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A new approach, the projective system approach, is proposed to realize modified projective synchronization between two different
chaotic systems. By simple analysis of trajectories in the phase space, a projective system of the original chaotic systems is obtained
to replace the errors system to judge the occurrence of modified projective synchronization. Theoretical analysis and numerical
simulations show that, although the projective system may not be unique, modified projective synchronization can be achieved
provided that the origin of any of projective systems is asymptotically stable. Furthermore, an example is presented to illustrate that
even a necessary and sufficient condition for modified projective synchronization can be derived by using the projective system
approach.

1. Introduction

Chaos synchronization has been studied with increasing
interest over the last few decades due to its numerous
potential applications [1–3]. Different types of chaos syn-
chronization behaviors have been observed and investigated,
such as complete synchronization [3], phase synchronization
[4], antiphase synchronization [5], lag synchronization [6],
generalized synchronization [7], and projective synchroniza-
tion [8–15]. Among all these types of chaos synchroniza-
tion, projective synchronization received many attentions
in recent years because of its association with projective
synchronization and generalized one. In addition, projective
synchronization was used to extend binary digital to M-nary
digital communication for achieving fastness and security.

Projective synchronization was first reported by Mainieri
and Rehacek [12] in a class of systems with partial linearity
in which drive and response vectors evolve on a propor-
tional scale. Xu and Li [16], Wen and Xu [17], and Yan
and Li [18] extended the projective synchronization feature
to general nonlinear systems including nonpartially linear
chaotic systems by applying controllers to response systems,
which is called generalized projective synchronization. This

synchronization has the same topological invariants as those
of projective synchronization. Complete synchronization
and antisynchronization are special cases of generalized
projective synchronization. Recently, a new type of projec-
tive synchronization, modified projective synchronization,
was considered by Li [10, 11] in which the response of
synchronized dynamical states can synchronize up to a
constant matrix. Modified projective synchronization was an
extension of generalized projective synchronization. In most
previous research works, controllers added to the response
system to achieve projective synchronization were designed
by Lyapunov stability theory, and therefore most proposed
schemes were specific. Additionally, the added controllers
were sometimes too complex to realize physically. Thus, a
more simple and available controller to achieve projective
synchronization between two different chaotic systems is
desirable to find.

In this paper, “the projective system approach” is
proposed to achieve modified projective synchronization
between two different chaotic systems. By simple analysis
of trajectories in the phase space, a projective system of
the two original chaotic systems is obtained to replace the
errors system to judge the occurrence of modified projective
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Figure 1: Analysis of trajectories in the phase space of system (4).
The trajectory from point𝐴 to point 𝐹 is called

⌣

𝐴𝐹. Points 𝐵,𝐷 and
points𝐶,𝐸 have identical 𝑒 values, respectively. Trajectories

⌣

𝐴𝐵,
⌣

𝐶𝐷,

and
⌣

𝐸𝐹 are called
⌣

𝐴–𝐹, which are discontinuous at points 𝐵,𝐷.
⌣

𝐴


𝐹


represents a smooth trajectory from point 𝐴 to point 𝐹.

synchronization. Then modified projective synchronization
between two chaotic systems can be realized if the states
of the projective system are asymptotically stable at the
origin. A simple synchronization criterion based on the
projective system approach is derived independent of finding
Lyapunov function. An example is given to show that even
a necessary and sufficient condition for modified projective
synchronization can be found by using the criterion.

The rest of the paper is organized as follows. In Section 2,
modified projective synchronization of two different chaotic
systems is theoretically analyzed.A simple criterion for realiz-
ing modified projective synchronization is obtained by using
the proposed projective system approach. In Section 3, an
example is given to numerically demonstrate the effectiveness
of the proposed approach. In Section 4, another example is
provided to verify the effectiveness of the proposed approach
by comparing the results obtained by the projective system
approach with those obtained by Lyapunov method. Finally,
conclusions are drawn in Section 5.

2. Modified Projective Synchronization of
Two Chaotic Systems

The two chaotic (drive and response) systems can be given in
the following form:

�̇� = 𝑓 (𝑥) ,

̇𝑦 = 𝑔 (𝑦) + 𝑢,

(1)

where 𝑥, 𝑦 ∈ 𝑅
𝑛, 𝑓, 𝑔 are continuous vector functions

and 𝑢 is the controller to be designed. If there exists
a constant matrix 𝛼 = diag(𝛼

1

, 𝛼
2

, . . . , 𝛼
𝑛

), such that

lim
𝑡→+∞

‖𝑦 − 𝛼𝑥‖ = 0, then the two chaotic systems are said
to be modified projective synchronization, and 𝛼 is a scaling
matrix [10, 11]. Obviously, complete synchronization and
projective synchronization are the special cases of modified
projective synchronization where 𝛼

1

= 𝛼
2

= ⋅ ⋅ ⋅ = 𝛼
𝑛

= 1 and
𝛼
1

= 𝛼
2

= ⋅ ⋅ ⋅ = 𝛼
𝑛

, respectively.
Consider that the controller 𝑢 in system (1) is designed as

𝑢 = 𝛼𝑓 (𝑥) − 𝑔 (𝛼𝑥) + 𝑘 (𝑦 − 𝛼𝑥) , (2)

where 𝑘 = diag(𝑘
1

, 𝑘
2

, . . . , 𝑘
𝑛

). The synchronization errors
between the drive and response systems are defined as

𝑒 = 𝑦 − 𝛼𝑥; (3)

then system (1) can be written as

�̇� = 𝑓 (𝑥) ,

̇𝑒 = 𝑔 (𝑒 + 𝛼𝑥) − 𝑔 (𝛼𝑥) + 𝑘𝑒.

(4)

Consider the phase space of system (4) presented in
Figure 1; a trajectory starting from point 𝐴 moves to point
𝐹 (called

⌣

𝐴𝐹). Assume that points 𝐵, 𝐷 and points 𝐶, 𝐸 have
identical 𝑒 values, respectively. The question that we need to
address is as follows: under what condition does trajectory
⌣

𝐴𝐹 approach 𝑥-axis infinitely? Then, trajectories
⌣

𝐵𝐶 and
⌣

𝐷𝐸 do not require to be taken into consideration since the
distance from point 𝐵 (𝐷) to 𝑥-axis is equal to that from
point𝐶 (𝐸) to 𝑥-axis. We can investigate trajectories

⌣

𝐴𝐵,
⌣

𝐶𝐷,
and
⌣

𝐸𝐹 (called
⌣

𝐴–𝐹) instead of trajectory
⌣

𝐴𝐹 to determine
whether 𝑒 → 0 more directly. From Figure 1, it is clear that
trajectory

⌣

𝐴–𝐹 can be obtained through regarding points on
trajectory

⌣

𝐴𝐹 with identical 𝑒 value as one point.
It should be noted that

⌣

𝐴–𝐹 is discontinuous at points 𝐵,
𝐷 in the direction of 𝑥-axis. However, only the evolution of
𝑒 values of points on

⌣

𝐴–𝐹 is of interest to our study. Then
consider all the points on

⌣

𝐴–𝐹 are translated along 𝑥-axis to

form a smooth curve
⌣

𝐴


𝐹
, which is equivalent to curve

⌣

𝐴𝐹 to

our subject (Figure 1). According to the analysis above,
⌣

𝐴


𝐹


can be obtained by letting 𝑥 = ℎ(𝑒) (ℎ is smooth enough) in
system (4):

𝜕ℎ (𝑒)

𝜕𝑡
= 𝑓 (ℎ (𝑒)) ,

̇𝑒 = 𝑔 (𝑒 + 𝛼ℎ (𝑒)) − 𝑔 (𝛼ℎ (𝑒)) + 𝑘𝑒.

(5)

System (5) is called the projective systemof system (4). From
the analysis of trajectories in the phase space of system
(4), the two systems in (1) can achieve modified projective
synchronization provided that 𝑒 → 0 holds in system
(4). Then, projective system (5) can be used to replace
system (4) to judge the occurrence of modified projective
synchronization.
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For a sufficiently small 𝑒, the right hand of equation 𝑥 =
ℎ(𝑒) can be expanded as

𝑥 = ℎ (𝑒) = ℎ
0

+
𝜕ℎ (0)

𝜕𝑒
𝑒 + 𝑂
1

(𝑒) , (6)

where ℎ
0

= ℎ(0), 𝑂
1

(𝑒) represents the higher order terms of
𝑒. Substituting (6) into the first equation in system (5) yields

𝑓 (ℎ
0

) = 0. (7)

ℎ
0

can be derived by solving (7). The second equation of
system (5) can be approximated by

̇𝑒 = 𝑔 (𝑒 + 𝛼ℎ (𝑒)) − 𝑔 (𝛼ℎ (𝑒)) + 𝑘𝑒,

= (
𝜕𝑔 (𝑧)

𝜕𝑧

𝑧=𝛼ℎ0

+ 𝑘) 𝑒 + 𝑂
2

(𝑒) ,

(8)

where 𝑂
2

(𝑒) represents the higher order terms of 𝑒. It is clear
that 𝑒 → 0 holds in system (5), also in system (4), if the
matrix

𝑃 (ℎ
0

) =
𝜕𝑔(𝑧)

𝜕𝑧

𝑧=𝛼ℎ0

+ 𝑘 (9)

is stable. That is, modified projective synchronization
between two different chaotic systems in (1) is achieved. The
approach introduced in this section to realize modified
projective synchronization between two different chaotic
systems can be called the projective system approach. This
approach has been successfully applied to investigate the gen-
eralized synchronization in unidirectionally coupled systems
in [19].

It should be pointed out that the projective system of
system (4) may not be unique because function ℎ(𝑒) may
not be unique. Furthermore, the possible number of the
projective systems of system (4) depends on the number
of real roots of (7). From Figure 1, modified projective
synchronization occurs as long as there exist trajectories
approaching 𝑥-axis. Assuming that ℎ

01

, ℎ
02

, . . . , ℎ
0𝑛

are 𝑛

real roots of (7), then modified projective synchronization
appears if anymatrix𝑃(ℎ

0𝑖

), 1 ≤ 𝑖 ≤ 𝑛, is stable. In this sense,
more equilibria possessed by the drive system mean a higher
chance of modified projective synchronization in system (1).

Clearly, the projective system approach introduced in this
paper works provided that the drive system in (1) possesses
equilibria. For the physical systems in the real world, such
condition is very easy to be satisfied. Thus, the projective
system approach can be widely used.

3. A Numerical Example of Modified
Projective Synchronization

In the section, an example is given to numerically demon-
strate the validity of the projective system approach. Consider
the Lorenz system as the drive system

�̇�
1

= 𝜎 (𝑥
2

− 𝑥
1

) ,

�̇�
2

= 𝛾𝑥
1

− 𝑥
1

𝑥
3

− 𝑥
2

,

�̇�
3

= 𝑥
1

𝑥
2

− 𝛽𝑥
3

,

(10)

where 𝜎 = 10, 𝛾 = 28, and 𝛽 = 8/3. The Chen system [20] is
adopted as the response system, which is defined as

̇𝑦
1

= 𝑎 (𝑦
2

− 𝑦
1

) + 𝑢
1

,

̇𝑦
2

= (𝑐 − 𝑎) 𝑦
1

− 𝑦
1

𝑦
3

+ 𝑐𝑦
2

+ 𝑢
2

,

̇𝑦
3

= 𝑦
1

𝑦
2

− 𝑏𝑦
3

+ 𝑢
3

,

(11)

where 𝑎 = 35, 𝑏 = 3, 𝑐 = 28, and 𝑢 = (𝑢
1

, 𝑢
2

, 𝑢
3

)
𝑇 is the

controller. The chaotic attractors of system (10) and system
(11) without the controller are shown in Figures 2(a) and 2(b),
respectively.

The controller 𝑢 is designed according to (2) as

𝑢
1

= (𝑎 − 𝜎) 𝛼
1

𝑥
1

+ (𝜎𝛼
1

− 𝑎𝛼
2

) 𝑥
2

+ 𝑘 (𝑦
1

− 𝛼
1

𝑥
1

) ,

𝑢
2

= [𝛾𝛼
2

− (𝑐 − 𝑎) 𝛼
1

] 𝑥
1

+ (𝛼
1

𝛼
3

− 𝛼
2

) 𝑥
1

𝑥
3

− (𝑐 + 1) 𝛼
2

𝑥
2

+ 𝑘 (𝑦
2

− 𝛼
2

𝑥
2

) ,

𝑢
3

= (𝛼
3

− 𝛼
1

𝛼
2

) 𝑥
1

𝑥
2

+ (𝑏 − 𝛽) 𝛼
3

𝑥
3

+ 𝑘 (𝑦
3

− 𝛼
3

𝑥
3

) ,

(12)

where 𝛼 = diag(𝛼
1

, 𝛼
2

, 𝛼
3

) is the scaling matrix, 𝑘 is the
control parameter.

From (7), one has

ℎ
01

= [0, 0, 0]
𝑇

,

ℎ
02

= [6√2, 6√2, 27]
𝑇

,

ℎ
03

= [−6√2, −6√2, 27]
𝑇

.

(13)

From (9), the discriminant matrix for modified projec-
tive synchronization between systems (10) and (11) can be
expressed by

𝑃 (ℎ
01

) = [

[

−𝑎 + 𝑘 𝑎 0

𝑐 − 𝑎 𝑐 + 𝑘 0

0 0 −𝑏 + 𝑘

]

]

,

𝑃 (ℎ
02

, ℎ
03

) = [

[

−𝑎 + 𝑘 𝑎 0

𝑐 − 𝑎 − 27𝛼
3

𝑐 + 𝑘 ∓6𝛼
1

√2

±6𝛼
2

√2 ±6𝛼
1

√2 −𝑏 + 𝑘

]

]

.

(14)

All the eigenvalues of matrix 𝑃(ℎ
01

) have negative real parts
provided that 𝑘 < (1/2)(𝑎 − 𝑐 − √𝑐2 + 6𝑎𝑐 − 3𝑎2) =

−23.84. It is important to point out that this condition for
the control parameter 𝑘 can guarantee the occurrence of
modified projective synchronization between systems (10)
and (11) for any given scaling matrix 𝛼 = diag(𝛼

1

, 𝛼
2

, 𝛼
3

).
The theoretical result is illustrated by numerical calculation
results presented in Figures 3 and 4. In the numerical
simulations (Figures 3 and 4) the control parameter 𝑘

equals −30 and the initial values of the drive and response
systems are chosen as (𝑥

1

(0), 𝑥
2

(0), 𝑥
3

(0)) = (0.1, 0.1, 0.2)

and (𝑦
1

(0), 𝑦
2

(0), 𝑦
3

(0)) = (0.2, 0.3, 0.4), respectively. The
scaling matrix is taken as 𝛼 = diag(0.1, 0.2, 0.3) and 𝛼 =

diag(1, 1.5, 2) in Figures 3 and 4, respectively.
According to the analysis in the previous section, the

condition for 𝑘 derived based on 𝑃(ℎ
01

) is not necessary
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Figure 2: The chaotic attractors of system (10) and system (11) without the control. (a) The chaotic attractor of Lorenz system (10). (b) The
chaotic attractor of Chen system (11) without the control.
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Figure 3:Modified projective synchronization between systems (10) and (11) can be realized for the scalingmatrix𝛼 = diag(0.1, 0.2, 0.3)when
𝑘 = −30. The initial values of the drive and response systems are chosen as (𝑥

1

(0), 𝑥
2

(0), 𝑥
3

(0)) = (0.1, 0.1, 0.1) and (𝑦
1

(0), 𝑦
2

(0), 𝑦
3

(0)) =

(0.2, 0.3, 0.4), respectively. (a) The synchronization errors between systems (10) and (11). (b) The chaotic attractors of system (10) and system
(11) with the control.

to realized modified projective synchronization between
systems (10) and (11). In fact, modified projective synchro-
nization occurs as long as all the eigenvalues of matrix 𝑃(ℎ

01

)

or 𝑃(ℎ
02

) or 𝑃(ℎ
03

) have negative real parts. If the scaling
matrix is taken as 𝛼 = diag(𝛼

1

, 𝛼
2

, 𝛼
3

) = diag(0.1, 0.2, 0.3)
and the control parameter 𝑘 satisfies 𝑘 < 1.04, matrix 𝑃(ℎ

02

)

or 𝑃(ℎ
03

) has no eigenvalue with nonnegative real parts.
Then, modified projective synchronization between systems
(10) and (11) still can be achieved for 𝛼 = diag(0.1, 0.2, 0.3)
when 𝑘 > −30. The numerical results are shown in

Figure 5, in which 𝛼 = diag(0.1, 0.2, 0.3), 𝑘 = −0.5,
and the initial values of the drive and response systems
are still taken as (𝑥

1

(0), 𝑥
2

(0), 𝑥
3

(0)) = (0.1, 0.1, 0.2) and
(𝑦
1

(0), 𝑦
2

(0), 𝑦
3

(0)) = (0.2, 0.3, 0.4), respectively.

4. Discussion

In this section, another example is provided to compare
the results obtained by the projective system approach with
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Figure 4: Modified projective synchronization between systems (10) and (11) can be realized for the scaling matrix 𝛼 = diag(1, 1.5, 2) when
𝑘 = −30. The initial values of the drive and response systems are chosen as (𝑥
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(0)) = (0.1, 0.1, 0.1) and (𝑦
1

(0), 𝑦
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(0)) =

(0.2, 0.3, 0.4), respectively. (a) The synchronization errors between systems (10) and (11). (b) The chaotic attractors of system (10) and system
(11) with the control.
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Figure 5: Modified projective synchronization between systems (10) and (11) can be realized for the scaling matrix 𝛼 = diag(1, 1.5, 2) when
𝑘 = −0.5. The initial values of the drive and response systems are chosen as (𝑥

1

(0), 𝑥
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(0)) = (0.1, 0.1, 0.1) and (𝑦
1

(0), 𝑦
2

(0), 𝑦
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(0)) =

(0.2, 0.3, 0.4), respectively. (a) The synchronization errors between systems (10) and (11). (b) The chaotic attractors of system (10) and system
(11) with the control.
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those obtained by Lyapunov method. Consider the following
coupled Lorenz systems

�̇�
1

= −𝜇𝑥
1

+ 𝜇𝑥
2

,

�̇�
2

= (𝜉 − 𝑥
3

) 𝑥
1

− 𝑥
2

,

�̇�
3

= 𝑥
1

𝑥
2

− 𝜌𝑥
3

,

̇𝑦
1

= −𝜇𝑦
1

+ 𝜇𝑦
2

,

̇𝑦
2

= (𝜉 − 𝑥
3

) 𝑦
1

− 𝑦
2

,

(15)

where 𝜇, 𝜌, and 𝜉 are system parameters. Two-variable par-
tially projective synchronization has been found in system
(15) [21]. That is, lim

𝑡→∞

‖𝑦
1,2

− 𝛼𝑥
1,2

‖ = 0 holds under
certain conditions, in which 𝛼 ∈ 𝑅 is the scaling factor.
Next, the synchronization conditions for system (15) are
separately derived by Lyapunov method and the projective
system approach.

According to [21], lim
𝑡→∞

‖𝑦
1,2

−𝛼𝑥
1,2

‖ = 0 is equivalent
to lim

𝑡→∞

(𝑥
1

𝑦
2

− 𝑦
1

𝑥
2

) = 0. Denote the error vector by 𝑒 =
𝑥
1

𝑦
2

− 𝑦
1

𝑥
2

; then error system can be written as
̇𝑒 = �̇�
1

𝑦
2

+ 𝑥
1

̇𝑦
2

− ̇𝑦
1

𝑥
2

− 𝑦
1

�̇�
2

. (16)

Lyapunov function is chosen as 𝑉(𝑡) = (1/2)𝑒2; then

�̇� = 𝑒 ̇𝑒 = 𝑒 (�̇�
1

𝑦
2

+ 𝑥
1

̇𝑦
2

− ̇𝑦
1

𝑥
2

− 𝑦
1

�̇�
2

) = − (𝜇 + 1) 𝑒
2

.

(17)

Obviously, �̇� < 0 as long as 𝜇 > −1, which is the condition for
two-variable partially projective synchronization in system
(15). It is worth pointing out that condition 𝜇 > −1 also is
necessary for the occurrence of the projective synchroniza-
tion since �̇� > 0 if 𝜇 < −1. However, it is generally difficult
to find such proper Lyapunov function for any two coupled
chaotic systems.

In the following, the projective systemapproach is applied
to get the condition for synchronization. Comparing system
(1) with system (15), the controller 𝑢 can be expressed by

𝑢
1

= 0,

𝑢
2

= −𝑦
1

𝑥
3

.

(18)

From (7), one has

ℎ
01

= [0, 0, 0]
𝑇

,

ℎ
02

= [±√𝜌 (𝜉 − 1), ±√𝜌(𝜉 − 1), 𝜉 − 1]

𝑇

.

(19)

From (9), the discriminant matrix for synchronization
can be given by

𝑃 (ℎ
01

) = [
−𝜇 𝜇

𝜉 −1
] , 𝑃 (ℎ

02

, ℎ
03

) = [
−𝜇 𝜇

1 −1
] . (20)

According to the projective system approach, two-variable
partially projective synchronization occurs in system (15)
provided that any of matrices 𝑃(ℎ

01

) and 𝑃(ℎ
02

, ℎ
03

) is stable.
The condition for synchronization also is 𝜇 > −1 based on the
projective system approach, which shows that a necessary and
sufficient condition for modified projective synchronization
may be found by using the approach.

5. Conclusion

In this paper, the projective system approach is proposed to
realize modified projective synchronization of two different
chaotic systems up to a desired scalingmatrix. It is found that
a projective system can be obtained from the original system
to judge the occurrence of modified projective synchroniza-
tion. A numerical example is given to illustrate the effective-
ness of the projective system approach. Furthermore, another
example of two-variable partially projective synchronization
in two coupled Lorenz systems shows that a necessary
and sufficient synchronization condition can be derived by
using the projective system approach. Theoretical analysis
and numerical simulations demonstrate that, although the
projective system may be not unique, modified projective
synchronization between two different chaotic systems can be
achieved provided that the origin of any of projective systems
is asymptotically stable.
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