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Abstract

The brainstem is a site of early pathology in several neurodegenerative diseases. The

overall goal of this project was (a) To develop a method to segment internal

brainstem structures from MP2RAGE derived images. (b) To compare the segmenta-

tions at 3 and 7 T. (c) To investigate age effects on intensities and segmentations.

MP2RAGE derived T1 weighted images (UNI) and T1 relaxation maps (T1map) were

obtained from two public data sets (LEMON: 50 3 T data sets, ATAG: 46 7 T data

sets). The UNI and T1map images were rescaled using a linear scaling procedure and

a ratio (RATIO) image calculated. The brainstem was extracted and k-mean clustering

used to identify six intensity clusters from the UNI, T1map and RATIO at 3 and 7 T.

Nonlinear diffeomorphic mapping was used to warp the six intensity clusters in sub-

ject space into a common space to generate probabilistic group averages/priors that

were used to inform the final probabilistic segmentations at the single subject level

for each field strength. The six clusters corresponded to six brainstem tissue types

(three gray matter clusters and two white matter clusters and one csf/tissue bound-

ary cluster). The quantitative comparison of the 3 and 7 T probabilistic averages

showed subtle differences that affected the localization of age-associated brainstem

volume losses. The segmentation approach presented here identified the same

brainstem gray and white matter structures at both field strengths. Further studies

are necessary to investigate how resolution and field strength contribute to the sub-

tle differences observed at the two field strengths.

K E YWORD S

3 T, 7 T, brainstem, MP2RAGE, nuclei, segmentation, tract

1 | INTRODUCTION

The brainstem is a complex structure consisting of densely packed

and often not well-delineated fiber tracts and small nuclei that play a

crucial role in a variety of functions including locomotion, sensory

processing, autonomic control, consciousness, and even cognition.

Disturbances of brainstem functions are thought to be an early symp-

tom of several neurodegenerative diseases, for example, progressive

supranuclear palsy, Alzheimer's and Parkinson's disease, and are also

known to contribute to other disabling chronic conditions, for exam-

ple, chronic pain, stress, sleep disorders, and epilepsy to name just a

few (Anaclet & Fuller, 2017; Mills et al., 2018; Mueller et al., 2018;

Rüb et al., 2016; Weinshenker, 2018; Withwell et al., 2017). Given

the brainstem's role in normal and pathological brain processes there

has been a considerable interest in assessing brainstem structure and

function in vivo. Except for the substantia nigra and nucleus (ncl.)

Received: 29 September 2019 Revised: 5 January 2020 Accepted: 13 January 2020

DOI: 10.1002/hbm.24938

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Author. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2020;41:2173–2186. wileyonlinelibrary.com/journal/hbm 2173

https://orcid.org/0000-0002-5515-4432
mailto:susanne.mueller@ucsf.edu
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


ruber, brainstem nuclei, and tracts are usually not discernible in MR

images acquired for clinical purposes which prompted the develop-

ment of several dedicated brainstem sequences. These included a

three-dimensional (3D) multi-echo FLASH sequence for multi-

parametric mapping of brainstem structures (Helms, Dathe, &

Dechent, 2008; Lambert, Lutti, Helms, Frackowiak, & Ashburner,

2014), high resolution DTI and fMRI sequences to depict white matter

fiber tracts and functional subdivisions of the periaqueductal gray

(Bianciardi et al., 2018; Faull, Jenkinson, Clare, & Pattinson, 2015;

Sclocco, Beissner, Bianciardi, Polimeni, & Napadow, 2018) and

sequences optimized to detect brainstem structures with high iron or

neuromelanin content, for example, quantitative susceptibility imaging

to image the substantia nigra and ncl. ruber, or T1-weighted turbo-

spin echo and magnetization transfer weighted sequences to image

the locus coeruleus (Betts, Cardenas-Blanco, Kanowski, Jessen, &

Düzel, 2017; Keuken et al., 2017; Liu et al., 2019; Priovoulos et al.,

2018; Sasaki et al., 2006; Straub et al., 2019). Many of these

sequences were implemented on 7 T magnets whose higher signal to

noise and resolution are better suited to depict small brainstem struc-

tures. While these specialized sequences are often able to depict the

targeted brainstem structures with impressive detail the need to use

dedicated imaging protocols frequently combined with sequences

requiring long (>10 min) acquisition times and/or 7 T magnets has

prevented these techniques from being implemented into clinical

imaging protocols.

The MP2RAGE sequence is a variation of the standard magne-

tization prepared rapid gradient echo (MPRAGE) sequence. In con-

trast to the latter, the MP2RAGE acquires two gradient echo

images with different inversion times that can be combined 1. To

obtain a T1-weighted image (here referred to as UNI) that is free of

proton density and T2* contrast and has a greatly reduced recep-

tion bias field and transmit field inhomogeneity and 2. To calculate

a high resolution whole brain T1 relaxation map using a look-up

table (here referred to as T1_map; Marques et al., 2010; Marques &

Gruetter, 2013). Taken together, the MP2RAGE sequence provides

a high resolution T1-weighted image with excellent cortical and

subcortical gray/white contrast and a high resolution T1 relaxation

map suitable for myelin mapping (Kim & Knösche, 2016; Lutti, Dick,

Sereno, & Weiskopf, 2014; Stueber et al., 2014), that is, crucial

information for depicting fiber tracts and small nuclei. The

MP2RAGE sequence is part of the latest software releases of 3 and

7 T Siemens magnets and is available as research sequence on

Philips magnets. The acquisition times of a high resolution

(0.7–1 mm3) whole brain image are between 8–12 min. making its

implementation into a clinical imaging protocol realistic (e.g., Okubo

et al., 2016; Simioni et al., 2014).

The overall goals of this project were therefore (a) to develop a

method to segment internal brainstem structures using the MP2RAGE

sequence, (b) to compare the segmentation quality at 3 and 7 T, and

(c) to investigate age effects on grayscale intensities of internal

brainstem structures at 3 and 7 T, their impact on tissue segmentation

and the ability to detect age effects with deformation-based

morphometry.

2 | METHODS

2.1 | Population

The T1-weighted images and the T1-relaxation map images derived

from the MP2RAGE sequence from two publicly available data sets

were used for this project.

1. Leipzig Study for Mind–Body–Emotion Interactions (LEMON) pro-

ject. A detailed description of this data set can be found in Babayan

et al. (2019). The study population consisted of 227 healthy partici-

pants falling into two age groups [20–35 years old: n = 153, mean

(SD) age = 25.1 (3.1) years and 59–77 years old (n = 74, mean (SD)

age = 67.6 (4.7) years]. 50 (m/f: 21/29) subjects reflecting the age

distribution observed in the whole population whose images had

good quality on visual inspection were randomly selected and

divided into two age groups: (a) young (20–35 years of age): n = 31

and (b) old (59–77 years of age): n = 19.

2. Atlasing of the basal ganglia (ATAG) project. A detailed description

of this data set can be found in Forstmann et al. (2014). The study

population consisted of young participants [n = 30, mean (SD) age

23.8 (2.3) years], middle-aged participants [n = 14, mean age (SD)

52.5 (6.6) years], and older participants (n = 10, mean (SD) age 69.6

(4.6) years), 46 (m/f: 23/23) of these 54 data sets were selected

based on image quality in lower brain/brainstem regions on visual

inspection and divided into two age groups: (a) young (20–45 years

of age): n = 29 and (b) old (45–75 years of age): n = 17.

2.2 | Imaging protocol

2.2.1 | LEMON

All subjects underwent a standardized imaging protocol on the same

3 Tesla scanner (MAGNETOM Verio, Siemens Healthcare GmbH,

Erlangen, Germany) equipped with a 32-channel head coil that

included a MP2RAGE with the following parameters: Sagittal orienta-

tion, 176 slices, TR = 5,000 ms, TE = 2.92 ms, TI1 = 700 ms,

TI2 = 2,500 ms, FA1 = 4�, FA2 = 5�, echo spacing = 6.9 ms, band-

width = 240 Hz/pixel, FOV = 256 mm, voxel size = 1 × 1 × 1 mm,

GRAPPA acceleration factor 3, acquisition time: 8 min 22 s.

2.2.2 | Atlasing of the basal ganglia

All subjects underwent a standardized imaging protocol on the same

7 T Siemens Magnetom MRI scanner equipped with a 24-channel head

array Nova coil (NOVA Medical Inc., Wilmington, MA) that included a

MP2RAGE with the following parameters: Sagittal orientation,

240 slices, TR = 5,000 ms, TE = 2.45 ms, TI1 = 900 ms, TI2 = 2,750 ms,

FA1 = 5�, FA2 = 3�, echo spacing = 6.8 ms, bandwidth = 250 Hz/pixel,

FOV = 224 mm, voxel size = 0.7 × 0.7 × 0.7 mm, GRAPPA acceleration

factor 2, acquisition time: 10 min 57 s.
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2.3 | Image processing and brainstem
segmentation

Please see Figure 1 for an overview of the segmentation workflow.

2.4 | Preprocessing

“Unified segmentation” as implemented in SPM12 (https://www.fil.

ion.ucl.ac.uk/spm/software/) was used to remove a residual bias from

the UNI and T1_map images and to obtain CSF, gray, and white mat-

ter tissue maps from the UNI image. The gray matter map was spa-

tially normalized into the MNI space using SPM12's “normalize”

function and template, and the forward and inverse transformations

of this step calculated. The former was applied to all outputs (bias

corrected UNI, T1_map, tissue maps, and brain tissue mask derived

from combining the gray and white matter tissue maps).

The next step was to enhance the gray/white matter contrast in

the bias-corrected UNI and T1_map by rescaling them using a modi-

fied version of the linear scaling procedure described by Ganzetti,

F IGURE 1 Summary of brainstem segmentation pipeline. The pipeline consists of three main modules of which each encompasses several
steps. The first module is “preprocessing” that uses SPM12 routines for tissue segmentation with inbuilt additional bias correction and brainmask
generation, followed by spatial normalization to the MNI space while maintaining the original image resolution (Steps 1–3). The resulting outputs
(UNI and T1_map) are rescaled (Step 4) generating the outputs, UNI_cal and T1_map_cal that are then used to calculate the RATIO image (Step 5).
The rescaled images are passed on to the second module whose first step is to use a binary brainstem/thalamus mask in MNI space to extract the
brainstem/diencephalon thereby generating bs_UNI, bs_T1_map, and bs_RATIO (Step 6). Step 7 uses a k-mean clustering algorithm to identify six

intensity clusters. The cluster labels are converted into an image in subject space as binary first pass segmentations. This is followed by the
generation of a group average probability map or prior map for each cluster by warping the first pass binary segmentations into a common space
using SPM's DARTEL “create template algorithm” (Step 8) which represents the first step of the last module or “final segmentation”, that is, the
generation of probabilistic group averages to be used as priors to refine the segmentation outputs. The transformation matrix from this step was
inverted and used to warp the probabilistic group averages into the subject/MNI space. The information from the priors was combined with the
distance information from the clustering step which allowed to clean-up voxels assigned to a cluster not consistent with the probability
information and to convert the binary first pass segmentation into a probabilistic final segmentation (Step 9). Please see Methods for more details
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Wenderoth, and Mantini (2014). In contrast to Ganzetti et al., Ref1

and Ref2 were not obtained from nonbrain tissue regions of the

ICBM152 template but fixed at Ref1 = 100 and Ref2 = 20 for both

field strengths. The values for Ref1 and Ref2 had been experimentally

determined by exploring a range of values in three 3 T and three 7 T

images and maximizing the enhancement of gray/white matter con-

trast while minimizing the number of voxels with negative intensities

(see later). The CSF map and the white matter tissue map were

thresholded at 0.9 to identify voxels with high probability to be either

CSF voxels or white matter voxels. The intensities of these high prob-

ability CSF and white matter voxels were extracted from each sub-

ject's UNI and T1_map and the modes of their intensity histograms

determined after excluding voxels corresponding to vessels whose

intensity was either below the 1st percentile (T1_map) or above the

95th percentile (UNI). The histogram modes were used to rescale the

UNI and T1_map using the following formulas.

2.4.1 | T1-weighted image

UNIfact¼ abs Ref1−Ref2ð Þ= wm_UNI_Mode−csf_UNI_Modeð Þð Þ;
UNIshift¼ absð wm_UNI_Mode*Ref2ð Þ− csf_UNI_Mode*Ref1ð Þð Þ*2ð Þ=
wm_UNI_Mode−csf_UNI_Modeð ÞÞ;UNI_cal¼ UNI*UNIfactð Þ−UNIshift;

wm_UNI_Mode, mode of histogram from voxels with more than 90%

probability to be white matter, csf_UNI_Mode, mode of histogram

from voxels with more than 90% probability to be CSF voxels, UNI-

fact, scale factor for UNI by which the original intensity range is

reduced, UNIshift, distance by which the intensity histogram is moved

towards the left, abs, absolute. UNI_cal, rescaled MP2RGAE_UNI

image.

2.4.2 | T1_map

T1fact¼ abs Ref2−Ref1ð Þ= wm_T1map_Mode−csf_T1map_Modeð Þð Þ;
T1shift¼ absð csf_T1map_Mode*Ref2ð Þ− wm_T1map_Mode*Ref1ð Þð Þ=
wm_T1map_Mode−csf_T1map_Modeð ÞÞ; T1_map_cal¼ T1_map*T1ð
factÞ–T1shift;

wm_T1map_Mode, mode of histogram from voxels with more

than 90% probability to be white matter, csf_T1map_Mode, mode of

histogram from voxels with more than 90% probability to be CSF

voxels, T1fact, scale factor for T1_map by which the original intensity

range is reduced, T1shift, distance by which the intensity histogram is

moved towards the left, abs, absolute, T1_map_cal, rescaled T1_map

image.

The rescaling introduced brain tissue voxels with negative intensi-

ties in the UNI and T1_map. These negative voxels were identified

and replaced with the mean of the intensities of non-negative first-

order neighborhood voxels. Figure 2 illustrates the effect of the

rescaling on the histogram and the intensities of the UNI and T1_map.

Table 1 summarizes the impact of the rescaling on gray/white matter

contrast at 3 and 7 T in different brain regions.

The next step was to calculate the UNI_cal/T1_map_cal image or

RATIO image from the rescaled UNI_cal and T1_map_cal. Voxels in

the RATIO image whose intensity exceeded the 99th percentile were

replaced with the mean of the intensities of the first-order neighbor-

hood voxels with intensities at or below the 99th percentile. Combin-

ing the rescaled UNI_cal and T1_map_cal in this way further increased

the gray/white matter contrast (Figure 1, Steps 5 and 6, and Table 1).

A brainstem/thalamus label in MNI space was generated from the

2009 ICBM 152 T1 atlas to extract the brainstem/thalamus images

(bs) from the calibrated whole brain UNI_cal, T1_map_cal and RATIO

images.

2.5 | First-pass binary brainstem segmentation and
prior generation

A subject-specific binary brainstem tissue mask was generated by

thresholding the bs_UNI. This mask was used to extract the tissue

intensities from each subject's bs_UNI, bs_T1_map and bs_RATIO

image. The intensities from each image type were converted into z-

scores that were supplied to the k-means clustering algorithm

implemented in MATLAB 9.4 (The Math Works, Natick, MA; number

of clusters n = 6, squared Euclidian distance function, maximum num-

ber of iterations = 1,000, replicates = 100). The optimal number of

clusters n = 6 had been determined experimentally by exploring the

range from 4 (no of tissue components identified by Lambert et al.

(2014)) to 8 in three subjects. With n = 6 clusters, one cluster cor-

responded to the outer brainstem boundaries and the remainder

highlighted different internal brainstem structures when displayed in

image space (cf Figure 1, Step 7). The cluster centroid information of

each subject was matched to the centroid information of a randomly

selected reference subject and the cluster numbering accordingly

changed to ensure a consistent cluster numbering/centroid assign-

ment across different subjects.

Each subject's binary image space representations of these six

clusters were simultaneously registered to six common group aver-

ages for each field strength (3 T average: 50 subjects 1 mm isotropic

resolution; 7T average: 46 subjects, 0.7 mm isotropic resolution) using

the “create template” function of DARTEL (Ashburner, 2007) as

implemented in SPM 12 (Figure 1, Step 8). An intensity close to 1 in

the group average of cluster X indicates a high probability that a voxel

has been assigned to cluster X in the group average and an intensity

close to 0 a low probability that it has been assigned to cluster X. The

transformation matrices generated for each subject during this pro-

cess were inverted and applied to the group average of each cluster

to project the latter into each subject's cluster image space.

2.6 | Final segmentation

Using the information from the probabilistic group averages in subject

space and the centroid distances, each brainstem voxel in the individ-

ual subject was assessed for consistency, that is, cluster assignment
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based on centroid distance is identical to cluster assignment based on

highest probability in probabilistic group averages. Voxels with inconsis-

tent assignments were reassigned to the cluster suggested by the proba-

bilistic group averages (alternate cluster) if they met one of the following

conditions. (a) Probability that voxel belongs to the alternate cluster is

≥0.75. (b) Probability that voxel belongs to the alternate cluster is higher

by ≥0.20 than probability to belong to original cluster. Finally, the binary

cluster assignments for each subject were converted into probabilistic

assignments by multiplying them with the corresponding probabilistic

group average weighted by the standardized centroid distance informa-

tion for this subject. The centroid distance information was standardized

by scaling the original distances to values between 0 and 1 so that the

voxel closest to the cluster centroid had the value closest to 1 and the

voxel with the greatest distance a value closest to 0.

2.7 | Rationale and evaluation of segmentation
approach

The use of the z-transformed intensities from all three bs images in

the cluster analysis may at first seem redundant given their highly cor-

related intensity profiles. It was based on the following reasoning: The

F IGURE 2 Image rescaling.
Rescaling of UNI and T1_map.
First and second row, 3 T image,
third and fourth row 7 T images.
Yellow intensity histogram before
rescaling, blue histogram after
rescaling
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two gradient echo images acquired by the MP2RAGE sequence differ

not only re inversion time but also how each voxel is affected by noise.

The bs_UNI, bs_T1map, and bs_RATIO images represent essentially dif-

ferent ways to combine the two MP2RAGE gradient echo images and

each of them has a slightly different impact on image noise. Further-

more, the rescaling not only enhances gray/white contrasts but also

replaces intensity outliers likely to correspond to noise voxels with

intensity values derived from neighboring non-noise voxels. As a conse-

quence, a cluster analysis with the bs_UNI as only input would for

example assign some of these noise affected voxels to the gray matter

structures captured by cluster X if they are intensity-wise a match.

Since this decision is solely based on intensities, these noise voxel

might even get high values in a silhouette analysis despite clearly not

belonging to the X gray matter structures based on their spatial rela-

tionship to these gray matter structures. However, because of the ran-

domness of the noise, the different ways to combine the two images,

and the rescaling, these noise voxels are less likely to behave in the

same way, that is, to be miss-classified as X gray matter structure

voxels with high silhouette values, if just the bs_ratio or just the

bs_T1_map image are used for the cluster analysis. Instead another set

of noise voxels will be misclassified in these images. In contrast, noise-

free voxels belonging to the gray matter structures captured by cluster

X are expected to behave in a consistent way, that is, to be assigned to

cluster X with a relatively high silhouette value regardless which one of

the three images was used in the cluster analysis. Using all three bs

images together in the cluster analysis was therefore expected to take

optimal advantage of the different behavior of non-noise and noise

voxels by assigning a high percentage of the former with high silhou-

ette values to the cluster X and reduce the number of the latter by

either assigning them to an alternative and ideally correct cluster or to

assign them to cluster X with a low silhouette value that would trans-

late in a low probability value in the final segmentation.

The correctness of the rationale outlined in the previous para-

graph was tested by repeating the steps described in the section “first

pass segmentation and prior generation” with each image type as sole

input in the cluster analysis (number of clusters n = 6, squared Euclid-

ian distance function, maximum number of iterations = 1,000, repli-

cates = 100) and with the combinations bs_UNI/bs_T1_map and

bs_RATIO/bs_T1_map as inputs. The following two tests were per-

formed: (a) Silhouette plots were generated and the percentages of

voxels with a silhouette value exceeding 0.6 for each cluster with

exception of partial volume Cluster 2 calculated. Their mean or “low

silhouette index” was used to assess the overall performance of the

six variants (all three images, combination of two, each image sepa-

rately) in each 3 T and each 7 T subject. If the assumption regarding

the behavior of noise voxel is correct then the three image approach

was expected to have the highest low silhouette indices reflecting the

successful “downgrading” of noise voxels, the single image approaches

the lowest low silhouette indices and the two image approaches inter-

mediate low silhouette indices. (b) The percentage of voxels that was

incorrectly assigned to a cluster based on their location in the image

in relation to the structures identified by this cluster was calculated by

projecting the priors back into the subject space and thresholding

them at 0.3, counting all voxels in the first pass segmentations not

included in the resulting mask and comparing that number to all

voxels assigned to this cluster. The mean percentage over all clusters

or “miss-classification index” was calculated to obtain a measure of

“misclassification” for each approach. If the assumptions regarding the

behavior of noise voxels made in the previous paragraph is correct,

the three image approach should show the lowest miss-classification

indices of all approaches.

2.8 | Regional analysis

Two types of region of interest (ROI) analyses were performed:

(a) Cluster ROI analysis: Each subject's first pass segmentation outputs

were used to extract the mean intensities from their bs_ UNI,

bs_T1_map, and bs_RATIO images with the goal to characterize the

intensity properties of the clusters and by extension the intensity

properties of the tissue types identified by them. (b) Anatomical ROI

analysis: The probabilistic group averages of the six clusters were

thresholded at 0.3 and used to manually delineate 27 regions of inter-

est using the brainstem atlas from Naidich and Duvernoy (Naidich

et al., 2009) as reference. The following regions of interest (rois)

were labeled: Left and right corticospinal, frontopontine and

parietotemporopontine tracts, bilateral medial lemniscus, inferior,

middle and superior cerebellar peduncle, ncl. raphe dorsalis, raphe

magnus, ncl reticularis medullae oblongata, parvocellularis and

gigantocellularis, pedunculopontinus and cuneiformis, ncl. pontis

oralis, ncl. pontis tegmenti caudalis, locus coeruleus, ncl. par-

abrachialis, ncl. tractus solitarius, ncl. olivaris inferior, pontine nuclei,

ncl. ruber, substantia nigra, periaqueductal gray, ventral tegmental

area (see Figures 1 and 6). The manual labeling was done using the

3 T priors. The rois were then resampled to the 7 T space and

TABLE 1 Mean (SD) gray/white contrast in original and rescaled
images

Field

strength Image

Con hippo/

temp WM

Con PAG/

cerebel ped

3T UNI orig 1.74 (0.15) 1.34 (0.09)

UNI cal 3.64 (1.95) 2.01 (0.94)

T1_map orig 1.63 (0.14) 1.35 (0.09)

T1_map cal 2.78 (0.91) 2.07 (0.69)

RATIO 11.28 (8.65) 4.39 (3.19)

7T UNI orig 2.22 (0.31) 1.43 (0.16)

UNI cal 6.06 (2.59) 2.00 (0.54)

T1_map orig 1.64 (0.12) 1.33 (0.07)

T1_map cal 2.72 (0.76) 1.94 (0.43)

RATIO 16.26 (8.15) 3.87 (1.71)

Abbreviations: Con, contrast; hippo, hippocampus head, temp WM, white

matter temporal stem PAG, periaqueductal gray; cerebel ped, cerebellar

peduncle orig, original intensities; cal, rescaled intensities; UNI, T1

weighted image; T1_map T1 relaxation map; RATIO, ratio between

UNI_cal and T1_map_cal.
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resolution, their accuracy checked and manually edited if necessary.

For the analysis each set of rois was projected back into subject space

by applying the inverse of the transformation matrices generated dur-

ing preprocessing. These rois were used to extract the mean intensi-

ties values from these regions from the probabilistic group averages

and each subject's bs_UNI, bs_T1_map, and bs_RATIO image with the

goal to investigate the intensity properties of these rois and how they

are influenced by age.

2.9 | Deformation-based morphometry

Each subject's six probabilistic segmentation maps in MNI space

were warped into a common space resulting in a brainstem template

using the “create template” function of DARTEL. The resulting trans-

formation matrices were converted into Jacobian maps. The

unsmoothed Jacobian maps were used to test for age-related

brainstem loss by comparing the two age groups. The same was

F IGURE 3 Probabilistic
group averages at 3 T (a) and at
7 T (b). Left side of the panel,
sagittal scout image indicating
the localization of the cluster
cross-sections displayed on the
right side, a 3D composite
reconstruction and 3D
reconstructions of individual
cluster/tissue types
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done with the unsmoothed bs_UNI, bs_T1_map, and bs_RATIO

images of each subject. Using the probabilistic maps and brainstem

grayscale images in the MNI space instead of subject space elimi-

nates differences due to head size and gross shape differences and

allows for a better detection of intensity/shape differences of

smaller structures.

2.10 | Statistical analysis

T-tests (for normal distributed data) Wilcoxon signed rank tests

(no normal distribution) at p < .05 were used to test for segmentation

performance testing, group differences, for example, 3 T versus 7 T

measurements or young vs. old ROI intensities. False Discovery Rate

F IGURE 4 First pass and
final segmentations at 3 T (a) and
at 7 T (b). The localization of the
cross-sections corresponds to
that shown in Figure 3. The
segmentations are overlaid on
the subjects bs_UNI, the first
pass segmentation or binary

image space representation of
each cluster is in red, the final
probabilistic segmentation is in
“hot” with the intensity
representing the voxel's
probability to belong to the
cluster
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(FDR) q = .05 was used to correct for multiple comparisons for the ana-

lyses using ROI-based intensities and Family-wise-error rate p < .05

was used to correct for multiple comparisons for voxel-based analyses.

3 | RESULTS

3.1 | Segmentation performance

Table 2 lists the mean and standard deviations of the low silhouette

indices and the miss-classification indices for each tested image combi-

nation and each field strength. Figure S1 shows the priors generated by

each image combination. The findings are in agreement with the ratio-

nale for the three image cluster analysis outlined in the methods section,

that is, the three image approach has consistently high low silhouette

indices indicating a “downgrading” of miss-classified noise voxels, the

lowest miss-classification indices indicating an “elimination” of miss-

classified noise voxels that have also significantly lower standardized

distances. Furthermore, the cluster analysis using all three image types

also clearly outperformed the first pass segmentations based on a single

image or combinations of two images on visual inspection.

3.2 | Tissue types in probabilistic group averages

Figure 3a,b depicts the six unthresholded probabilistic group averages

for the 3 T data and the 7 T data. Figure 4a,b provides an example of

the segmentation quality in individual subjects. Using the brainstem

atlas from Naidich and Duvernoy as reference, Cluster 1 corresponds

to brainstem gray matter structures at both field strengths. It included

the substantia nigra (compacta), the superior and inferior colliculi, the

pontine nuclei and the reticular nuclei of the mesencephalon, pons, and

medulla. Cluster 2 is a “partial volume” cluster that consisted of voxels

at the CSF/tissue boundary of the brainstem. Cluster 3 voxels belong

mostly to white matter tracts, in particular to the frontopontine and

corticonuclear tract at the mesencephalon level, to the corticonuclear

and corticospinal tract, the medial lemniscus and cerebellar tract at the

pons level and to the corticospinal tract and the medial lemniscus at

the medulla level. Cluster 3 also delineates the ncl. ruber. Cluster 4 cor-

responds to the periaqueductal gray and raphe. Cluster 5 identified

white matter tract voxels and voxels in gray/white matter transition

zones. At the level of the mesencephalon, the label included voxels

within the corticospinal tract, the superior cerebellar peduncle and its

decussation, and the ncl. ruber. At the level of the pons, Cluster

5 labeled voxels within the corticospinal and corticonuclear tract, the

cerebellar peduncle and the medial lemniscus. At the medulla level, it

high-lightened the tectospinal and trigeminothalamic tract and the lon-

gitudinal fascicle. Cluster 6 again identified gray matter voxels. At

the level of the mesencephalon, it highlighted the ncl. Dorsalis raphe,

the ventral tegmental area and the substantia nigra (reticulata) and at

the level of the pons, the locus coeruleus, ncl. abducens and raphe mag-

nus. At the level of the medulla Cluster 6 outlined the ncl. olivaris infe-

rior and the ncl. tractus solitarius.

3.3 | Comparison of probabilistic group averages
at 3 T and 7 T

Subtle differences between the 3 T and 7 T probabilistic averages become

apparent in the qualitative side-by-side comparison. Figure 5 suggests that

F IGURE 5 Direct
comparison/overlay. Overlay of
the thresholded (≥0.3)
probabilistic 3 T (yellow) and 7 T
(red) group averages. Regions
that are assigned to the same
cluster by both field strengths
appear in orange
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TABLE 2 Segmentation performance summary

Field
strength Measure

All three
images UNI RATIO T1_map UNI/T1_map

RATIO/
T1_map

3 T Low silhouette index 31.6 (2.7) 28.1 (0.4)* 27.1 (0.4)* 28.7 (1.8)* 30.8 (2.2)* 30.2(2.2)*

Miss-classification

index

29.2 (3.4) 36.9 (6.4)* 33.9 (4.5)* 43.5 (7.1)* 38.9 (7.8)* 31.5 (5.6)*

Miss-classification

stand distance

0.99465

(0.00046)

0.99675

(0.00026)*
0.99529

(0.00037)*
0.99570

(0.000679)*
0.99513

(0.00061)*
0.99524

(0.00040)*

7 T Low silhouette index 30.4 (1.7) 28.3 (0.4)* 26.S (0.5)* 28.6 (1.8)* 31.3 (1.8)* 29.1 (1.9)*

Miss-classification

index

29.3 (3.1) 37.0 (4.5)* 32.6 (4.4)* 33.2 (4.8)* 33.4(4.9)* 31.0(3.2)*

Miss-classification

stand distance

0.995427

(0.000475)

0.997235

(0.000383)*
0.995468

(0.000228)*
0.996461

(0.000522)*
0.995992

(0.000476)*
0.996042

(0.000469)*

Notes: Low silhouette index percentage of voxels with silhouette values below 0.6; % miss-classification index percentage voxels outside structure

detected by cluster, miss-classification stand distance, mean standardized (refer text for definition) distance of miss-classified voxels.*p < .05 compared to

all three images. Indices are given as means and standard deviations in brackets.

F IGURE 6 Regional intensities
in anatomical regions of interest
(ROI). Mean image intensities in
27 brainstem ROIs, left panel 3 T,
right panel 7 T, for the two age
groups, young (20–45 years of age),
blue; old (45–80 years of age,
orange. Regions of interest:
1. inferior cerebellar peduncle;

2. left corticospinal tract; 3. left
frontopontine tract; 4. Left
parietotemporopontine tract;
5. locus coeruleus; 6. medial
lemniscus; 7. middle cerebellar
peduncle; 8. ncl. raphe dorsalis;
9. ncl. raphe magnus; 10. ncl.
reticularis medullae oblongatae
centralis; 11. ncl. reticularis
parvocellularis and gigantocellularis;
12. ncl. reticularis
pedunculopontinus and cuneiformis;
13. ncl. reticularis pontis oralis; 13.
ncl. reticularis pontis oralis; 14. ncl.
reticularis pontis tegmenti caudalis;
15. ncl. olivaris inferior; 16. ncl.
ruber; 17. ncl. tractus solitarius; 18.
periaqueductal gray; 19. ncl.
parabrachialis; 20. pontine nuclei;
21. right corticospinal tract; 22. right
frontopontine tract; 23. right
parietotemporopontine tract; 24.
substantia nigra; 25. superior
cerebellar peduncle; 26. ventral
tegmental area; 27. ventrolateral
medulla
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the gray matter segmentation in Clusters 1 and 6 is more prominent and

also coarser at 3 T than at 7 T and that the white matter segmentation

(Cluster 5, but also Cluster 3) is more prominent and detailed at 7 T than

at 3 T. The difference is particularly obvious in the substantia nigra and

ncl. ruber. At 3 T, the substantia nigra is distributed between Clusters

1 and 6. This is also the case at 7 T but in addition a small region that

overlaps with the localization of a myelinated cluster within the substantia

nigra seen in histological preparations (Massey et al., 2017) is assigned to

white matter Cluster 5. The ncl. ruber is ill defined and “split” between

Clusters 3 and 5 at 3 T but sharply defined and fully depicted in Cluster

3 at 7 T. The assignment of the ncl. ruber—an iron rich gray matter

structure—to the white matter Clusters 3 and 5 is unexpected but could

be explained by the presence of myelinated fibers from the superior cere-

bellar peduncle, oculomotor nerve, and habenulointerpeduncular tract that

are passing through the ncl. ruber. The clear separation between white

matter Clusters 3 and 5 at 7 T compared to 3 T is not restricted to the ncl.

ruber though but affects other white matter structures as well, for exam-

ple, corticospinal and corticonuclear tract in Cluster 3 at 7 T at the pons

level that is missing at 3 T in Figure 5.

For the quantitative comparison, regional information from each

probabilistic group average was extracted using the anatomical ROIs.

The mean probabilities were generally slightly higher at 3 T than at

7 T [mean (SD) over all 27 regions: 0.51 (0.08) vs.0.47 (0.07), p = .03].

Grouping ROIs according to tissue type, that is, gray matter ROIs

(n = 17) and white matter ROIs (n = 10) showed higher gray matter

probabilities in gray matter ROIs at 3 T compared to 7 T [0.55 (0.09)

vs. 0.46 (0.07), p = .004] and slightly lower white matter probabilities

in white matter ROIs at 3 T compared to 7 T [0.46 (0.02) vs. 0.48

(0.07) p = .46]. Grouping anatomical ROIs by brainstem level, that is,

mesencephalic ROIs (n = 10), medulla ROIs (n = 6) and ROIs spanning

more than one level, for example, tracts or pons ROIs (n = 11) and

comparing probabilities by level showed no difference between 3 and

7 T for mesencephalic ROIs [0.52 (0.9) vs. 0.49 (0.7) p = .28] and

tract/pons ROIs [0.48 (0.06) vs. 0.47 (0.8), p = .66] but lower probabil-

ities at 7 T for ROIs in the medulla [0.56 (0.08) vs. 0.44 (0.06),

p = .02], indicating the existence of a rostral–caudal gradient of tissue

probabilities at 7 T but not at 3 T.

3.4 | Comparison of regional intensities and age
effects

Figure 6 depicts the average intensities of 27 anatomical ROIs in the

rescaled images in young and old subjects at 3 and 7 T. The intensity

F IGURE 7 Jacobian determinants and age-associated volume loss at 3 T and at 7 T. (a) Jacobian determinants derived from the
transformation matrix generated by warping the six 3 T final tissue segmentation outputs onto the brainstem tissue template. (b) Jacobian
determinants derived from the transformation matrix generated by warping the three rescaled brainstem images onto a grayscale template
generated from all 50 3 T subjects’ grayscale brainstem images. (c) Jacobian determinants derived from transformation matrix generated by
warping the six 7 T final tissue segmentation outputs onto the brainstem tissue template. (d) Jacobian determinants derived from transformation
matrix generated by warping the three rescaled brainstem images onto a grayscale template generated from all 46 7 T subjects’ grayscale
brainstem images. (e) Age related volume loss (young (20–45 years) > old (45–80 years)) based on 7 T tissue segmentations. (f) Age related
volume loss (young [20–45 years] > old [45–80 years]) based on 3 T tissue segmentations
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distribution across different brainstem regions at both field strengths

is very similar but in contrast to the behavior of the original images

the intensities are slightly lower in the rescaled 7 T images compared

to rescaled 3 T images. This reflects the larger intensity range of both

original images at 7 T that resulted in lower scaling and shift factors

compared to 3 T: Mean (SD) UNIfact and UNIshift were 0.04 (0.009)

and 40.5 (27.1) at 3 T and 0.03 (0.002) and 29.8 (10.2) at 7 T. Mean

(SD) T1fact and T1shift were 0.08 (0.029) and 45.2 (25.2) at 3 T and

0.05 (0.02) and 37.8 (21.0) at 7 T.

Except for a lower intensity of the superior cerebellar peduncle in

the bs_T1_map that was associated with a higher intensity in the

bs_RATIO at 7 T, none of the age related intensity differences was

significant after FDR correction. Interestingly, the young group had

consistently higher bs_T1_map intensities than the old group at 3 T

but lower bs_T1_map intensities than the old group at 7 T. The same

phenomenon was also observed in the non-rescaled T1 maps (data

not shown) which indicates that it is not caused by the rescaling.

3.5 | Comparison of deformation-based
morphometry findings

Figure 7 depicts the Jacobian determinants derived from warping an

individual subject's six probabilistic segmentation outputs onto the

brainstem template generated by the DARTEL “generate template”

algorithm and the Jacobian determinants generated by warping the

same subject's three grayscale images (bs_UNI, bs_T1_map, and

bs_RATIO) onto the grayscale brainstem template generated by

DARTEL. The Jacobian determinants derived from warping the seg-

mentation outputs show more details of the internal structure than

the Jacobian determinants derived from the grayscale images.

Deformation-based morphometry using the Jacobian determi-

nants derived from the final, probabilistic segmentations at 7 T

showed age-associated volume loss in the region of the ventral lateral

thalamic nucleus that extended into the superior cerebellar peduncle

including its decussation and into the ascending uncinate tract at the

level of the mesencephalon. At the level of the pons, age-associated

volume loss was seen in the region of the corticospinal tract and the

medial lemniscus. There were no significant age-associated volume

losses when this analysis was done with Jacobian determinants

derived from the three rescaled 7 T grayscale images.

Using the Jacobian determinants derived from the six probabilistic

3 T segmentations, highlighted small regions of age-associated volume

loss in the anterior and ventral lateral thalamic nucleus and in the sub-

stantia nigra. Again, there were no significant age-associated volume

losses when this analysis was done with the Jacobian determinants

derived from the three rescaled 3 T grayscale images.

4 | DISCUSSION

This study had several major findings. (a) The brainstem segmentation

method described in this article exploits the inherent strengths of the

MP2RAGE sequence, that is, the simultaneous acquisition of a T1

weighted image with excellent gray/white contrast and of a T1 relaxa-

tion map suitable for myelin mapping. A linear intensity rescaling

reduces the intensity ranges and magnitudes of the two MP2RAGE

images and thereby nearly doubles their gray/white contrasts inde-

pendently of the field strength. These rescaled images are used to cal-

culate a ratio image whose gray/white contrast at the cortical and

brainstem level is again greater than that of the two input images. A

k-means cluster analysis identifies six intensity/tissue clusters using

the z-transformed brainstem voxel intensities from these three images

as inputs. Combining the centroid distance information from the clus-

tering step with the information from the six probabilistic group aver-

ages or priors converts the binary segmentation into the final

probabilistic segmentation. (b) The segmentation method works with

7 T but also with 3 T MP2RAGE images, that is, is not dependent on

the availability of a high field magnet. (c) Although single subject seg-

mentations and probabilistic group averages/priors were similar at

3 and 7 T on visual inspection, there were subtle differences in the

quantitative comparison that affected the distribution of age-related

brainstem volume losses. Additional investigations will be necessary

to fully understand the nature of these differences and to refine the

acquisition/processing parameters to optimize the information

obtained from the MP2RAGE.

Taken together, this article presents a new brainstem segmenta-

tion approach that is based on a sequence that can be easily

implemented on a clinical 3 T magnet and therefore has the potential

to be used for routine screening of brainstem pathologies.

On visual inspection (Figure 3a,b) the 3 and 7 T probabilistic

group averages appear to be very similar. Each cluster highlights the

same distinct brainstem structures that belonged predominantly to

either gray (Clusters 1, 4, and 6) or white matter (Clusters 3 and 5) or

represented the boundary between brain tissue and csf (Cluster 2).

The probabilistic group averages have also a striking resemblance to

the probability maps shown by Lambert et al. (2014). Lambert and co-

workers acquired a 3D multi-echo FLASH sequence at 3 T with a total

acquisition time of 1 hr 15 min in 34 subjects to generate magnetiza-

tion transfer, proton-density weighted, R1 and R2* maps with a

0.8 mm isotropic resolution and used a modified multivariate mixture

of Gaussians to perform a multichannel brainstem segmentation. Tis-

sue class 1 in Lambert et al. (2014) corresponds to Cluster 6 in this

study, Tissue class 2 to Cluster 1, Tissue class 3 to Cluster 4, and Tis-

sue class 4 to a combination of Clusters 5 and 3. Lambert and co-

workers also identified a tissue class made up from voxels at the tis-

sue/csf boundary that corresponds to Cluster 2 in this study. The sim-

ilarity between the probabilistic averages of these two studies and to

brainstem structures identified in ex vivo ultra-high field studies

(Naidich et al., 2009) raises the confidence that the approach pro-

posed here is indeed able to identify some of the more prominent fea-

tures of the internal brainstem anatomy at the group and single

subject level (Figures 3 and 4).

The quantitative comparison using the mean probabilities from

each cluster extracted by the 27 anatomical ROIs found subtle differ-

ences between the 3 and 7 T brainstem segmentations. The mean
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probabilities in gray matter ROIs tended to be generally lower at 7 T

than at 3 T and this difference was more pronounced in medulla ROIs

than in mesencephalon ROIs. While there exist several possible expla-

nations for the generally lower gray matter probabilities at 7 T, for

example, number of scans for probability map generation 46 for 7 T

but 50 for 3 T, higher resolution at 7 T reducing partial volume effects

at the ROI edges, field strength specific behavior favoring gray matter

intensities at 3 T and white matter intensities at 7 T, rescaling parame-

ters not optimized for each field strength, and so forth, the more pro-

nounced mesencephalon/medulla probability gradient at 7 T is very

likely caused by a field strength inherent problem. The quality of the

images derived from the MP2RAGE sequence is highly dependent on

the efficiency of the initial adiabatic inversion pulse that must fulfill

the adiabatic condition throughout the whole brain. Because of the

increased B1 field inhomogeneities, this is harder to accomplish at 7 T

particularly in brain regions covered by the lower end of the coil, that

is, cerebellum and brainstem. Insufficient image quality in these

regions caused by this issue was the reason that seven studies from

the ATAG data set had to be excluded from processing. Although the

remainder was deemed to be of sufficient quality, the signal/noise

was slightly reduced in the medulla compared to the mesencephalon

in some of the studies which affected the segmentation accuracy in

this region. Optimizing the MP2RAGE sequence for brainstem imag-

ing, for example, by improving the adiabatic pulse (Marques et al.,

2010; Marques & Gruetter, 2013) or by the strategic placement of

dielectric pads (O'Brien et al., 2014) should reduce the number of

images lost due to insufficient data quality.

The differences described in the previous paragraph also affected

the Jacobian determinant maps generated from the final segmentation

outputs and by extension the localization of age-related brainstem tis-

sue loss. The maps generated from the 7 T segmentation were typi-

cally sharper and more detailed than those generated from the 3 T

segmentations. It is not clear though to what degree this is due to the

higher image resolution at 7 T or represents an inherent characteristic

of the higher field strength. Comparing 7 T Jacobian maps of old sub-

jects with those of young subjects identified volume losses in the thal-

amus, superior cerebellar peduncle and corticospinal tract. At 3 T,

age-related brainstem volume losses were generally less prominent

than at 7 T and located in the thalamus and in the substantia nigra.

Although it is important to keep in mind that some of the differences

might just reflect the different study populations, it has to be pointed

out that the greatest differences were found in the mesencephalon,

that is, in the region with some of the most prominent differences in

the 3 and 7 T probabilistic group averages. Furthermore, at 7 T age-

associated volume loss was mostly found in white matter structures

but affected gray matter structures close to these white matter struc-

tures at 3 T which is in line with the differences of the gray/white seg-

mentation at 3 T compared to 7 T that was discussed in previous

paragraphs.

The study has several limitations: (a) The imaging data came

from two data repositories that used standard implementations of

the MP2RAGE sequence for the two field strengths. None of them

had been optimized to visualize the brainstem. On the one hand, this

supports the conclusion that it is possible to obtain good quality

brainstem segmentations from images that could easily be

implemented in routine clinical protocols. On the other hand, the dif-

ferent resolution and the different study populations prevented a

more in-depth investigation into possible causes for some of the dif-

ferences seen at the two field strengths, for example, more promi-

nent gray matter segmentation at 3 T and different behavior of the

T1 relaxation map intensities in the old vs. young comparisons.

(b) The same rescaling and segmentation routines were used for both

field strengths, for example, parameters such as Ref 1 and Ref 2 were

selected based on their ability to provide a good segmentation at

both field strengths and not optimized for each field strength sepa-

rately. It cannot be excluded that an optimization of the parameters

for each of the field strengths could have reduced the differences

between them. (c) The age distribution in the LEMON and ATAG

data sets with peaks at 20–30 years and 50 years and older but only

few or no middle-aged participants did not allow for more sophisti-

cated modeling of potential age effects. It cannot be excluded that

this contributed to the different age effects at the two field

strengths.

Taken together, although more work still needs to be done, the

findings presented here suggest that it is possible to obtain a meaning-

ful segmentation of internal brainstem structures using the MP2RAGE

sequence. The MP2RAGE sequence is part of the 3 and 7 T Siemens

neuro sequence package and has been implemented on Philips 7 T

magnets for research purposes. The improved gray/white contrast due

the inbuilt bias correction and the additional T1 map justify the slightly

longer acquisition time (8–12 min vs. 6 min) of the MP2RAGE com-

pared to a MPRAGE or other whole brain T1 weighted sequences that

are routinely acquired in clinical imaging protocols. Together with a

brainstem segmentation routine such as the one proposed here

implemented for example on a cloud-based computing platform and

combined with a library of age-adjusted normal ranges this sequence

could provide a means to routinely investigate brainstem structures

and thus eventually to diagnose diseases and conditions affecting the

brainstem, for example, Alzheimer and Parkinson's disease, increased

SUDEP risk in epilepsy, earlier and more accurately.
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