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Exposure to unfamiliar non-native speech tends to improve comprehension. One

hypothesis holds that listeners adapt to non-native-accented speech through

distributional learning—by inferring the statistics of the talker’s phonetic cues. Models

based on this hypothesis provide a good fit to incremental changes after exposure

to atypical native speech. These models have, however, not previously been applied

to non-native accents, which typically differ from native speech in many dimensions.

Motivated by a seeming failure to replicate a well-replicated finding from accent

adaptation, we use ideal observers to test whether our results can be understood

solely based on the statistics of the relevant cue distributions in the native- and

non-native-accented speech. The simple computational model we use for this purpose

can be used predictively by other researchers working on similar questions. All code and

data are shared.

Keywords: non-native speech, L2 speech, adaptation, distributional learning, ideal observer, computational

modeling, rational cognition

1. INTRODUCTION

Understanding strongly non-native-accented speech can be challenging: native listeners unfamiliar
with a non-native accent tend to process it more slowly and with decreased accuracy (Munro and
Derwing, 1995; Witteman et al., 2013). There is now ample evidence that this initial processing
disadvantage can decrease with exposure to the accented talker (e.g., Weil, 2001; Bradlow and Bent,
2008; Adank et al., 2009), with some improvements emerging within mere minutes of exposure
(Clarke and Garrett, 2004; Xie et al., 2018b). What has remained less well-understood are the
mechanisms underlying these changes in speed and accuracy of processing.

Two broad classes of (mutually compatible) hypotheses have emerged. One holds that changes
in native listeners’ processing of non-native-accented speech arise from a general relaxation of
decision criteria for phonological categorization (e.g., “general expansion”, Schmale et al., 2012).
The other hypothesis holds that listeners learn talker- or even accent-specific characteristics,
including information about specific segmental features and super-segmental properties of the
accented speech (e.g., Bradlow and Bent, 2008; Sidaras et al., 2009). This latter hypothesis has
received further elaboration: that adaptation to non-native accents is at least in part achieved
through distributional learning (Wade et al., 2007; Idemaru and Holt, 2011; Schertz et al., 2015;
Kartushina et al., 2016) of the type assumed in exemplar (Pierrehumbert, 2001) or Bayesian theories
of speech perception (Kleinschmidt and Jaeger, 2015).
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Distributional learning models have been found to provide
a good qualitative and quantitative explanation of certain
adaptive changes listeners exhibit in response to shifted or
otherwise atypical pronunciations by native talkers (Clayards
et al., 2008; Bejjanki et al., 2011; Kleinschmidt and Jaeger, 2015,
2016; Theodore and Monto, 2019). This includes changes in
categorization boundaries observed in perceptual recalibration
(e.g., Norris et al., 2003; Eisner and McQueen, 2005; Kraljic
and Samuel, 2006; Drouin et al., 2016) or unsupervised learning
paradigms (Clayards et al., 2008; Nixon et al., 2016). However,
tests of distributional learning models have almost exclusively
been limited to comparatively small deviations from the expected
means or variances of two phonological categories along a
single phonetic dimension (for examples with two phonetic
dimensions, see Hitczenko and Feldman, 2016; Xie et al.,
2021a). Whether distributional learning can explain adaptation
to the types of more complex deviations from expected
pronunciations that are observed in unfamiliar non-native
accents is an open question. Specifically, non-native accents differ
from the expected native pronunciation along many acoustic
and linguistic dimensions, including both supra-segmental and
segmental differences. Non-native speech might, for example,
realize segmental or supra-segmental categories with means that
are shifted relative to native means (Best, 1995; Flege, 1995)
and with expanded or reduced variance (Smith et al., 2019;
Vaughn et al., 2019; Xie and Jaeger, 2020), including deviation
in terms of the relative reliance on different cues to signal the
same phonological contrast (Flege et al., 1992; Xie et al., 2017).
In short, adaptation to a talker with an unfamiliar non-native
accent constitutes a more complex problem than adjustments
in response to more limited differences between native talkers,
and it is possible that these challenges require a different set
of mechanisms (for related discussion see Goslin et al., 2012;
Porretta et al., 2017).

We take a hugely simplified step toward addressing this
question. Our approach is post-hoc and confirmatory (although
future work might employ the same approach predictively prior
to data collection). We ask whether a simple model of speech
perception (an ideal observer, Clayards et al., 2008; Norris and
McQueen, 2008; Kleinschmidt and Jaeger, 2015) can be employed
to make informative predictions as to whether exposure to a
specific set of non-native-accented speech stimuli is expected to
result in detectable adaptation (see also Hitczenko and Feldman,
2016). To demonstrate the potential value of such an approach,
we ask whether an ideal observer sheds light on what appeared
to be, at first blush, a failure to replicate previous findings from
accent adaptation (Eisner et al., 2013; Xie et al., 2017), despite
very similar design and procedure.

We emphasize that our goal here is not to convincingly
argue that distributional learning is the best explanation for
the data at hand. Rather, we aim to demonstrate how one can
use a simple normative model of speech perception to derive
predictions for the perception of, and adaptation to, non-native-
accented speech. By comparing the responses of human listeners
to the predictions of this computational model, researchers can
achieve a clearer sense of which results (null or not) should be
treated as surprising (see also Massaro and Friedman, 1990, on

the value of normative models for speech perception). While
models of speech perception suitable for this purpose now exist
(Clayards et al., 2008; Kleinschmidt and Jaeger, 2015), they are
rarely employed in the interpretation of experimental results
(but see e.g., Lancia and Winter, 2013; Kleinschmidt et al.,
2015; Hitczenko and Feldman, 2016; Theodore and Monto,
2019; Xie et al., 2021a). Research in experimental psychology
often remains focused on effects with less discussion of whether
these effects are predicted by existing theories or models (see
discussion in Jaeger et al., 2019). When models are evoked, it is
not uncommon that predictions are attributed to them without
verifying that a computational model would actually make those
predictions. These practices are arguably particularly problematic
when applied to human behavior that is known to be affected by
previously experienced input (as is the case for speech perception
in general and accent adaptation in particular). Even for theories
of speech perception that are conceptually simple, the predictions
of these models tend to depend on the statistics of previously
experienced speech in non-trivial ways. This is precisely the
type of situation in which computational studies can provide
a deeper understanding of experimental findings, and prevent
misunderstandings of existing theory.

The present report aims to demonstrate how even the post-
hoc application of computational models to experimental data
can aid interpretation. It also holds the potential to reduce the
“file drawer” problem (Rosenthal, 1979)—the bias to not publish
null results—as well as to pre-empt the “over-interpretation” of
null results. As we illustrate below, not every null result is a
Type II error; null results can be precisely what a model predicts
given the specific stimuli of an experiment. We thus hope this
report can serve as a helpful guide for researchers, encouraging
experimenters to interpret results relative to theoretical models
that are sufficiently specified to make predictions. To this end,
this report is accompanied by detailed Supplementary Material

written as executable, richly documented, R markdown (Allaire
et al., 2021) and compiled into an interactive HTML. These
Supplementary Material, along with all data, are shared via the
Open Science Framework (https://osf.io/72fkx/). The main text
aims to provide a high-level overview of the approach and results.

2. THE ‘PUZZLE’

The two perception experiments we aim to understand share
the same exposure-test design and procedure (Figure 1), but
differ in the L1-L2 pair investigated. Both experiments investigate
adaptation to non-native-accented speech of a single unfamiliar
talker (see also Clarke and Garrett, 2004; Eisner et al., 2013,
a.o.). Both experiments focus on the realization of the same
phonological category—syllable-final stop voicing of /d/, and its
contrast to /t/—present in the L2s, but absent in L2 talkers’ L1s.

The first experiment exposed native speakers of American
English to Mandarin-accented English speech (Xie et al.,
2017) while the second exposed native speakers of Swedish
to Flemish-accented Swedish. Both Mandarin-accented English
and Flemish-accented Swedish are known to differ from native
English and Swedish, respectively, in the realization of final
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FIGURE 1 | Design of English and Swedish experiment analyzed here. The order of /d/- and /t/-goodness test blocks was counter-balanced across participants.

stop-voicing (Tan et al., 2019; Xie and Jaeger, 2020). As the
Swedish study was designed as a replication of the English study,
we describe the English study first.

Unlike English, Mandarin does not have stops in syllable-final
position. As would be expected from theories of L2 learning (e.g.,
Flege, 1995), the realization of final stop-voicing differs between
native English andMandarin-accented English (Flege et al., 1992;
Xie and Jaeger, 2020). This was also confirmed specifically for
the non-native-accented speech materials used in the experiment
(Xie et al., 2017).

Exposure was manipulated between participants. Both groups
heard 90 words and 90 pseudowords while conducting a lexical
decision task. For the /d/-exposure group, this included 30 words
containing a syllable-final /d/ (e.g., lemonade). These exposure
words were chosen to not have minimal pair neighbors with
syllable-final /t/, allowing lexical guidance on the non-native
talker’s /d/ productions. Participants in the control group heard
no words with syllable-final /d/ (for details about the materials,
see Supplementary Material). Neither groups heard syllable-
final /t/ productions during exposure.

During test, participants in both groups heard the same
minimal pair words with syllable-final /d/ or /t/ (e.g., a recording
of seed or seat). Participants had to rate how “good” the word
sounded as an instance of /d/ (one block) or /t/ (another block,
with the order of blocks counter-balanced across participants).
Words within the same minimal pair did not appear in the same
block (see Figure 1).

Goodness ratings have been used to analyze listeners’
representations of the internal structure of phonological
categories (e.g., Samuel, 1982; Volaitis and Miller, 1992; Allen
and Miller, 2001), including after exposure to shifted native
categories in perceptual recalibration (e.g., Drouin et al., 2016).
Xie et al. (2017) found that /d/-exposure led to improved
goodness ratings for the non-native-accented /d/- and /t/-final
words during test, compared to the control group. We refer to
this as the English data. Xie and colleagues replicated the effect
of /d/-exposure in three additional experiments using the same
recordings and similar exposure-test paradigms but different
tasks and participants (Xie and Myers, 2017; Xie et al., 2017,

2018a). The same effect has also been found in experiments with
similar designs on syllable-final /d/ in Dutch-accented English,
which tends to devoice final stops (Eisner et al., 2013).

In a recent experiment however, we failed to find the
effect of /d/-exposure for another L1-L2 pair, Flemish-accented
Swedish. Unlike Swedish, Flemish (a dialect of Dutch) devoices
voiced stops in syllable-final position (Booij, 1999; Verhoeven,
2005). This type of phonological rule is well-documented to
transfer from a talker’s first language to their second language
and was confirmed in the L2-accented speech materials used
in the Swedish experiment (Tan et al., 2019). Like with
Dutch- and Mandarin-accented English, we thus expected
exposure to Flemish-accented Swedish syllable-final /d/ to
affect ratings during test. Both the English and Swedish
experiments used lexically-guided exposure with the same task.
Both experiments manipulated exposure to the non-native-
accented sound (syllable-final /d/) in the same two between-
participant conditions, including the same amount of exposure.
Both experiments used /d/ and /t/ goodness ratings of /d/-/t/-final
minimal pair words during test. Unlike Xie et al. (2017), however,
the Swedish data did not yield an effect of /d/-exposure on ratings
during test. In fact, the effect of exposure went numerically in the
opposite direction in the Swedish data.

Figure 2 (top) shows the rating results from both
experiments. Linear mixed-effects regression presented in
the Supplementary Material (section 3.2.2) confirmed that
the effects of exposure differed significantly between the two
experiments (coefficient-based t-test, p < 0.002): whereas
/d/-exposure resulted in significant facilitation for English
(β̂ = 0.04, p < 0.0001), it did not for Swedish—in fact, trending
in the opposite direction (β̂ =-0.03, p > 0.1).

At first blush, the Swedish data seem to constitute a failure
to replicate the English experiment. In particular, since the effect
found in the English data has been replicated a number of
times, it would be tempting to consider the Swedish result a
Type II error (rather than the English result a Type I error).
Further, adding to this interpretation, the Swedish experiment
collected substantially less data: while the English data consists
of 120 ratings each from 48 participants, the Swedish data
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FIGURE 2 | (Top) Results of behavioral experiment on native listeners’ perception of syllable-final /d/ and /t/ in Mandarin-accented English (left) and Flemish-accented

Swedish (right). Points show by-item means of z-scored /d/-goodness ratings (standardized within each participant) for non-native productions of syllable-final /d/ and

/t/ during test, depending on the whether participants received exposure to the relevant non-native realization of syllable-final /d/ (/d/-exposure) or not (control). Bars

show means and 95% bootstrapped confidence intervals of the by-item means. (Bottom) Ideal observer-predicted /d/-goodness ratings described in section 3.2.

consist of 60 ratings each from 23 participants—about a fourth
of the English data. This would seem to suggest lack of
statistical power as a straightforward explanation for the null
effect in the Swedish experiment. However, even when the

English data was down-sampled to the size and structure of
the Swedish data, the difference between the two data sets
remained significant 57.6% of the time (out of 1,000 hierarchical
bootstrap samples, Supplementary Material, section 3.2.5). For
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English, the simple effect of /d/-exposure went in the predicted
direction 89.6% of the time, reaching significance in 44.4%
of all bootstrap samples (vs. 0.6% significant effects in the
opposite direction). For Swedish, the simple effect went in
the predicted direction 29.2% of the time, and was significant
in 7.6% of all samples (vs. 40.2% significant effects in the
opposite direction).

Overall, this suggests that power differences alone are unlikely
to fully explain the difference between the English and Swedish
results. Indeed, the same hierarchical bootstrap analyses found
that the Swedish results are very unlikely to result if the English
experiment is taken as the “ground truth”: only 12 out of 1000
(1.2%) random resamples of the English experiment resulted

in t-values as small or smaller than the one observed in the
Swedish experiment.

What then caused the difference in results? And do
the Swedish data really constitute a Type II error? The
Supplementary Material (section 2) discusses a comprehensive
list of differences in methodology between the experiments. This
comparison revealed that the recordings for two experiments
had been obtained in different ways. The Flemish-accented
Swedish materials were elicited by first playing a native-accented
recording of the word, whereas the Mandarin-accented
English materials were elicited without such assistance
(Supplementary Material, section 2.2). This raised the
possibility that the Flemish-accented Swedish recordings

FIGURE 3 | Comparison of native- (top) and non-native-accented (bottom) syllable-final /d,t/ for both the English (left) and the Swedish (right) data. Productions

combine information from multiple databases and are corrected for phonotactic context effects (see Supplementary Material, section 4.3) and are shown in the 3D

space defined by three important cues (duration of vowel, closure, burst) to syllable-final voicing. Ellipses contain 95% of the probability mass centered around the

mean under the assumption that categories form multivariate Gaussian distributions. To facilitate comparison, axis limits are held constant across panels. See

Supplementary Material (section 4.3.2) for interactive visualization, 1D density plots, and 2D pair-wise correlation plots.
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deviated less from native Swedish than the Mandarin-accented
English recordings deviated from native English, which would
reduce the perceptual benefit of /d/-exposure.

An initial comparison of the non-native-accented /d,t/
productions during test to productions of the same test words
by a Swedish native speaker (not included in the experiment,
but recorded using a similar procedure) lends credence to
this hypothesis. Figure 3 shows native- and non-native-accented
syllable-final /d,t/ productions of all test items for both English
and Swedish. Native productions were obtained from one or
more gender-matched speakers similar in age to the non-
native speakers employed in the experiments (for details, see
Supplementary Material, section 2.2.1). We annotated native-
and non-native-accented production for three cues known cross-
linguistically to signal syllable-final stop voicing: the duration
of the preceding vowel, the duration of the closure interval,
and the duration of the burst release (for details on the
annotation procedure, see Supplementary Material, section 4.1).
The computational studies we present below confirm that these
three cues were indeed highly informative about stop voicing in
both English and Swedish, though it is possible, if not likely, that
listeners employ different (related) or additional cues. Syllable-
final stop voicing in Mandarin-accented English is known to
differ in the use of these three cues, compared to native-accented
English (Xie and Jaeger, 2020), as also clearly visible in the
left panels of Figure 3 (replicating Xie et al., 2017). At least at
first blush, the Flemish-accented recordings seem to deviate less
strongly from the native Swedish productions (right panels) than
the Mandarin-accented recordings deviate from native English
productions (left panels).

In line with this initial impression, the Flemish-accented
Swedish recordings were substantially easier to process for
the Swedish participants compared to the Mandarin-accented
English recordings for the English participants: lexical decision
accuracy during exposure was substantially higher for the
Swedish data (Swedish, d-exposure: 96%, control: 97%) than for
the English data (/d/-exposure: 78%, control: 74%). This included
accuracy on the critical exposure words with syllable-final /d/
(English, /d/-exposure: 78%, SD = 9%; Swedish, /d/-exposure:
94%, SD = 6%; for further detail, see Supplementary Material,
section 3.1)1.

We thus decided to estimate the predicted consequences
for the benefit of /d/-exposure for each experiment given the
specific distributional properties of (1) the non-native-accented
/d/ in the /d/-exposure group in that experiment, (2) the

1The difference in exposure accuracy could also be explained if the Swedish

participants were more familiar with accents that involve syllable-final devoicing

than the American participants. For example, exposure to German-accented

Swedish is common in Stockholm (as our Swedish colleagues were eager to

point out). Post-experiment surveys found that none of the Swedish participants

was able to guess the L1 of the non-native accent, and only one (4.3%) of the

participants guessed another L1 that leads to syllable-final devoicing (German).

It is possible, however, that participants nevertheless had subconscious familiarity

with syllable-final devoicing. This would explain the lack of an effect of exposure.

It would not, however, explain the differences in the degree of accentedness in

the productions, shown in Figure 3. We also note that analyses presented in the

Supplementary Material (section 5.4) suggest that, if anything, prior familiarity

with the L2 accent was higher amongst the participants in the English experiment,

compared to participants in the Swedish experiment.

“typical” native-accented /d/ and /t/ in that language, and (3) the
non-native-accented /d,t/-final minimal pair words during test.
From this point on—having ruled out a number of alternative
explanations for the seemingly diverging results—our approach is
confirmatory: our goal is not to rule out alternative mechanisms
for accent adaptation but rather to explore how a simple but
fully specified computational model of distributional learning
can aid data interpretation. This, we hope, may be informative
for researchers who find themselves in a situation similar to the
one described here: trying to understand (or even predict) the
results of an experiment—specifically, the expected results based
on the distributional properties of the speech stimuli employed
in the experiment.

3. MODELING THE EFFECT OF EXPOSURE

We approach this question using ideal observers, specifically
ideal categorizers, though we note that exemplar models
would make similar predictions for the present purpose (for
demonstration, see Shi et al., 2010). We use ideal observers
because they provide an analytic framework to derive how an
ideal/rational listener should respond to input given a certain set
of assumptions (for early discussion of the value of this approach,
see Massaro and Friedman, 1990). Like exemplar models, ideal
observers link distributional patterns in the speech input—which
listeners are assumed to have successfully learned, or at least
approximated, through exposure (e.g., McClelland and Elman,
1986; Luce and Pisoni, 1998; Norris and McQueen, 2008; for
reviews, see MacDonald, 2013; Kuperberg and Jaeger, 2016)—
to the categorization decision listeners make during speech
perception. Specifically, the posterior probability of recognizing
an input as category c is a function of both the category’s
prior probability, p(c), and the probability of observing the
input under the hypothesis that the speaker intended to produce
category c (the “likelihood”), p(cues|c). These two pieces of
information are assumed to be integrated optimally, as described
by Bayes’ theorem:

p(c|cues) =
p(cues|c) ∗ p(c)

6ip(cues|ci) ∗ p(ci)
(1)

Just as listeners are assumed to acquire the distributional
parameters in Equation (1) from the speech input, researchers
can estimate the resulting implicit knowledge of a typical listener
from databases of speech production. Of appeal is that this
approach makes predictions about perception based on only data
from production, with zero computational degrees of freedom:
the likelihood and prior distributions in Equation (1) are fully
determined by the production data (unlike in, for example,
exemplar models). This makes it noteworthy that ideal observers
have been found to provide a good explanation for a variety of
phenomena in speech perception and spoken word recognition
(e.g., Luce and Pisoni, 1998; Clayards et al., 2008; Norris and
McQueen, 2008; Feldman et al., 2009; Bejjanki et al., 2011;
Kleinschmidt and Jaeger, 2015; Kronrod et al., 2016).

Here we use ideal observers as a methodological tool to
estimate how an idealized participant who has adapted to the
phonetic distributions in the input during exposure would
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respond to the test items. The lack of additional computational
degrees of freedom is of particular appeal for this purpose, since
fewer degrees of freedom reduce the risk of over-fitting the
model to the data. In the same spirit, the models we present
in the main text make a number of simplifying assumptions—
many of them known to be wrong, but none of them trivially
explaining the predictions we derive. These assumptions are
summarized in Supplementary Table 1. Here we emphasize only
the assumptions that make the models idealized rather than
ideal (for the same distinction, see also Qian et al., 2016): rather
than model ideal incremental adaptation to the exposure stimuli
(Kleinschmidt and Jaeger, 2015), we model listeners that (1) have
completely adapted by the end of exposure, and (2) do not adapt
further during the test phase or at least not much. While (2)
is plausible (inputs during test are not lexically labeled since
they are minimal pair words; and adaptation seems to proceed
most quickly upon initial exposure to talkers, Kraljic and Samuel,
2007), assumption (1) is likely wrong. Indeed, ideal adaptation
should weight and integrate the observed input from a talker with
prior expectations, so that only partial adaptation is expected
after exposure to 30 critical words—partial in the sense that
listeners’ representations are not a replica of the statistics of the
non-native speech, but rather somewhere between the native and
non-native speech (Kleinschmidt and Jaeger, 2015).

3.1. Methods
We developed four ideal observer models, matching the four
combinations of experimental conditions: 2 experiment (Swedish
vs. English) X 2 exposure group (/d/-exposure vs. control). Our
goal was to approximate the effects of exposure in these four
conditions. All models encode listeners’ beliefs about /d/ and /t/
as multivariate Gaussian distributions in the 3D space defined
by vowel, closure, and burst duration. Category priors, p(c) in
Equation (1), were assumed to be uniform, with each category
having a prior probability of 0.5 in all models. This is not meant
to entail that syllable final /t/ and /d/ are equally probable in
English (they are likely not), but rather that participants expect
the two sounds to be equally probable in the context of the
experiments (in which they repeatedly observe minimal pair
words during test).

To approximate the effect of /d/-exposure, we estimated the
mean and covariance of the /d/ category from the 30 non-
native-accented recordings of the syllable-final /d/ employed
during the experiments’ exposure phase. To approximate the
effect of control exposure, we estimated the mean and covariance
of the /d/ category from recordings of the same 30 exposure
words by a gender- and age-matched native speaker. Since by
design, neither /d/- nor control exposure contained similarly
lexically-labeled instances of syllable-final /t/, we made the
simplifying assumption that both idealized listeners would have
native /t/ categories. This ignores that listeners might adapt
their expectations about /t/ based on exposure to the talker’s
/d/ or other categories whose realization is correlated with that
of the /t/ category (see, e.g., Chodroff and Wilson, 2017). The
Supplementary Material describes the databases (section 4.1)
and annotation procedure (section 4.2) we employed to estimate

themeans and covariances of the native /t/ and non-native /t/ and
/d/ categories.

While test words formed minimal pairs, holding phonotactic
context constant across productions of /d/ and /t/, this was
not the case between exposure and test productions. We thus
use multiple linear regression to correct cue values for effects
of segmental, supra-segmental and talker context (for details,
including interactive plots illustrating the consequence of the
correction procedure, see Supplementary Material, section 4.3).
This approach closely follows the influential C-CuRE model of
cue normalization (McMurray and Jongman, 2011), extending
it to the contrast between native and non-native speech. C-
CuRE has been found to provide a good fit against human
categorization responses, including influences of coarticulation
due to phonotactic context (Apfelbaum and McMurray, 2015).
All ideal observers were fitted to and evaluated on these context-
corrected cue values (Supplementary Material, section 4.5).

Both the control and d-exposure ideal observers were then
applied to the non-native-accented minimal pair words from
the test phase of the experiments (Supplementary Material,
section 4.6). For each test token, we calculated the ideal
observer’s posterior probability of /d/ (and /t/), using Bayes
theorem. In order to relate the posterior probabilities of /d/
and /t/ to participants’ goodness ratings, it is necessary to
specify a linking hypothesis. Conveniently, human categorization
responses for the same stimuli and the same exposure conditions
as analyzed here are available from a separate experiment in
Xie et al.. Paralleling Xie and colleagues’ rating experiment,
the categorization experiment found the predicted shift in the
/d/-/t/ category boundary following /d/-exposure, compared to
control exposure (Xie et al., 2017). This allowed us to investigate
the relation between human goodness ratings and proportions
of categorization responses, using generalized additive mixed
models (GAMMs, Hastie, 2017). These analyses (presented in the
Supplementary Material, section 4.6.4) revealed a clearly linear
relation between proportion /d/-responses in categorization and
/d/-goodness ratings (and, vice versa, for /t/), at least for the
type of stimuli analyzed here. For our analyses, we thus assume
a simple identity link between the ideal observers’ predicted
posterior probability of a category and listeners’ goodness ratings
for that category. For visualizations (e.g., Figure 2, bottom),
we facilitate comparison of ideal observers’ prediction to
human ratings by scaling the ideal observer-predicted posterior
probabilities (range = 0–1) to have the same range as human
rating responses across the combined English and Swedish data
(range=−1 to 1). In those visualizations, we refer to the resulting
predictions as posterior ratings. This scaling does not affect
correlations between the ideal observers’ predictions and human
rating responses.

3.2. Results: Goodness Ratings Predicted
by Ideal Observer
Figure 4 (bottom row) shows the results for the control and
/d/-exposure ideal observers and both exposure conditions.
Paralleling participants’ goodness ratings for Mandarin-accented
English in Figure 2, posterior ratings were improved under the
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FIGURE 4 | Predicted ratings of control (A) and /d/-exposure ideal observers (B), as well as their difference (C) shown for all test tokens. These models were

constructed from the distributions shown in Supplementary Material (section 4.3.2) so as to simulate a learner who has either been exposed to, and perfectly

learned, the statistics of the non-native /d/ (/d/-exposure model) or has not been exposed to non-native /d/ and thus assumes native /d/ statistics (control model).

Ellipses visualize the category likelihoods assumed by the respective ideal observers (specifically 95% of the probability density). Across all panels, the outline color of

points indicate their intended category. In (A,B), the degree of color match between a point’s outline color and fill color indicates a more accurate prediction matching

the intended category. In (C), the color fill of points indicate the difference in posterior predictions between the /d/-exposure and control exposure models: redness

indicates better performance in the /d/-exposure model (relative to control) and grayness indicates the opposite pattern. See Supplementary Material (section 5.3)

for interactive visualization.
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non-native English model compared to the native English model.
And, paralleling participants’ goodness ratings for Flemish-
accented Swedish, no such improvement of posterior ratings
was observed under the non-native Swedish model compared
to the native Swedish model. Further analysis presented in
the Supplementary Material (section 5.2), confirmed that these
results held across randomly sampled subsets of the data (training
and test folds).

The ideal observers thus predict effects of exposure condition
on goodness ratings that qualitatively resemble the results of
both the English and the Swedish data. In particular, had we
applied the ideal observers to the exposure and test stimuli
from both experiments prior to collecting data, we would have
correctly predicted an effect for the English experiment and a
null effect for the Swedish experiment. In this sense then, the
Swedish experiment would not constitute a Type II error. The
quality of fit was also confirmed by trial-level linear mixed-effects
regressions reported in the Supplementary Material (section
5.3). These analyses found that the posterior probability of the
/d/ category was a significant predictor of listeners’ /d/-goodness
ratings (β̂ = 1.22, p < 0.001). This effect remained significant
when the experiment (English vs. Swedish), exposure group (/d/-
exposure vs. control), and their interaction were included in
the analysis (β̂ = 0.17, p < 0.02; for additional details, see
Supplementary Material, section 5.3).

To further elucidate the reason for the differences in the ideal
observers’ predictions for the two experiments, Figure 4 shows
the ideal observers’ predictions for each of the items participants
heard during test, shown in a 3D cue space. A distributional
learning framework predicts failure to observe evidence for
adaptation if (a) the non-native exposure stimuli provide
misleading information about the non-native stimuli during test
or (b) if the distributions of cues in the non-native exposure
stimuli do not differ much from native distributions. From the
first two rows of Figure 4, it is apparent that the predicted null
effect for the Swedish experiment is an example of case b): rather
than the /d/-exposure model performing badly on the test items,
both the control and the /d/-exposure model perform well on the
test items. The reason for this is also obvious: the realization of
native and non-native /d/ did not differ much for the Swedish
recordings (see also Figure 3). For the English recordings, on
the other hand, the cue distributions for the Mandarin-accented
/d/ stimuli differed starkly from those of the native-accented /d/
stimuli. Deviating from native pronunciations, the Mandarin-
accented talker showed no distinction between /d/ and /t/ in
vowel and closure duration but clear separation along the burst
dimension (Figure 3, bottom left). This gave listeners in the
/d/-exposure group a clear learning advantage over the control
exposure group.

4. DISCUSSION

Critical reviews of standard practices in the psychological
sciences have called out the tendency to dismiss null results as
uninformative (Franco et al., 2014). A welcome consequence of
this is that it is now easier to publish null results, often as failures

to replicate. This reduces the “file drawer” problem (Rosenthal,
1979). The present work can be seen as building on this idea,
aiming to understand why a null effect is observed. Specifically,
the motivation for the present report grew out of an attempt
to extend a previously replicated result of accent adaptation to
a new L1-L2 pair, Flemish-accented Swedish. Apart from the
language, test talker, and lexical materials, this experiment closely
followed the design and procedure of previous work, specifically
an experiment on Mandarin-accented English (Xie et al., 2017).
Beyond the rating results from Xie and colleagues, several other
studies with similar design had previously found the predicted
effect of /d/-exposure, indexed either by increased auditory
priming effects (Eisner et al., 2013; Xie and Myers, 2017; Xie
et al., 2017) or improved segment identification (Xie et al., 2017).
We thus expected that the experiment on Swedish would find
positive evidence of adaptation, yet it seemingly failed to do so.
After having ruled out differences in statistical power as a likely
cause for the difference in results, we turned to computational
models of speech perception to understand whether differences
in the statistical properties of the exposure and test stimuli can
explain the difference in results.

We found that ideal observers predict both the positive
evidence for an effect for Mandarin-accented English in Xie
et al. (2017) and the lack thereof in our experiment on Flemish-
accented Swedish. This suggests that the original results were
not a Type I error, nor are the Swedish results a Type II error.
Rather, our ideal observer analyses suggest that the Swedish
experiment would not find an effect even if repeated as a large-
scale replication, at least as long as the same exposure and test
stimuli are used. Indeed, even a much longer exposure phase
that repeatedly presents the same non-native /d/ pronunciation
as in our experiment on Swedish would not be expected to yield
significant changes in participants’ goodness ratings. The reason
for this is clear from Figure 4: while the Flemish-accented talker
differs from native speakers of Swedish in her realization of
Swedish syllable-final /d/, these differences are small compared
to the non-nativeness observed in the Mandarin-accented speech
employed in the experiment on English.

At least qualitatively, ideal observer models provide a good
fit against listeners’ rating responses. This is noteworthy since
the modeling approach employed here does not include any
degrees of freedom to mediate the effect of input statistics on
perception. The only parameters of ideal observers describe
the statistics of categories’ cue distributions in the speech
input. These parameters are thus not fitted to participants’
responses during the perception experiment but rather are fixed
by data from speech production—specifically, speech data that
is assumed to have formed listeners’ prior expectations based
on native speech input and speech data that listeners observe
during exposure in the experiment. Based on these speech data,
ideal observers make predictions about listeners’ perception
during a subsequent test phase (here goodness ratings). In
this sense, ideal observers offer a particularly parsimonious
explanation for the differences in results between the
two experiments.

The present findings thus are compatible with the
hypothesis that adaptation to non-native accents involves
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similar mechanisms as adaptation to talker-specific differences
between native talkers (see also Eisner et al., 2013; Reinisch and
Holt, 2014), and that these mechanisms include some form of
distributional learning (see alsoWade et al., 2007; Xie andMyers,
2017; Xie et al., 2017). Notably, recent work might be seen as
calling into question the existence of such shared mechanisms
(Zheng and Samuel, 2020). Zheng and Samuel report a failure to
find a correlation between individuals’ changes after exposure to
shifted native speech (perceptual recalibration) and exposure to
non-native accented speech (in a paradigm not unlike the present
one). However, unlike the present work, the analyses presented
by Zheng and Samuel do not assess whether such a correlation
would actually be predicted by theories of distributional learning
for the particular exposure and test recordings of their study.
And, while Zheng and Samuel present power analyses, these
analyses are based on arbitrarily selected effect sizes rather than
effect sizes expected under theories of distributional learning.
This and similar studies are thus an interesting venue for
future applications of the modeling approach presented here,
allowing researchers to shed light on the informativeness of
null findings.

The present study also contributes to efforts to facilitate
the theoretical interpretation of perception experiments through
computational modeling (e.g., Clayards et al., 2008; Feldman
et al., 2009; Toscano and McMurray, 2010; McMurray and
Jongman, 2011; Kleinschmidt and Jaeger, 2015; Kronrod et al.,
2016; Chodroff and Wilson, 2018). In particular, an emerging
body of work has used ideal observers and ideal adaptors to
quantify how changes in the distributional statistics of phonetic
cues affect listeners’ categorization decisions (e.g., Clayards
et al., 2008; Kleinschmidt and Jaeger, 2011, 2016; Kleinschmidt
et al., 2012, 2015; Theodore and Monto, 2019). When listeners
are exposed to speech in which categories’ cue distributions
deviate from those of typical talkers—e.g., in terms of changes
in categories’ means or variances—this affects how listeners
perceive and categorize subsequent input from the same talker.
This manifests in changes in the location (Kleinschmidt and
Jaeger, 2011, 2015; Kleinschmidt et al., 2012) or the steepness
of listeners’ categorization functions (Clayards et al., 2008;
Theodore and Monto, 2019) that are well-described by ideal
observer and adaptor models. More recent work has begun
to go one step further, using exposure-induced changes in
categorization behavior from multiple exposure conditions to
probe the structure of listeners’ prior expectations about cross-
talker variability (Kleinschmidt and Jaeger, 2016; Kleinschmidt,
2020).

Previous work in speech perception has employed ideal
observers mostly for 2AFC or n-AFC tasks (ideal categorizers,
e.g., Clayards et al., 2008; Hitczenko and Feldman, 2016; Xie
et al., 2021a). However, with suitable link functions, ideal
observers can be applied to other types of tasks and dependent
variables. Ideal observers have, for example, been used to
model perceptual discrimination (Feldman et al., 2009; Kronrod
et al., 2016) and sentence transcription (Xie et al., 2021b,
Supplementary Material). Here, we have extended them to
model category goodness ratings from 7-point Likert scales (see
Supplementary Material, section 4.6.4).

In the present study, we used one case study to demonstrate
how computational modeling aids the interpretation of
experimental results that run counter to expectations. But
computational models can provide substantial gain even when
the result of experiments seemingly conform to expectations. A
case in point that is directly relevant to the present study comes
from recent work by Hitczenko and Feldman (2016). Like the
present work, Hitczenko and Feldman employed computational
models post-hoc to inform the theoretical interpretation of a
previously reported finding from an experiment on adaptation
to a synthesized accent (Maye et al., 2008). Maye and colleagues
exposed listeners to synthesized American English in which all
front vowels were simulated to have undergone phonological
lowering (e.g., [i] became [ı] and [ı] became [ε], etc.). Listeners
subsequently completed a lexical decision task of previously
unheard words by the same synthesized voice with front vowels
either lowered or raised. Based on the specific pattern of results,
Maye and colleagues concluded that listeners adapted to the
synthesized accent by shifting the means of their category
representations, rather than merely becoming more accepting
of any type of input. This finding and its interpretation has
been influential, with almost 300 citations since 2008. Hitczenko
and Feldman (2016) revisit these results, comparing them to
the predictions of different types of ideal distributional learners
(ideal adaptors, an extension to the simpler ideal observers
employed here Kleinschmidt and Jaeger, 2015). Based on these
computational comparisons, Hitczenko and Feldman conclude
that shifted category representations are not the only way, or
even the best, way to explain the specific changes in listeners’
perception after exposure to the synthesized accent.

4.1. Limitations and Future Directions
These studies and the present work serve as examples of how
computational models can inform the theoretical interpretation
of empirical findings. One strength of the computational
approach is that it compels deeper introspection about the
assumptions that are necessary to derive predictions from a
theory, and to make those assumptions explicit. We refer the
reader to Table 4.2 in the Supplementary Material, which
aims to list all assumptions we made in the present study. In
the remainder, we discuss some of these assumptions, their
limitations, and how future work might go about relaxing and
revising them.

First, we made simplifying assumptions about what sources
of noise contribute to listeners’ estimates of the relevant cue
distributions. Acoustic noise in the environment and neural noise
in listeners’ perceptual systems distort the speech signal produced
by talkers beyond whatever variability results from noise during
the planning and execution of speech articulation. By estimating
distributions from speech recordings, our ideal observers ignore
whatever acoustic noise our participants experienced beyond
those in the recordings, as well as any noise within listeners’
perceptual systems2. This might explain why the responses

2At the same time, our ideal observers’ estimates of all relevant cue distributions

are likely perturbed by measurement errors due to the annotation procedure

we used.
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predicted by the ideal observers are more categorical than the
actual responses made by human listeners: adding perceptual
noise to our ideal observers would increase the variance of cue
distributions, leading to more shallow categorization functions,
and thus less categorical predicted rating responses. Previous
work has demonstrated that noise effects can be quantitatively
estimated from separate perceptual data and integrated into ideal
observers (Feldman et al., 2009; Kronrod et al., 2016). It would
be informative to see whether the inclusion of perceptual noise
improves the fit between the ideal observers’ predictions and
human perceptual decisions.

Second, we applied normalization procedures on the acoustic
cues to correct for phonotactic context effects. We made the
simple assumption that—for native listeners, whose perception
we were aiming to model—such correction is based on previous
experience with native speech, rather than being shaped by
the exposure to non-native speech in the experiment. That
is, neither the control, nor the /d/-exposure model assumed
learning of non-native phonotactic regularities. On the one
hand, this would seem to be in the spirit of C-CuRE and
related normalization approaches (Lobanov, 1971; Nearey,
1978; McMurray and Jongman, 2011). For example, C-CuRE
computes acoustic cues relative to expectations about the
mean of cues in a particular phonotactic or talker context.
Critically, the C-CuRE model presented in McMurray and
Jongman (2011) assumes that these adjustments are made
independent of each other—i.e., this normalization procedure
corrects for talker-specific differences in cue distributions and
for phonotactics, but not for talker-specific phonotactics. On the
other hand, there is evidence that non-native speech deviates
from native speech in not only the overall realization of
categories, but also in how specific phonotactic contexts affect
pronunciation (as found in, e.g., Flege and Wang, 1989; Lahiri
and Marslen-Wilson, 1991; Xie and Jaeger, 2020). Whether
listeners in the accent adaptation experiments learn these non-
native phonotactics in addition to changes in category-to-cue
distributions is an open question. Future work could therefore
compare models like ours without learning talker- or accent-
specific phonotactic patterns against models that also learn this
information.

Third, we constructed the /d/-exposure and the control
models directly from the input statistics in each accent
(non-native vs. native). These models assumed complete
learning whereby listeners are assumed to have fully converged
toward exposure statistics. In reality, rational listeners are
expected to be guided by prior beliefs based on their native
experience. While such priors facilitate adaptation to talker-
specific statistics that meet prior expectations (Kleinschmidt and
Jaeger, 2015), the same priors slow-down and constrain learning
of unexpected non-native statistics (Kleinschmidt and Jaeger,
2016; Kleinschmidt, 2020). Learners are thus not expected to
fully converge against the statistics experienced during exposure.
Future work might consider the same type of incremental
Bayesian belief updating applied in previous work on the
perception of native speech (Kleinschmidt and Jaeger, 2011;
Theodore and Monto, 2019) or synthesized speech (Hitczenko
and Feldman, 2016) to investigate adaptation to the perception
of non-native speech.

Fourth, and related to the third point, we adopted an
assumption commonly made in research on accent adaptation—
that participants were unfamiliar with the non-native accents in
the experiments. This assumption is almost always questionable.
We followed previous work (Reinisch and Holt, 2014), and asked
participants to guess the native language of the talker. Based on
this measure, participants in either experiment did not seem to
be familiar with the accent prior to the experiment. However,
explicit identification of accents is likely an unreliable measure
of participants’ previous experience with an accent (McCullough,
2015; McKenzie, 2015; Gnevsheva, 2018). It is thus possible that
some of the results we discussed here are due to participants
prior familiarity with the L2 accent in the experiment. Indeed,
additional analyses reported in the Supplementary Material

(section 5.4) found that participants in the English experiment
might have had prior familiarity withMandarin-accented English
or similar L2 accents. The effects observed by Xie et al. (2017)
thus do not necessarily reflect the same adaptation as listeners
that are completely unfamiliar with Mandarin-accented English
or similar L2 accents: on the one hand, prior familiarity might
lead to faster adaptation; on the other hand, prior familiarity
likely would reduce the difference between the two exposure
conditions, since it means that both groups of participants have
exposure toMandarin-accented /d/. As pointed out by a reviewer,
it is further possible that Swedish listeners were more familiar
with Flemish-accented Swedish (or similar accents) than L1
English listeners are familiar withMandarin-accented English (or
similar accents). This would provide an alternative explanation
for the null results in the Swedish experiment. The additional
analyses in the Supplementary Material (section 5.4) did not,
however, reveal support for this possibility. If anything, these
analyses argued against this possibility though we note that the
lack of a significant exposure effect makes it difficult to rule it out
entirely (see discussion in the Supplementary Material).

Beyond the aforementioned specifics of the models, there
are limitations to the specific way in which the present study
employed ideal observers: our approach has been both post-hoc
and confirmatory. With regard to the latter, future work could
follow in the footsteps of Hitczenko and Feldman (2016), and
compare the ideal observers developed here against alternative
hypotheses. For example, instead of distributional learning, the
effects of different exposure on listeners’ rating responses during
test might reflect changes in response biases (Clarke-Davidson
et al., 2008) or a general relaxation of response criteria (Hitczenko
and Feldman, 2016). Similarly, future work might employ the
same methods we have used here post-hoc, but do so predictively
prior to conducting the experiment. As we have illustrated
here, the distributional statistics of the specific input—and more
specifically the way in which such statistics differ between native
and non-native speech—can be linked to predicted changes in
subsequent perception. Future work could, for example, use ideal
observer-predicted categorization or rating responses in power
analyses to inform experimental designs prior to the experiment
(for similar approaches in other domains, see Jaeger et al., 2019;
Bicknell et al., in revision3).

3Bicknell, K., Bushong, W., Tanenhaus, M. K., and Jaeger, T. F. (in revision).

Listeners can maintain and rationally update uncertainty about prior words.
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Finally, it is important to recall that the reliability and
generalizability of the results presented here is limited by two
types of data sparsity. First, we used phonetically annotated
databases to estimate the implicit distributional knowledge
that listeners are hypothesized to have learned from previous
speech input. Even for well-studied languages like English, these
databases tend to be small. For Swedish, we had access to
only one talker. While efforts were taken to record a ‘typical’
talker of Swedish, with the hope that the phonetic distributions
of this talker would be representative of what native listeners
might have come to expect through a lifetime of exposure,
the results reported here might change once a larger database
with more Swedish talkers is considered. In short, the fact the
we obtained a decent fit against human performance for both
experiments does not show that the amount of data we used to
develop the ideal observers was sufficient. Additional analyses
presented in the Supplementary Material (section 5.2) address
this question. By subsetting both the training and test data for
the ideal observers into multiple separate folds, we find that
the qualitative match between model predictions and human
ratings seems to be surprisingly robust even for the small data
sets we had access to. We do, however, also find that the
results are considerably more robust for English (trained on 6
native talkers) than for Swedish (trained on 1 native talker).
Overall, the results of these additional analyses suggests (1)
that 15 training tokens per category and 15 test tokens per
category can be sufficient for the type of analysis conducted
here, but that (2) having access to data from multiple talkers
is important for the estimation of listeners’ prior (in this case
native) knowledge. The second way in which data sparsity limits
the conclusions we can draw from the present study is likely
more severe. It is also shared with the majority of work on
talker-specific accent adaptation: both experiments analyzed here
employed a single non-native accented talker. There is now
evidence that the results of such experiments can depend on
the specific talker (for evidence and discussion, see Xie et al.,
2021b). Moving forward, the same models employed here for
talker-specific adaptation can be used to understand adaptive
changes in listeners’ perception and categorization following
exposure to multiple talkers, or listeners’ ability to generalize

previously experienced input to unfamiliar talkers (for discussion
and model development, see Kleinschmidt and Jaeger, 2015,
Part II.
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