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Abstract

vaccine candidates.

Background: The prevalent resurgence of pertussis has recently become a critical public health problem
worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a
suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human
primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal
animal models for several infectious diseases, but a model of infectious pertussis has not been established in these
organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s—1930s, but limited
experimental details are available. Recent monkey pertussis models have not been successful because the typical
clinical symptoms and transmission have not been achieved.

Methods: In the present study, infant rhesus macaques were challenged with Bordetella pertussis (Bp) using an
aerosol method to evaluate the feasibility of this system as an animal model of pertussis.

Results: Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41
developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal
transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p.

Conclusion: These results demonstrate that a model of pertussis was successfully established in infant rhesus
macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of
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Background

Pertussis is an acute respiratory disease caused mostly
by the gram-negative bacterium Bordetella pertussis
(B.p). The basic illness is non-inflammatory in nature
and occurs without significant fever. The disease is char-
acterized by non-productive paroxysmal coughs followed
by periods of total respiratory normalcy, which makes it
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different from all other infectious cough illnesses [1]. Se-
vere respiratory failure is complicated by pulmonary
hypertension, which may cause death, especially in in-
fants [2]. Pertussis is transmitted directly from human to
human, mostly via aerosolized respiratory droplets. Per-
tussis is a preventable disease, and its incidence de-
creased notably after vaccine immunization began.
However, it has experienced a resurgence in several
countries, even in countries with nearly universal vaccine
coverage in the last 20 years [3—5]. A deeper understand-
ing of the mechanism of pertussis pathogenesis and the
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host response to both the pathogen and the vaccines is
urgently needed to enable this important public health
concern to be faced. Therefore, it's urgent to develop
suitable animal models for pertussis.

To establish animal models for pertussis, several stud-
ies have been carried out in mouse, rat, rabbit, and piglet
models of pertussis [6, 7]. Unfortunately, these models
have not been able to reproduce the full clinical
spectrum observed in humans [8, 9]. In studies using
non-human primate (NHP) models, a baboon model has
been successfully established [10]. Low-grade fever, par-
oxysmal coughing, leukocytosis, a long-lived anti-
pertussis toxin (PT) antibody response, protection
against subsequent challenge, and transmission have
been achieved in this baboon model, which makes the
model crucial for studies on the pertussis pathogenic
mechanism as well as for the development of new vac-
cines and therapeutics [11]. Another NHP, the rhesus
macaque, has been evaluated for use as a pertussis
model since 1929, but none of the studies have been able
to completely replicate the human clinical disease [12—
14]. In contrast, 2 studies using Macaca (M.) cyclopis
have investigated the similarity of the disease in these
organisms to the human pertussis clinical syndrome [15,
16]. Baboons and macaques are Old World monkeys
that were separated approximately 10 million years ago,
and rhesus macaques are closely related to M. cyclopis.
Several disease models have been established using ma-
caques and/or baboons. While baboon models suffer
from limited availability, high housing costs, and a lack
of suitable reagents for use in these monkeys, rhesus ma-
caques are more readily available and have low housing
costs, and suitable reagents are available [17].

Therefore, we infected rhesus macaques with B.p via
aerosol challenge. We investigated clinical symptoms, in-
cluding leukocytosis, coughing, and nasopharyngeal
colonization; analysed the humoral and mucosal im-
mune response and cytokine levels; and performed a
transmission test to evaluate the suitability of infant rhe-
sus macaques as a potential alternative NHP model for
pertussis.

Methods

Animals

The infant rhesus macaques used in this study (5-6
months of age) were obtained from the Institute of Med-
ical Biology, Chinese Academy of Medical Sciences
(IMBCAMS). The study protocol was approved
(DWSP201809002) by the Committee on Ethics of the
IMBCAMS, and the study was conducted in strict ac-
cordance with the Guidelines for the Care and Use of
Laboratory Animals published by the National Research
Council of the National Academies and the Guidance
for Experimental Animal Welfare and Ethical Treatment
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published by the Ministry of Science and Technology of
the People’s Republic of China (2006). During the study
periods, the monkeys were maintained at Animal Bio-
safety Level 2, housed individually in cages in a climate-
controlled room (temperature of 18-25 °C and humidity
30-70%) with a 12h light/dark cycle, given chow and
fruits in strictly accordance with the animal welfare re-
quirements and allowed free access to water. After the
experiment, the monkeys were confirmed to have com-
pletely recovered from B.p infection and were returned
to the Monkey Mountain of IMBCAMS, where they
were allowed to live until they died naturally.

Bacterial strains and media

The B.p strain 2016-CY-41 used in this study was re-
cently isolated from a patient in China and was obtained
from the National Institutes for Food and Drug Control
(Beijing, China). The polymorphisms in the PT promoter
(ptxP), PT subunit 1 (ptxA), pertactin (prn), fimbrial
(fim)2 and fim3 were assessed by DNA sequencing. The
genotype of 2016-CY-41 was ptxP1/ptxAl/prnl/fim2-1/
fim3-1. For B.p infection experiments, bacteria were
grown on Bordet-Gengou agar (B-G) plates (BG, Hope-
bio, CHN) containing 20% defibrinated sheep blood
(Nanjinglezhen, CHN) for 48 to 72h at 37 °C. Colonies
from fresh B-G plates were resuspended in isotonic sa-
line, diluted to a concentration of 10" CFU/mL using a
turbidimetric method, and used within 2h of prepar-
ation. For culture of nasopharyngeal wash (NPW) bac-
teria, Regan-Lowe plates prepared from Regan-Lowe
charcoal agar base with 10% defibrinated sheep blood
and 40 pg/mL cephalexin (Oxoid, US) were used.

Infection and transmission in rhesus macaques

Seven healthy male rhesus macaques, aged 5 to 6 months
and weighing 1.2-1.8kg, were obtained from the
IMBCAMS (Animal Licence No. SCXK (Dian) K2015—
0004). Before the experiment started, immunoglobulin G
(IgQ) against filamentous haemagglutinin (FHA) was de-
tected to confirm that the monkeys were negative for in-
fections of B.p, B. parapertussis, and B. bronchiseptica.
Then, the seven animals were randomly assigned to two
groups (Table 1). Group 1, containing 5 macaques, was
challenged with strain 2016-CY-41 via aerosol exposure
using an aerosolization apparatus designed by our la-
boratory and produced by Lanfang Honlan Equipment
Co (Additional file 1). The apparatus was composed of a
rectangular Plexiglas chamber with a removable lid (40
cm x 60 cm x 40 cm), a pump and a medical nebulizer
(average atomization rate: > 0.15 mL/min, working pres-
sure: 60—150 kPa, normal working temperature: 10—
40°C). The pump was connected to the inlet side of the
nebulizer to deliver a B.p suspension for atomization.
The outlet side of the nebulizer was connected to two
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Table 1 Experimental grouping for Bordetella pertussis infection in rhesus macaques

Group Monkey ID Sex Age (month) Weight (kg) B.p Strain Infection route

Group 1 18,089 M 1.5 2016-CY-41 Aerosol challenge
18,105 M 6 1.8 2016-CY-41 Aerosol challenge
18,043 M 5 1.1 2016-CY-41 Aerosol challenge
18,053 M 5 12 2016-CY-41 Aerosol challenge
18,093 M 6 1.5 2016-CY-41 Aerosol challenge

Group 2 18,073 M 6 15 2016-CY-41 Transmission
18,107 M 5 12 2016-CY-41 Transmission

inlet ports of the challenge chamber to deliver atomized
B.p to the interior of the chamber. An outlet tube with
an air filter was connected to the challenge chamber to
remove air. An air sampling port was embedded in the
middle of the challenge chamber to monitor the actual
concentration of aerosolized B.p inside the chamber. An-
imals were infected via the challenge chamber for 60
min. Within the 60 min period, the air sample was re-
moved from the sampling port every 10 min for assess-
ment of the concentration of B.p inside the chamber.

At 2 days post infection (dpi), 1 challenged macaque
was cohoused with 1 naive animal in one cage, and the
animals were separated after 4 days to investigate trans-
mission. The 2 macaques that were cohoused with 2016-
CY-41-challenged animals formed group 2.

Animal evaluation and sample collection

A schematic of the specimen collection timeline is dis-
played in Fig. 1. Total white blood cell (WBC) counts
were measured by blood cell counting. Coughing

frequency was monitored with a recording device. The
data were reviewed, and the numbers of coughs during
four 30-min periods each day (7:00-7:30 a.m., 10:00—10:
30 am., 2:00-2:30 p.m., and 8:00—8:30 p.m.) were calcu-
lated. The average number of coughs per hour for each
day was calculated as the mean for all four observation
periods for all animals in each group. For NPW collec-
tion, animals were anaesthetized using ketamine hydro-
chloride (10 mg/kg). A piece of tubing approximately 15
cm in length and 0.6mm in diameter was slowly
inserted into the back of the nostril. A syringe connected
to the end of the tubing was used to slowly inject 1 mL
of PBS into the nostril, and fluid was collected in a ster-
ile dry container. This process was repeated for the other
nostril, and fluid was collected into the same container
as that used for the first nostril. The NPW was serially
diluted in saline and plated on Regan-Lowe plates. The
number of CFUs was calculated after 4-5 days of incu-
bation at 37°C. The B.p colonies were identified by
examining colony morphology and haemolysis on
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Fig. 1 Timeline of Bp aerosol challenge and sample collection from rhesus macaques. Infant rhesus macaques were infected with B.p by aerosol
challenge on day 0 (empty arrow). A naive animal and a challenged animal were cohoused in one cage at 2 dpi for transmission of the infection
(solid arrow). The circles indicate detection time points (empty for aerosol-challenged animals; solid for transmission animals). Coughing
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Regan-Lowe plates and by polymerase chain reaction
(PCR) amplification of 1S481, a genomic insertion site
that is specific for B.p [18].

Detection of antibodies in serum and NPW

Serum and NPW were collected, and anti-PT, anti-FHA,
anti-PRN and/or anti-adenylate cyclase toxin (ACT) IgG
and/or IgA levels were measured using an enzyme-
linked immunosorbent assay (ELISA). Microplates (96-
well) were coated with the antigens PT, FHA, PRN, and/
or ACT at 3 pg/mL and incubated at 4°C overnight.
Then, the plates were blocked with 3% (w/v) bovine
serum albumin (BSA, Amresco, A0332) in phosphate-
buffered saline (PBS) at 37 °C for 2 h. Diluted serum or
NPW was added to each microplate and incubated at
37°C for 1h. After washing, horseradish peroxidase
(HRP)-labelled sheep anti-monkey IgG (Invitrogen, USA,
PA1-84631) or anti-human IgA (Jackson ImmunoRe-
search Laboratories, USA, 109-036-011) was added to
the microplate, and the plate was incubated at 37 °C for
1h. All of the ELISA plates were developed using tetra-
methylbenzidine (TMB; Solarbio, CHN, PR1200) to gen-
erate a colorimetric reaction, and the reaction was
terminated with 2 mol/L H,SO,. For each set of ELISA
plates subjected to IgG detection, a pertussis antiserum
WHO international standard was used as a reference
(NIBSC code: 06/140). For assessment of anti-ACT IgG
in serum and antibody responses in NPW, a blank sam-
ple was included on each plate, and an optical density
(OD) values >2.1-fold that of the blank sample was set
as the cut-off value (all the antigens were from the De-
partment of DTP Vaccine and Toxin, National Institute
for Food and Drug Control, China). The results are pre-
sented as geometric mean concentrations (GMCs) or
geometric mean titres (GMTs) and their 95% confidence
intervals (CIs).

Measurement of cytokines

Serum concentrations of interleukin (IL)-1f, IL-4, IL-6,
IL-8, IL-10, IL-12/23p40, IL-13, IL-17A, interferon
(IEN)-y, and tumour necrosis factor (TNF)-a were de-
tected by the Luminex technique with a MILLIPLEX
NHP Magnetic Bead Panel (Merck Millipore, US) ac-
cording to the manufacturer’s instructions. An unpaired
t-test was used to test for differences between the pre-
challenge cytokine production and the peak cytokine
production during the post-challenge period (2/4, 6/8,
10/12, 14/16, 21/23, and 28/30 dpi; the latter is for the
transmission group, as indicated in Fig. 1) for each ani-
mal due to the highly variable starting concentrations
between animals and the variability of the peak response
for each cytokine post infection.

Page 4 of 12

Statistics

The data were graphed and analysed using GraphPad
Prism version 7.0 (GraphPad Software, Inc.). The data
are presented as the means * standard errors of the
means or as the GMCs/GMTs and their 95% Cls. Un-
paired Student’s t-test was utilized to assess statistical
significance.

Results

Clinical signs in infant rhesus macaques after B.p infection
The concentration of bacteria in the challenge chamber
reached and was maintained at 10*~10° CFU/mL. In the
challenged group, all 5 animals developed classic symp-
toms of clinical pertussis. The number of WBCs was sig-
nificantly increased 2- to 5-fold beginning at 6 dpi,
reached the highest level at 14 dpi, and returned to base-
line by 28 dpi (Fig. 2a). The number of bacterial colonies
from the NPW increased from 2 dpi and reached the
highest level, 6.2 x10°CFU/mL, at 10 dpi; then, the
number of colonies gradually decreased until approxi-
mately 45 dpi (Fig. 2b). In addition, all animals devel-
oped severe coughs that persisted for over 4 weeks. In
the early stage after challenge, the animals developed a
mild cough. At 10 dpi, the cough seemed to worsen, es-
pecially at night (Fig. 2c). At peak illness, the cough be-
came violent, lasting 10-20s (Additional file 2).
However, the rectal temperature was not significantly
different from that in the pre-challenge period and was
maintained between 37.2°C and 39.9°C
(Additional file 3).

Antibody response in the challenged group
Production of IgG antibodies against PT, FHA, PRN,
and ACT was induced in all 5 macaques in the chal-
lenged group. The seroconversion rate reached 100% at
day 14 for anti-PT and anti-FHA. For anti-PRN, the
seroconversion rate reached 100% at day 35 with a slight
delay, but it reached 60% at day 14 and remained at 80%
from day 28 onwards during the investigation period.
The levels of anti-PT, anti-FHA and anti-PRN antibodies
significantly increased from 14days onwards and
reached approximately 200-fold, 22-fold, and 11-fold on
day 35, respectively. In addition, they remained at high
levels with GMCs of 598.9 IU/mL (95% CI, 559.7-640.8),
112.0IU/mL (95% CI, 84.11-149.2) and 9.81U/mL
(2.08-45.88) on day 45, respectively (Fig. 3a-c). The
anti-ACT levels were significantly elevated from day 14
onwards and remained stable with GMTs of 9.79 (95%
CI, 7.84-12.23), 10.82 (95% CI, 8.91-13.14), and 10.68
(95% CI, 8.96—12.74), respectively, on day 28, 35, and 45
(Fig. 3c).

Furthermore, both IgA and IgG antibodies against PT,
FHA, and PRN in NPW were assessed in all 5 animals in
the challenged group at the indicated times. The levels
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of IgA against PT started to rise at 28 dpi and reached a
maximum at 35 dpi; the levels of IgA against FHA were
also significantly increased at 28 dpi and continued to
rise at 45 dpi (Fig. 4a-b). However, no increases in the
levels of IgA against PRN were observed in these mon-
keys. A previous study has suggested that human NPW
contains IgG that probably enters from the circulation
via transudation [19]; therefore, IgG antibodies in NPW
were also evaluated. The specific IgG antibody levels in
NPW at pre-challenge were very low. Anti-PT IgG levels
were significantly increased in all five animals at 21 dpi
and peaked at 28 dpi (Fig. 4c). Anti-FHA IgG levels rose
in all five animals starting at 14 dpi and continued to in-
crease at 45 dpi (Fig. 4d). However, not all animals
showed increases in anti-PRN IgG titres after challenge
(Fig. 4e).

Transmission

Four days after separation from the 2016-CY-41-chal-
lenged macaques, both macaques in group 2 became in-
fected, as demonstrated by prominent leukocytosis, with

a peak level between 2- and 4-fold greater than the pre-
infection level (Fig. 5a). In addition, B.p was recovered
from the NPW, with the highest numbers reaching 5.4 x
10° and 7.0 x 10° CFU/mL (Fig. 5b). More importantly,
both animals also developed severe coughs (Fig. 5c).
Antibody responses to B.p were also observed and ex-
hibited trends similar to that seen following primary in-
fection in group 1 (Fig. 5d-g).

We also measured the levels of IgA and IgG antibodies
against PT, FHA, and PRN in the NPW of the two trans-
mission animals. IgA against PT and FHA was observed
(Fig. 6a-b), and the levels of IgG against PT and FHA
were also markedly increased (Fig. 6¢-d). However, only
a low level of anti-PRN IgG was detected for a very short
period, and it declined rapidly to the pre-challenge level
(Fig. 6e).

Cytokine levels

We measured IL-1B, IL-4, IL-6, IL-8, IL-10, IL-12/
23p40, IL-13, IL-17A, IFN-y, and TNF-a in serum. The
expression of the proinflammatory cytokines IL-6, IL-1
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and TNF-a was significantly upregulated in all 7 ma-
caques infected with strain 2016-CY-41(Fig. 7).

In addition, the increased IL-12/23p40 and IL-10 re-
sponses may suggest that T cell activation and regulation
were increased in macaques after infection. And the
time-dependent changes of these cytokines were pre-
sented in the additional file 4. However, the expression
of IL-4, IL-8, IL-13, IL-17A, and IFN-y did not exhibit
significant changes.

Discussion

Pertussis is a vaccine-preventable childhood disease;
however, there has been a resurgence in cases in recent
years, including in countries with good vaccine
immunization rates. A deep understanding of the im-
munology and epidemiology of this pathogen through
studies on suitable experimental models, particularly
NHP models, is important. Contrary to previous rhesus
macaque challenge studies, in which most animals in-
fected with pertussis have failed to develop obvious

clinical manifestations of human pertussis [10, 14, 20],
the present study achieved the pertussis clinical
spectrum in a rhesus macaque model. First, the charac-
teristic whooping cough of pertussis syndrome, which
has thus far been achieved only in a baboon model, was
confirmed to have developed. All 5 challenged macaques
and 2 macaques cohoused with the challenged macaques
developed severe coughs that persisted for over 4 weeks.
The coughing appeared on day 2, peaked at day 15, and
decreased gradually thereafter. At peak illness, the
coughing became severe, lasting 10-20s per episode.
Second, the number of CFUs in the NPW peaked at day
10 after challenge, reaching 6.2x 10° CFU/mL, and
returned to baseline levels after 35 days. Third, a higher
serum antibody responses of PT-IgG than of FHA-IgG
was observed in serum. This is the same dynamic anti-
body responses as that observed in human pertussis. In
humans, symptomatic pertussis is characterized by an el-
evated serum PT antibody response, while asymptomatic
infection is characterized by an elevated serum FHA
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antibody response [21]. Moreover, the antibody re-
sponses in NPW also indicated that both anti-PT IgA
and anti-FHA IgA levels were significantly higher than
the pre-challenge levels; these changes are also observed
in humans, and measurement of these antibodies has
been used as a sensitive method for the diagnosis of per-
tussis [22, 23].

Although rhesus macaque models have been success-
fully established for several infectious diseases, the
models for B.p have been insufficient [12—14]. Given the
limited experimental details of the prior studies, which
were performed in the 1920s—1950s, we speculated that
the dose of infection, the method of infection, the age of
the animal, and the infection strain may impact whether
rhesus macaques can be successfully infected with B.p.

One of the most important factors for the pertussis
model is the method of challenge. To date, nasal chal-
lenge, endotracheal intubation, in vivo injection, and
aerosol challenge have been investigated in mouse
models of pertussis [24, 25]. In 1929, Sauer, L.W. et al.
[12] reported that typical pertussis manifestations were
observed in 3 of 10 rhesus macaques after intranasal in-
fection and in 5 of 18 Cebus monkeys after intralaryn-
geal infection. In 1935, Culotta, C.S. et al. [13] reported
that 1 of 16 rhesus macaques were successfully infected
with B.p via the intratracheal route, while none of five
macaques were successfully infected via the intranasal
route. However, the B.p strains and infection doses were
not mentioned in these studies. We previously infected 3

rhesus macaques (4-5years old) with strain 18,323 in-
tranasally at a concentration of 5 x 10° CFU/mL in a 2
mL volume, but none of these animals developed a
cough or leukocytosis. Three animals were assigned ran-
domly to euthanasia for scheduled necropsies at 1, 7,
and 14 dpi. No pathological changes were found in the
lungs, tracheas, or lung-draining lymph nodes. We ob-
served only very low levels of bacteria in the trachea at 1
and 7 dpi, and no bacteria were observed at 14 dpi.
However, no lung colonization was observed at the three
scheduled time points. Recently, aerosol challenge has
been used as a novel challenge method to accurately
simulate natural infections and reduce animal stress
[26]. Using an aerosol apparatus, we previously chal-
lenged mice with different concentrations for different
periods of time and successfully established a B.p infec-
tion mouse model [27]. In the present study, using the
aerosol apparatus, we achieved the whole spectrum of
symptoms of pertussis. Compared to other methods of
experimental infection, aerosol challenge has great value
because it accurately simulates natural infections, ex-
hibits superior reproducibility and results in predictable
distribution of infection and pathology [28, 29].

The dose of infection should be considered during
model establishment. In a recent B.p challenge experi-
ment on wP-vaccinated adults, pertussis colonization ex-
hibited dose dependence. The dose was gradually
escalated from 10° CFU (0% colonized) to 10° CFU (80%
colonized), while the minimum dose needed to induce
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colonization was 10° CFU. In 1940, North, E.A. et al.
[14] infected rhesus macaques with 2mL of 5 x 10’
CFU/mL B.p via the intranasal route or with 1 mL of 1
mL 5 x 10" CFU/mL B.p via the intratracheal route; how-
ever, the resultant infection was mild, and spasmodic
cough and protective antibodies were not observed.
Warfel, .M. et al. [10] intranasally infected 4 rhesus ma-
caques ranging in weight from 1.7 to 1.9 kg and ranging
in age from 43 to 64 weeks with 0.5 mL of 10° to 10'°
CFU/mL B.p; 50% of the monkeys developed significant
increases in WBC count, and one of the two monkeys
with increased WBC counts developed a mild cough.
However, since the infectious B.p strain and the animal
age were not clear in North, E.A. et al’s study, we can-
not comprehensively compare our findings with those of
North, E.A. et al. In the present study, infant monkeys
were challenged with a recently clinically isolated strain
via an aerosol apparatus in which the bacterial concen-
tration was maintained at 10*~10° CFU/mL for 60 min.
The constant dose of B.p during the challenge may be
one reason for the success of the present infectious per-
tussis model.

Another critical factor to consider when establishing
an animal model is the age of the animals. A previous
study using an enterovirus type 71 (EV71) rhesus ma-
caque model showed that, of the challenged animals, a
clinical spectrum similar to that of humans was observed
only in young animals [30]. Moreover, studies have dem-
onstrated that young baboons show severe disease signs,
whereas adult baboons show mild signs [10]. In one

baboon pertussis model, 5- to 6-week-old baboons all
developed fatal pertussis; however, in juvenile baboons,
the infection was not fatal [31]. Frequently, asymptom-
atic adults have been implicated in the spread of infec-
tion to susceptible children [32]. In our study, 5- to 6-
month-old rhesus macaques were selected, and typical
whooping cough, leukocytosis, bacteria-positive NPW,
and transmission between animals were observed, simi-
lar to the results obtained in the baboon model. There-
fore, we deduced that the challenge route as well as the
age of the animals may influence B.p infection.

The strain of bacteria used for challenge is another
factor that should be noted. Strain 18,323 was used suc-
cessfully to establish pertussis in M. cyclopis models in
the 1960s; however, it could not induce overt signs of
disease in rhesus macaques [16]. A recent analysis of the
global population structure of B.p indicated that strain
18,323 (genotype ptxP4/ptxA5/prn6/fim2-2/fim3-1) be-
longs to a branch containing a small number of strains
that are evolutionarily far from the major prevalent
branch and revealed that strain 18,323 diverged from the
prevalent strain branch approximately 2000 years ago
[33]. Thus, in contrast to previous macaque animal stud-
ies, our study used a strain recently isolated from a clinic
in China, 2016-CY-41 (genotype ptxP1/ptxAl/prnl/
fim2-1/fim3-1) (a common strain) and achieved the
typical pertussis symptoms in infected macaques. Com-
pared with that in the baboon model infected using
strain D420 (genotype ptxP3/fim3-2), the peak symptom
and disease progression in the macaque model infected
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using B.p strain 2016-CY-41 was delayed [10]. The
prevalence of ptxP3, one of the major components of
D420, has increased in many European counties, the US,
and Australia in the past 25 to 30 years, rather than that
of ptxpl; however, in China, ptxP1 has remained pre-
dominant [10, 34, 35]. A SNP in ptxP3 that lies in a
binding site for the transcriptional regulator BvgA may
result in a strong promoter and increase the level of
transcription of the associated PT [36]. Strains harbour-
ing the ptxP3 allele have been found to be more virulent
than ptxP1 strains in a mouse infection model, and they

may also be associated with severe disease in humans
[36-38]. Thus, we hypothesize that the genomic diver-
sity of B.p may affect pertussis models. Further whole-
genome sequencing experiments and analyses of viru-
lence mechanisms and pertussis epidemiology should be
performed in the future.

One of the possible reasons for the previous lack of
success in establishment of rhesus macaque models of
pertussis is high body temperature. The results of a
temperature culture test in vitro showed that ACT pro-
tein levels are significantly lower in cells grown at 39 °C
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than in cells grown at 37 °C, supporting the hypothesis
that high temperature (39 °C) may result in loss of ACT
expression, in turn resulting in a lack of B.p infection
[10]. However, pathogenic microorganisms cultured
in vitro may also exhibit virulence factor loss due to the
lack of host selective pressures. During non-random cul-
turing, B.p can undergo spontaneous phase variation in-
volving multistep disappearance of virulence factors in
the following order: ACT, PT and FHA [39]. The
in vitro results suggest that the reduced expression of
ACT is caused by the elevated normal body tempera-
tures of rhesus macaques [10]. In the present in vivo
study, we observed a 20-fold increase in the anti-ACT
antibody level, which was similar to the increase ob-
served in the baboon model [40]. In addition, the rectal
temperature was between 37.2°C and 39.9°C and did
not exhibit significant changes. Thus, we deduce that
body temperature may not be the only reason why previ-
ous rhesus macaque pertussis models have failed.

Conclusion

An infant rhesus macaque model of pertussis was estab-
lished via aerosol challenge to provide a valuable alterna-
tive platform for research on pertussis pathogenesis and
evaluation of vaccine candidates.
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