(0)))/m2 = −4γk1σSρ0/(2+γ)L2ρS

2 as mentioned in Section 3.2. In general, P0 is
larger than σ0(0), but this condition will be met when |γ| is large. Therefore, the advantageous region
for NG-U cladding is surrounded by the boundary line and the failure line, as shown in Figure 7.
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Thus, partition diagrams in the total mass-critical length figure can be obtained when the minimum
length of cladding is the design goal, where the blue, black and red shaded areas represent SU cladding,
PG-U cladding and NG-U cladding, respectively, while the orange shaded area is the dual area for PG-U
and NG-U claddings. Those shaded areas are distinguished by the lines representing SU cladding,
the failure line for NG-U cladding, and two boundary lines as mentioned above. It is evident that SU,
PG-U and NG-U claddings occupy different regions in the total mass-critical length figure, as shown in
Figure 8, and it should identify different sacrificial claddings according to the actual demand. However,
the SU cladding is a superior one compared with the PG-U and NG-U claddings, when total mass is
the pursuit of goals.
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5. Comparison with Cell-Based Finite Element Model

2D irregular honeycombs with a uniform cell-wall thickness are used and generated by utilizing
the 2D Voronoi technique [45] in this study. The methodology of the Voronoi technique can generally
be described in four main stages [22,46]. At first, N nuclei were randomly scattered in a given region.
Secondly, the nuclei were imaged to the surrounding regions to make sure the boundary density is
consistent with the preconcerted design. Thirdly, Delaunay triangulation is constructed, and then the
Voronoi diagram is determined. Finally, the part of the Voronoi diagram of the given region is reserved
for further analysis. It is reported that 2D graded cellular structures can be realized by switching the
nuclei scatter strategy in the first Stage [22], as shown in Figure 9. The distance between any two nuclei
i and j is required to be

δij ≥ (1− k)δ0(ρi j) = (1− k)
2h
ρi j

(28)

where k is the cell irregularity, δ0(ρ) is the minimum distance between any two adjacent nuclei in a
honeycomb structure with relative density ρ, ρij is the local relative density at the middle point between
nuclei i and j, and h is a presupposed cell-wall thickness. Thus, any 2D cellular structure with continuous
density variation can be constructed according to the given local relative density distribution.

In this section, we consider the case that the blast loading is P0 = 30 MPa and τ = 0.15 ms, the mass
per unit area of the cover plates are m1 = m2 = 2.7 kg/m2 and the density-gradient parameter is set as
γ = ±1. Thus, the critical thickness distribution of PG-U cladding can be determined as L2 = 67.6 mm
and L = 388.4 mm, while the critical thickness of NG-U cladding as L2 = 110 mm and L = 391.7 mm.
In the cell-based FE simulations, a 2D graded Voronoi honeycomb structure (γ = 1) with an area of
67.6 × 100 mm2, a 2D uniform Voronoi honeycomb structure with an area of 320.8 × 100 mm2 and two
rigid plates with an additional mass of 0.27 g respectively are assembled as an FE model for PG-U
cladding. Similarly, a 2D graded Voronoi honeycomb structure (γ = −1) with an area of 110 × 100 mm2,
a 2D uniform Voronoi honeycomb structure with an area of 281.7 × 100 mm2 and two rigid plates with
an additional mass of 0.27 g respectively are assembled as an FE model for NG-U cladding. The length
of specimens in the out-of-plane direction is 1 mm. ABAQUS/Explicit code was used to perform the FE
simulations. Cell walls of specimens were modeled with S4R shell elements. The element size was
set to be about 0.6 mm in-plane and 1 mm out-of-plane through a mesh sensitivity analysis. Thus,
there are about 11,350 and 16,520 elements for the FE models of PG-U cladding and NG-U cladding,
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respectively. General contact with a slight friction coefficient of 0.02 is employed, as used in Zheng et
al. [12]. To simulate an in-plane strain state, all the nodes were constrained in the out-of-plane direction.
A pressure with exponential function (P0 = 30 MPa and τ = 0.15 ms), which can be directly called in
ABAQUS/Explicit code, was used to simulate the blast load in the FE simulation.
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A comparison between the cell-based FE results and the theoretical predictions based on the
R-PH shock model is presented in Figure 10. The velocity curves of the cover plate obtained from
the analytical predictions and FE results are in good agreement, as shown in Figure 10a,c, which
correspond to PG-U cladding and NG-U cladding, respectively. The cell-based FE results demonstrate
that the proximal layer and the distal layer almost deform simultaneously once the claddings are
applied to the blast load, and the middle plate velocities of cell-based FE results also conform with
those of theoretical results very well, which can directly illustrate the reasonable of the assumption
made in Section 3. The two layers also move together when the velocity of the proximal layer decreases
to that of the distal layer for both graded uniform cellular sacrificial claddings.

The support stress is an important consideration, which is related to the effectiveness of the
sacrificial cladding. The results indicate that the time history of the support stress obtained from the
FE results is consistent with the theoretical solutions except it is slightly higher than the theoretical
predictions in the later period, as depicted in Figure 10b,d. This tiny difference may be due to the action
of an elastic reflected wave from the stationary support end and within the acceptable error. If only the
proximal graded cellular layer is considered for sacrificial cladding, the maximum support stress will
present a rising trend, which is disadvantageous for the anti-blast design of sacrificial cladding.

Detailed deformation patterns of PG-U cladding and NG-U cladding under blast loading of
P0 = 30 MPa and τ = 0.15 ms are shown in Figure 11a,b, respectively. It can be observed that two
shock fronts initiate simultaneously in PG-U cladding once the blast loads, and three shock fronts
commence simultaneously in NG-U cladding. Those phenomena are consistent with the assumptions
of theoretical analysis. However, the crushing behavior presents random deformation bands at the later
stage of compression for both claddings, because of the decrease of impact velocity. As the velocity of
the attached mass becomes low at the later stage of compression, see Figure 10a,c, the deformation
mode of the cellular sacrificial cladding changes into a transition or homogeneous mode [12,15,37,45],
which can be verified by the random shear collapse bands in the uniform cellular layer. Thus, the
results will be more accurate for cellular sacrificial cladding when considering both dynamic and quasi
constitutive relations.
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6. Conclusions

The dynamic responses of density graded-uniform sacrificial cellular claddings subjected to blast
loading are investigated theoretically and numerically in this paper. Based on the rate-independent
R-PH shock model of cellular materials and blast loading with an exponential attenuation function,
differential equations governing the shock front propagation in density graded-uniform claddings
were obtained and solved numerically with a fourth-order Runge-Kutta scheme.

Theoretical predictions reveal the characteristics of the motion law of cover plates and the shock
front propagation in the claddings. There exist two shock fronts and two stages in the anti-blast
response of the PG-U cladding, while there were three shock fronts and three stages in NG-U cladding.
The influences of the cover plate mass and the density graded parameter γ on the critical length of
sacrificial cladding were analyzed. The results illustrate that the cover plate mass distribution should
concentrate on the proximal end, which is beneficial for the anti-blast design of both PG-U and NG-U
claddings. Moreover, the optimal critical thickness of the graded-uniform cladding can be achieved by
choosing a reasonable graded parameter when the mass ratio of the two cover plates is defined. Then,
a critical length design partition diagram for SU, PG-U and NG-U claddings against the blast load is
presented, and it illustrates that each cladding can contribute its talent according to the actual demand.
The SU cladding is a superior choice compared with PG-U and NG-U claddings when pursuing the
minimum total mass as the goal.

The numerical simulations of anti-blast behavior of sacrificial cladding are carried out by using
the cell-based finite element model. The analytical predictions of graded-uniform claddings are
compared with the cell-based FE results. Generally, good agreement is achieved and further confirms
the correctness and effectiveness of theoretical analysis.
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