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Abstract

Motivation: Chromatin immune-precipitation sequencing (ChIP-seq) experiments are commonly

used to obtain genome-wide profiles of histone modifications associated with different types of

functional genomic elements. However, the quality of histone ChIP-seq data is affected by many ex-

perimental parameters such as the amount of input DNA, antibody specificity, ChIP enrichment

and sequencing depth. Making accurate inferences from chromatin profiling experiments that in-

volve diverse experimental parameters is challenging.

Results: We introduce a convolutional denoising algorithm, Coda, that uses convolutional neural

networks to learn a mapping from suboptimal to high-quality histone ChIP-seq data. This over-

comes various sources of noise and variability, substantially enhancing and recovering signal

when applied to low-quality chromatin profiling datasets across individuals, cell types and species.

Our method has the potential to improve data quality at reduced costs. More broadly, this ap-

proach—using a high-dimensional discriminative model to encode a generative noise process—is

generally applicable to other biological domains where it is easy to generate noisy data but difficult

to analytically characterize the noise or underlying data distribution.

Availability and implementation: https://github.com/kundajelab/coda.

Contact: akundaje@stanford.edu

1 Introduction

Distinct combinations of histone modifications are associated with

different classes of functional genomic elements such as promoters,

enhancers and genes (Consortium et al., 2015). Chromatin immuno-

precipitation followed by sequencing (ChIP-seq) experiments tar-

geting these histone modifications have been used to profile

genome-wide chromatin state in diverse populations of cell types

and tissues (Consortium et al., 2015), allowing us to better under-

stand the mechanisms of development (Bernstein et al., 2006) and

disease (Gjoneska et al., 2015).

However, the quality of histone ChIP-seq experiments is affected

by a number of experimental parameters including antibody specifi-

city and efficiency, library complexity and sequencing depth (Jung

et al., 2014). Achieving optimal experimental parameters and com-

parable data quality across experiments is often difficult, costly or

even impossible, resulting in low sensitivity and specificity of meas-

urements especially in low input samples such as rare populations of

primary cells and tissues (Acevedo et al., 2007; Brind’Amour et al.,

2015; Cao et al., 2015). For example, Brind’Amour et al., (2015)

found that single mouse embryos do not provide enough cells to pro-

file using conventional ChIP-seq techniques. Similarly Acevedo

et al., (2007) notes that tumor biopsies, fractionated cell populations

and differentiating embryonic stem cells provide very small numbers

of cells to use as input populations. Furthermore, the high sequenc-

ing depths (>50–100M reads) required for saturated detection of en-

riched regions in mammalian genomes for several broad histone

marks (Jung et al., 2014) are often not met due to cost and material

constraints. Suboptimal and variable data quality significantly com-

plicate and confound integrative analyses across large collections of

data.

To overcome these limitations, we introduce a convolutional

denoising algorithm, called Coda, that uses convolutional neural

networks (CNNs) (Jain and Seung, 2009; Krizhevsky et al., 2012) to

learn a generalizable mapping between ‘suboptimal’ and high-

quality ChIP-seq data (Fig. 1). Coda substantially attenuates three

primary sources of noise—due to low sequencing depth, low cell in-

put and low ChIP enrichment—enhancing signal in low-quality sam-

ples across individuals, cell types and species. Our approach is

conceptually related to the existing literature on structured signal re-

covery, in particular supervised denoising in images (Jain and Seung,

2009; Mousavi et al., 2015; Xie et al., 2012) and speech (Maas and

Le, 2012). It complements other efforts to impute missing genomic
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data, such as ChromImpute (Ernst and Kellis, 2015), which predict

profiles for a missing target mark in a target cell type (e.g.

H3K4me3 in embryonic stem cells) by leveraging other available

marks in the target cell type (e.g. H3K27ac in embryonic stem cells)

and target mark datasets in other reference cell types (e.g. H3K4me3

in hundreds of other cell types). In contrast, our models take in low-

quality signal of multiple target marks in a target cell type and

denoise them all (e.g. using low-quality H3K27ac and H3K4me3

signal from a given cell population to produce higher-quality

H3K27ac and H3K4me3 signal in that same cell population).

Neural networks have been successfully used to reduce noise in

image data (Jain and Seung, 2009) and speech data (Amodei et al.,

2016; Maas and Le, 2012), and there are several reasons to believe

that neural networks could similarly denoise histone ChIP-seq data.

First, histone marks have regular structure: peaks in each mark, for

example, might tend to have certain widths and certain shapes. This

means that a noisy signal can be denoised by a model that encodes

prior expectations of what a clean signal should look like, just as

humans use the regular structure in speech to decode noisy speech

signals. Second, histone marks are correlated; thus, one noisy mark

can be denoised using information from other noisy marks. Third,

neural networks excel at flexibly learning complex non-linear re-

lationships when given large amounts of data, making them

ideal for genome-wide applications. Indeed, neural networks have

recently been successfully applied to many biological domains

(Angermueller et al., 2016b): for example, they have been used to

predict regulatory sequence determinants of DNA- and RNA-bind-

ing proteins (Alipanahi et al., 2015; Zhou and Troyanskaya, 2015),

chromatin accessibility (Kelley et al., 2015) and methylation status

(Angermueller et al., 2016a).

2 Materials and methods

2.1 Model
Coda takes in a pair of matching ChIP-seq datasets of the same his-

tone modifications in the same cell type—one high-quality and the

other noisy—and uses CNNs to learn a mapping from the noisy to

the high-quality ChIP-seq data. The noisy dataset used in training

can be derived computationally (e.g. by subsampling the high-

quality data) or experimentally (e.g. by conducting the same ChIP-

seq experiment with fewer input cells). Once this mapping has been

learned, the same mapping can then be applied to new, noisy data in

any other cellular context with the same underlying noise structure.

For each type of noise (e.g. due to low cell numbers, sequencing

depth or enrichment) and each target histone mark, we train two

separate CNNs to accomplish two tasks: a regression task to predict

histone ChIP signal (i.e. the fold enrichment of ChIP reads over in-

put DNA control) and a binary classification task to predict the

presence or absence of a significant histone mark peak (Fig. 2). In

total, if a given experiment has M marks, then we train 2M models

separately (one regression and one classification model for each

mark). Each individual model makes use of the noisy ChIP-seq data

from all available marks but outputs only one target histone mark.

This allows us to learn separate features for each mark and task

while still leveraging information from multiple input histone

marks; we find empirically that this improves performance.

For computational efficiency, we first bin the genome into 25 bp

bins, averaging the signal in each bin. Let L be the number of bins in

the genome (i.e. the length of the genome divided by 25). Each indi-

vidual model takes in an M�L input matrix X and returns a 1� L

output vector Y representing the predicted high-quality signal (in the

regression setting) or peak calls (in the classification setting). It does

this by feeding the noisy data through a first convolutional layer, a

rectified linear unit (ReLU) layer, a second convolutional layer, and

then a final ReLU or sigmoid layer (for regression or classification,

respectively). For the first convolutional layer, we use 6 convolu-

tional filters, each 51 bins in length; for the second convolutional

Fig. 1. Overall model. Coda learns a transformation from noisy histone ChIP-

seq data to a set of clean signal tracks and accurate peak calls. Top: a noisy

signal track derived from 1M ChIP-seq reads per histone mark on the lympho-

blastoid cell line GM12878. Bottom: a high-quality signal track derived from

100þM ChIP-seq reads per histone mark from the same experiment. S, sig-

nal; P, peak calls

Fig. 2. Model architecture. Coda learns two separate convolutional neural net-

works (CNN) for each target histone mark, one for regression (signal track re-

construction) and the other for classification (peak calling). All networks

share the same architecture. Here, we show a schematic of a model trained to

output a denoised signal track for H3K27ac. To make a prediction on a single

location, we take in 25 025 bp of data from all available histone marks cen-

tered at that location and pass it through two convolutional layers
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layer, we use a single filter of length 1001. Effectively, this means

that a prediction at the ith bin is a function of the noisy data at a

25 025 bp window centered on the ith bin. We chose the number of

convolutional filters and the length of each filter using cross-

validation; for optimal performance on other datasets, cross-

validation could again be used to select hyperparameters.

The convolutional nature of our models (and the lack of max-

pooling layers commonly seen in neural network architectures for

computer vision) enables us to do efficient genome-wide prediction,

as 98% of the computation required for predicting signal at the ith

bin is shared with the computation required for predicting the

ðiþ 1Þth bin. In particular, to compute the prediction at the ith bin,

the network needs to perform 6� 1001� 51 operations at the first

convolutional layer and 6�1001 operations at the second convolu-

tional layer. To compute the prediction at the ðiþ 1Þth bin, the net-

work needs to perform only 6�51 more operations at the first

convolutional layer and 6�1001 operations at the second convolu-

tional layer, saving 6� 1001� 50 operations. Other models, espe-

cially non-linear models such as random forests, would require a

completely separate set of computations for each bin and are there-

fore significantly more computationally expensive when it comes to

making predictions across the entire genome.

2.2 Training and evaluation
We applied Coda to three distinct sources of noise: low sequencing

depth, low cell input, and low ChIP enrichment. In all cases, the in-

puts to our model were noisy signal measurements of multiple his-

tone marks (see Section 5 for more details), and we trained separate

models to predict the high-quality signal and peak calls for each tar-

get mark. For all tasks, we test the model on a different cell line or

individual than we train it on.

For the regression tasks (predicting signal), we evaluated per-

formance by computing the Pearson correlation and mean-squared

error (MSE) between the predicted and measured high-quality fold-

enrichment signal profiles after an inverse hyperbolic sine trans-

formation, which reduced the dominance of outliers. We compared

this with the baseline performance obtained by directly comparing

the noisy and high-quality signal profiles of the target mark (after

the same inverse hyperbolic sine transformation).

For the classification tasks (predicting presence or absence of a

peak), we compared our model’s output to peaks called by the

MACS2 peak caller (Feng et al., 2012) on the high-quality signal for

the target mark. As our dataset is unbalanced—peaks only make up

a small proportion of the genome—we evaluated performance by

computing the area under the precision-recall curve (AUPRC), a

standard measure of classification performance for unbalanced data-

sets (Davis and Goadrich, 2006). We compared the AUPRC of our

model with a baseline obtained by comparing MACS2 peaks on the

noisy data for the target mark to those obtained from the high-

quality data for the target mark (see Section 5 for further details on

dataset preparation).

We trained our models on 50 000 positions randomly sampled

from peak regions of the genome and 50 000 positions sampled

from non-peak regions, sampling from each autosome with equal

likelihood. We defined peak regions using the output mark of inter-

est and with the high-quality data. Further increasing dataset size

did not increase performance; as each sample covered 25 025 bp,

100 000 samples provided good coverage of the entire genome. We

selected the training dataset to be balanced because a uniformly

drawn dataset would have had very few peaks, making it difficult

for the model to learn to predict at peak regions; however, the test

results reported in this paper are on the entire (unbalanced) genome.

We used the Keras package (Chollet, 2015) for training and

AdaGrad (Duchi et al., 2011) as the optimizer, stopping training if

validation loss did not improve for three consecutive epochs. We did

not observe overfitting with our models (train and test error were

comparable), and therefore opted not to use common regularization

techniques such as dropout (Srivastava et al., 2014).

We chose model hyperparameters and architecture through hold-

out validation on the low-sequencing-depth denoising task with

GM12878 as the training cell line (Kasowski et al., 2013), holding

out a random 20% subset of the training data for validation; this task

will be discussed in more detail in the next section. The model archi-

tecture described above (6 convolutional filters each 51 bins in length

in the first layer, and 1 convolutional filter of length 1001 in the se-

cond layer) yielded optimal validation performance out of the config-

urations we tried (varying the number of convolutional filters and the

lengths of the filters by up to an order of magnitude). Adding an add-

itional layer to the neural network brought a modest increase in per-

formance at the cost of more computation time and complexity. To

be sure that our model architecture generalized, we used the same

architecture and hyperparameters for all denoising tasks without any

further tuning.

3 Results

3.1 Removing noise from low sequencing depth data
A minimum of 40–50M reads is recommended for optimal sensitiv-

ity for histone ChIP-seq experiments in human samples targeting

most canonical histone marks (Jung et al., 2014). As adhering to this

standard can often be infeasible due to cost and other limitations, a

substantial proportion of publicly available datasets do not meet

these standards. Motivated by these constraints, we tested whether

our model could recover high-read depth signal from low-read depth

experiments.

3.2 Training and testing on the same cell type across

different individuals
We evaluated Coda on lymphoblastoid cell lines (LCLs) derived

from six individuals of diverse ancestry [European (CEU), Yoruba

(YRI), Japanese, Han Chinese, San] (Kasowski et al., 2013). We

used the CEU-derived cell line (GM12878) to train our model to re-

construct the high-depth signal (100Mþ reads per mark; exact num-

bers in Data Availability and Processing) from a simulated noisy

signal derived by subsampling 1M reads per mark. On the other five

cell lines, Coda significantly improved Pearson’s correlation be-

tween the full and noisy signal (Fig. 3A, left) and the accuracy of

peak calling (Fig. 3A, right). Using just 1M reads per mark, the out-

put of our model was equivalent in quality to signal derived from

15Mþ reads (H3K27ac) to 25Mþ reads (H3K36me3) (Fig. 3B).

Figure 4 shows how Coda can accurately reconstruct histone modifi-

cation levels at the promoter of the PAX5 gene, a master transcrip-

tion factor required for differentiation into the B-lymphoid lineage

(Nutt et al., 1999).

We confirmed Coda was not simply memorizing the profile of

the training cell line (GM12878) and copying it to the test cell lines

by examining differential regions, called by DESeq (Anders and

Huber, 2010), between GM12878 and the other cell lines (Kasowski

et al., 2013). Coda improved correlation and peak-calling even in

those regions (Table 1). Similarly, it also improved correlation on

the regions of the genome with enriched signal, i.e. called as statistic-

ally significant peaks (Table 2).
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3.3 Training and testing on different cell types across

different individuals
We next assessed if Coda could be trained on one cell type in one in-

dividual and used to denoise low-sequencing-depth data from a dif-

ferent cell type in a different individual. As above, the model was

trained to output high-depth data (30M reads) from low-depth data

(1M reads). We used histone ChIP-seq data spanning T-cells (E037),

monocytes (E029), mesenchymal stem cells (MSCs, E026), and

fibroblasts (E056) from the Roadmap Epigenomics Consortium

(Consortium et al., 2015). Coda substantially improved the quality

of the low-depth signal on the test cell type for all pairs of cell types

(Table 3), illustrating that it can denoise low-depth data on a cell

type even if high-depth training data for that cell type is not

available.

3.4 Coda outperforms linear baselines
We compared Coda with a linear and logistic regression baseline for

signal denoising and peak calling, respectively. In both cases, we

used an input region of the same size as Coda (i.e. 25 025 bp cen-

tered on the location to be predicted, binned into 25 bp bins). As

noted above, the desire for computational efficiency in making

genome-wide predictions across multiple marks limits the complex-

ity of models that would be practically useful in genome-wide

prediction.

Fig. 3. Coda removes noise from low-sequencing-depth experiments on lym-

phoblastoid cell lines derived from different individuals. (A) Compared with

the signal from subsampled reads (blue), the denoised signal (green) shows

greater correlation with the full signal (left) and more accurate peak-calling

(right) across all cell lines. The model was trained on GM12878 and tested on

different cell lines; within each column in the plot, each point is a single test

cell line. (B) With 1M reads per mark, the denoised H3K27ac data are equiva-

lent in quality to a dataset with 15Mþ reads per mark, and the H3K36me3

data are equivalent in quality to a dataset with 25Mþ reads per mark. Similar

results hold for other marks. These results are from training on GM12878 and

testing on GM18526

Fig. 4. Genome browser tracks for low-sequencing-depth experiments. We

compare noisy signal and peak calls obtained from 1M reads per mark (top)

with Coda’s output (middle) and the target, high-quality signal and peak calls

obtained from 100Mþ reads per mark (bottom) at the PAX5 promoter. Coda

successfully cleans up signal across all histone marks and correctly calls the

H3K27ac, H3K36me3, and H3K4me1 peaks (missed in the noisy data) while

removing the spurious H3K27me3 peak calls. Note that we show the noisy

peak calls to allow for comparisons; Coda uses only the noisy signal, not the

peak calls, as input. The signal tracks are in arcsinh units, with the following

y-axis scales: H3K27ac: 0–160, H3K27me3: 0–20, H3K36me3 and H3K4me1:

0–40, H3K4me3: 300. The shading of the peak tracks that the model outputs

represent the strength of the peak call on a scale of 0–1

Table 1. Denoising differential regions (diff. reg.) between test cell

line GM18526 and training cell line GM12878

MSE (diff. reg.) Pearson’s R (diff. reg.) AUPRC (diff. reg.)

H3K4me1 285% (4.01, 0.57) 159% (0.37, 0.59) 103% (0.93, 0.97)

H3K4me3 275% (2.88, 0.70) 114% (0.63, 0.72) 111% (0.78, 0.87)

H3K27ac 286% (3.43, 0.48) 139% (0.55, 0.77) 106% (0.90, 0.96)

H3K27me3280% (0.78, 0.15) 1106% (0.14, 0.30) –

Performance reported is improvement of the denoised model over baseline

(original, subsampled reads) on the test cell line. In parentheses, we report the

baseline results followed by the denoised results. Peak-calling results on

H3K27me3 are omitted due to the lack of peak calls in differential regions; all

results on H3K36me3 are omitted due to low number of differential regions.

Table 2. Denoising peak regions between test cell line GM18526

and training cell line GM12878

MSE (peaks) Pearson’s R (peaks)

H3K4me1 286% (3.69, 0.49) 156% (0.44, 0.70)

H3K4me3 283% (2.93, 0.50) 111% (0.78, 0.87)

H3K27ac 287% (3.36, 0.43) 128% (0.65, 0.83)

H3K27me3 290% (2.20, 0.21) 1103% (0.18, 0.36)

H3K36me3 293% (3.78, 0.25) 1120% (0.32, 0.70)

Performance reported is improvement of the denoised model over baseline

(original, subsampled reads) on the test cell line. In parentheses we report the

baseline results followed by the denoised results.
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When evaluated in the same cell type, different individual set-

ting, Coda achieved 3� lower MSE on peak regions and 2� lower

MSE on differential regions, with similar (very slightly better) MSE

and correlation across the whole genome. This implies that Coda is

better able to learn to match the exact values of the signal tracks on

‘difficult’ regions (i.e. where there is the greatest deviation from the

training signal), even though the linear model matches the rough

shape. These regions are important to predict well because they can

give insight into the differences between individuals and cell types.

We note that many forms of smoothing can be represented via

linear regression. For example, a standard Gaussian filter can be in-

terpreted as taking a linear combination of surrounding points with

fixed coefficients. The comparison against a linear regression base-

line therefore sets an upper bound for the performance of simple

smoothing measures on this task (assuming no overfitting, which we

do not observe in our case).

3.5 Comparisons to denoising and imputation
Next, we studied Coda’s performance in two additional settings:

pure denoising (using the noisy target mark as the only input mark)

and imputation from noise (using all noisy histone marks but the

target mark as the input marks). This is in contrast to the standard

setting described above, where we use all noisy histone marks,

including the noisy version of the target mark, to recover a high-

quality version of the target mark.

In the denoising case, Pearson’s correlation dropped by 0.03

points and AUPRC dropped by 0.05, on average, compared with

when all marks were used as input. Thus, additional marks provided

some information, but the denoised signal was still substantially bet-

ter than the original subsampled signal.

In the imputation case, performance dropped somewhat on the

narrow marks (H3K4me1, H3K4me3, H3K27ac; –0.12 correlation,

–0.13 AUPRC) and dropped more on the broad marks (H3K27me3,

H3K36me3; –0.29 correlation, –0.30 AUPRC). The gap in correl-

ation was even larger within peak regions. Thus, having a noisy

version of the target mark substantially boosts recovery of the high-

quality signal.

3.6 Removing noise from low cell input
Conventional ChIP-seq protocols require a large number of cells to

reach the necessary sequencing depth and library complexity

(Brind’Amour et al., 2015; Cao et al., 2015), precluding profiling

when input material is limited. Several ChIP-seq protocols were re-

cently developed to address this problem. We studied ULI-NChIP-

seq (Brind’Amour et al., 2015) and MOWChIP-seq (Cao et al.,

2015), which use low cell input (102 � 103 cells) to generate signal

that is highly correlated, when averaged over bins of size 2–4 kb,

with experiments with high cell input. However, at a finer scale of

25bp, the low-input signals from both protocols are poorly corre-

lated with the high-input signals (Table 4).

We thus used Coda to recover high-resolution, high-cell-input

signal from low-cell-input signal specific to each protocol. For ULI-

NChIP-seq, we used a single mouse embryonic stem cell dataset

(Brind’Amour et al., 2015). For MOWChIP-seq, we trained on data

from the human LCL GM12878 and tested on hematopoietic stem

and progenitor cells (HSPCs) from mouse fetal liver (Cao et al.,

2015). Coda successfully denoised the low-input signal from both

protocols (Table 4). Figure 5 illustrates our model denoising

MOWChIP-seq signal across the Runx1 gene, a key regulator of

HSPCs (North et al., 2002); the results of peak calling were too

noisy, even on the original 10 000-cell data, to allow for any qualita-

tive judgment of improvement.

We note that the Pearson correlations between the low cell input

and high cell input in the original ULI-NChIP-seq (Brind’Amour

et al., 2015) and MOWChIP-seq (Cao et al., 2015) papers are sig-

nificantly higher than the ones we report here. We report lower cor-

relations because we use a smaller bin size for the genome, as noted

above; we look at correlation across the whole genome, instead of

only at transcription start sites; and we compute correlation after an

arcsinh transformation to prevent large peaks from dominating the

correlation. Therefore, while the original low-cell-input data is suit-

able for studying histone ChIP-seq signal at a coarse-grained level

and around genetic elements like transcription start sites, the

denoised data is more accurate at a fine-grained level and across the

whole genome.

3.7 Removing noise from low-enrichment ChIP-seq
Histone ChIP-seq experiments use antibodies to enrich for genomic

regions associated with the target histone mark. When an antibody

Table 3. Cross cell-type experiments

Monocytes MSCs Fibroblasts

Pearson’s R

T-cells 133% (0.51, 0.67) 158% (0.44, 0.70) 178% (0.36, 0.65)

Monocytes – 159% (0.44, 0.70) 179% (0.36, 0.65)

MSCs – – 181% (0.36, 0.66)

AUPRC

T-cells 1116% (0.31, 0.66) 1136% (0.31, 0.72) 194% (0.35, 0.69)

Monocytes – 1139% (0.31, 0.73) 194% (0.35, 0.69)

MSCs – – 1100% (0.35, 0.71)

Rows are train cell type, while columns are test cell type. In parentheses, we report the baseline results followed by the denoised results, averaged across all his-

tone marks used.

Table 4. Low-cell-input experiments

MSE Pearson’s R AUPRC

ULI-NChIP

H3K4me3 261% (1.39, 0.54) 1208% (0.13, 0.41) 161% (0.24, 0.38)

H3K9me3 246% (0.51, 0.27) 128% (0.41, 0.53) 132% (0.28, 0.36)

H3K27me3 241% (0.68, 0.40) 157% (0.34, 0.54) 132% (0.34, 0.45)

MOWChIP

H3K4me3 242% (1.18, 0.68) 1122% (0.14, 0.31) 134% (0.19, 0.25)

H3K27ac 221% (1.44, 1.14) 1159% (0.09, 0.24) 166% (0.15, 0.24)

We report improvement of the denoised model output over baseline (ori-

ginal low-input experiments), when compared with high-input experiments.

In parentheses we report the baseline results followed by the denoised results.
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with low specificity or sensitivity for the target is used, the resulting

ChIP-seq data will be poorly enriched for the target mark. This is a

major source of noise (Landt et al., 2012). We simulated results

from low-enrichment experiments by corrupting GM12878 and

GM18526 LCL data (Kasowski et al., 2013). For each histone mark

profiled in those cell lines, we kept only 10% of the actual reads and

replaced the other 90% with reads taken from the control ChIP-seq

experiment, which was done without the use of any antibody; this

simulates an antibody with very low specificity.

This corruption process significantly degraded the genome-wide

Pearson’s correlation and the accuracy of peak calling (Table 5).

This shows that recovering the true signal from the corrupted data

cannot be achieved by simply linearly scaling the signal (e.g. multi-

plying the empirical fold enrichment by 10 since only 10% of the ac-

tual reads were kept), as if that were the case, the correlation would

be unchanged. In contrast, when trained on GM12878 and tested on

GM18526, Coda accurately recovered high-quality, uncorrupted

signal from the corrupted data (Table 5). Figure 6 shows a compari-

son of Coda’s output versus the corrupted and uncorrupted data at

the promoter of the EBF1 gene, another key transcription factor of

the B-lymphoid lineage. (Nechanitzky et al., 2013)

To further validate Coda’s output, we examined aggregate his-

tone ChIP-seq signal around known biological regions of interest. In

particular, we used the fact that H3K4me1 and H3K27ac, known

enhancer marks, are enriched at DNase I hypersensitive sites

(DHSs), whereas H3K27me3 is depleted at DHSs. (Shu et al., 2011)

For each of those marks, we compared the average uncorrupted sig-

nal, the average denoised signal, and the average low-enrichment

signal within 5000 bp of the summits of DNase I hypersensitive

peaks in GM12878 from ENCODE data (Bernstein et al., 2012). As

expected, the corrupted, low-enrichment signal was biased by the

reads from the control experiment and had significantly lower fold

enrichment of H3K4me1 and H3K27ac at DHSs, compared to the

uncorrupted signal. In contrast, the denoised signal was significantly

more enriched at DHSs than the corrupted signal, more closely

resembling the uncorrupted signal. Conversely, the corrupted signal

had higher levels of H3K27me3 at DHSs, whereas the denoised

signal had low levels of H3K27me3 throughout the DHS, similar to

the uncorrupted signal though without a dip at the peak summit

(Fig. 7).

4 Conclusion

We describe a convolutional denoising algorithm, Coda, that uses

paired noisy and high-quality samples to substantially improve the

quality of new, noisy ChIP-seq data. Our approach transfers infor-

mation from generative noise processes (e.g. mixing in control reads

to simulate low-enrichment, or performing low-input experiments)

to a flexible discriminative model that can be used to denoise new

data. We believe that a similar approach can be used in other biolo-

gical assays, e.g. ATAC-seq and DNase-seq (Buenrostro et al., 2013;

Crawford et al., 2006), where it is near impossible to analytically

characterize all types of technical noise or the overall data

Fig. 5. Genome browser tracks for low-cell-input experiments. We compare

noisy signal obtained from 100 cells (top) with Coda’s output (middle) and the

target, high-quality signal obtained from 10 000 cells (bottom) at the Runx1

gene in mouse hematopoietic stem and progenitor cells. The model was

trained on MOWChIP-seq data generated from human LCL (GM12878) and

captures two strong peaks at the promoters of the two isoform classes,

removing much of the intervening noise. The signal tracks are in arcsinh

units, with a scale of 0–40 for both histone marks

Fig. 6. Genome browser tracks for low-enrichment ChIP-seq experiments. We

compare noisy signal and peak calls obtained from the corrupted data with

10% enrichment (top) with Coda’s output (middle) and the target, high-quality

signal and peak calls obtained from the uncorrupted data (bottom) at the

EBF1 promoter. Coda significantly improves the signal-to-noise ratio and cor-

rectly calls the H3K27ac, H3K36me3, H3K4me1 and H3K4me3 peaks that were

missed in the noisy data while removing a spurious H3K27me3 peak call.

Note that we show the noisy peak calls to allow for comparisons; Coda uses

only the noisy signal, not the peak calls, as input. The signal tracks are in arc-

sinh units, with the following y-axis scales: H3K27ac: 0–60, H3K27me3,

H3K36me3 and H3K4me1: 0–40, H3K4me3: 100. The shading of the peak

tracks that the model outputs represent the strength of the peak call on a

scale of 0–1

Table 5. Low-enrichment experiments

MSE Pearson’s R AUPRC

H3K4me1 275% (0.35, 0.09) 142% (0.64, 0.91) 1215% (0.29, 0.92)

H3K4me3 286% (0.44, 0.06) 154% (0.58, 0.91) 194% (0.49, 0.95)

H3K27ac 270% (0.37, 0.11) 137% (0.65, 0.90) 1121% (0.43, 0.94)

H3K27me3 261% (0.27, 0.10) 188% (0.42, 0.78) 1242% (0.14, 0.49)

H3K36me3 282% (0.36, 0.06) 147% (0.65, 0.95) 1168% (0.36, 0.98)

We report improvement of the denoised model output over baseline (low-

enrichment experiments), when compared with high-enrichment experiments.

In parentheses we report the baseline results followed by the denoised results.
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distribution but possible to generate noisy versions of high-quality

samples through experimental or computational perturbation. This

can significantly reduce cost while maintaining or even improving

quality, especially in high-throughput settings or when dealing with

limited amounts of input material (e.g. in clinical studies).

An important caveat to our work is that Coda’s performance de-

pends strongly on the similarity of the noise distributions and underlying

data distributions in the test and training sets. For example, Coda expects

that the relationships between different histone marks are conserved be-

tween the test and training set. Thus, applying Coda to test data that is

very different from its training data is unlikely to work, and it is import-

ant to assess the reliability of the denoised output. We suggest examining

whether the denoised signals near regions of interest (e.g. DNase hyper-

sensitive sites) match the expected patterns (Fig. 7). Assessing whether

the QC metrics for the noisy data (e.g. sampling depth) fall within the

ranges discussed in this paper provides another check.

We also assume that the noise parameters in the test data are

known in advance, e.g. the sequencing depth, the number of input

cells, or the level of ChIP enrichment. In some cases (e.g. the low-

sequencing-depth and low-cell-input settings) this is true, but in

others (e.g. the low-enrichment setting) it may not be. An important

direction for future work is to make Coda more robust; for example,

training a single model over various settings of the noise parameters

and various cell types could improve the generalizability of the

models.

To further improve performance, more complex neural network

architectures could also be explored. Possibilities include using re-

current neural networks (Sutskever et al., 2014) to explicitly model

long-range spatial correlations in the genome; multi-tasking across

output marks instead of training separate models for each mark; or

using deeper networks.

Another avenue for future work is using more than just the noisy

histone ChIP-seq data at test time. In this work, we use only the

noisy data at test time, training our models to transform it into high-

quality data. In reality, at test time we might have access to other

data; for example, we might also have the DNA sequence of the test

sample or access to high-quality ChIP-seq data on a closely related

cell type. Other work has used DNA sequence to predict transcrip-

tion factor binding (Alipanahi et al., 2015; Zhou and Troyanskaya,

2015), chromatin accessibility (Kelley et al., 2015), and methylation

status (Angermueller et al., 2016a). A natural next step would be to

combine the ideas from these methods with ours, e.g. by having a

separate convolutional module in our neural network that incorpor-

ates sequence information and joins with the ChIP-seq module at an

intermediate layer. Others have also used high-quality ChIP-seq

data from closely related cell types for imputation (Ernst and Kellis,

2015); combining this with our denoising approach could help to

avoid a potential pitfall of these imputation approaches, namely the

loss of cell-type-specific signal, while improving the accuracy of our

denoised output.

Below, we provide a link to a script that trains a model for low-

sequencing-depth noise using the LCL data described above. Since

the type of noise can vary from context to context, we also provide

the code for the general Coda framework to allow for developers of

new protocols (e.g. new low-cell-count techniques) or core facilities

that have high throughput to train Coda with data specific to their

context.

5. Data availability and processing

5.1 Datasets
We used the following publicly-available GEO datasets in this work:

1. GSE50893 for ChIP-seq data on LCLs (Kasowski et al., 2013)

2. GSE63523 for ULI-NChIP-seq data (Brind’Amour et al., 2015)

3. GSE65516 for MOWChIP-seq data (Cao et al., 2015)

4. GSM736620 for DNase I hypersensitive peaks (Bernstein et al.,

2012)

For the low-sequencing-depth experiments, the full depth for

GM12878 (training set) was 171M (million reads) for H3K4me1,

168M for H3K4me3, 328M for H3K27ac, 265M for H3K27me3

and 123M for H3K36me3. The full depth for GM18526 (test set)

was 120M for H3K4me1, 136M for H3K4me3, 125M for

H3K27ac, 138M for H327me3 and 223M for H3K36me3.

For the cross-cell-type experiments, we used the consolidated

Roadmap Epigenomics data (Consortium et al., 2015), which is pub-

licly available from http://egg2.wustl.edu/roadmap/data/byFileType/

alignments/. Each mark is downsampled to a maximum of 30M reads

to maximize consistency across marks; we used this as the full depth

Fig. 7. Aggregate histone ChIP-seq signal at DNase I hypersensitive sites. We

compare the average uncorrupted signal (full), the average denoised signal

(denoised) and the average corrupted signal (low enrichment) at DNase I

hypersensitive sites. Across all histone marks, the denoised signal is signifi-

cantly more similar to the uncorrupted signal than the corrupted signal is
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data, and downsampled to 1M reads for the noisy data. A detailed de-

scription of this dataset is available in Roadmap Epigenomics Project

(2015).

5.2 Dataset preparation
5.2.1 Fold change signal profiles and peak calling

For each experiment, we used align2rawsignal (Kundaje, 2013) to

generate signal tracks and MACS2 (Feng et al., 2012) to call peaks,

as implemented in the AQUAS package (Lee and Kundaje, 2016).

For the signal track, we used fold change relative to the expected

uniform distribution of reads after an inverse hyperbolic sine trans-

formation (Hoffman et al., 2012). We used the gappedPeaks output

from MACS2 as the peak calls. For computational efficiency, we

binned the genome into 25 bp segments, averaging the signal in each

segment.

We evaluated our peak calling on a bin-by-bin basis, i.e. our

model output one number for each bin representing the probability

that bin was a true peak, and we treated each bin as a separate ex-

ample for the purposes of computing AUPRC, our metric for peak

calling performance. To get ground truth data for our peak calling

tasks, we labeled each bin as ‘peak’ or ‘non-peak’ based on whether

that bin was part of a peak called by MACS2 on the high-quality

data.

Computing AUPRC requires predictions to be ranked in order of

confidence. For our model, we used the output probabilities for each

bin to calculate the ranking. MACS2 outputs both a peak P-value

track, assigning a P-value to each genomic coordinate and a set of

binary peak calls. To measure baseline performance on the noisy

data, we ranked each bin by the maximum peak P-value assigned by

MACS2 to a genomic coordinate in that bin, unless that bin did not

intersect with any of the binary peak calls, in which case it was as-

signed a P-value of �inf (i.e. ranked last). We did this to ensure that

the high-quality peak track had an AUPRC of 1; empirically, this

also improved performance of the noisy MACS2 baseline.

5.2.2 Histone marks used

We used different sets of input and output histone marks for differ-

ent experiments depending on which marks each dataset provided.

For the same cell type, different individual experiments (using

LCLs), we trained and tested on H3K4me1, H3K4me3, H3K27ac,

H3K27me3 and H3K36me3; we used the same data for the low-

ChIP-enrichment experiments. For the different cell type, different

individual experiments [using the uniformly processed Roadmap

Epigenomics Consortium datasets (Consortium et al., 2015)], we

trained and tested on H3K4me1, H3K4me3, H3K9me3, H3K27ac,

H3K27me3 and H3K36me3. For all of the above experiments, we

also used data from the control experiments (no antibody) as input.

Lastly, for the low-cell-input experiments, we used H3K4me3,

H3K9me3 and H3K27me3 from the ULI-NChIP-seq dataset and

H3K4me3 and H3K27ac from the MOWChIP-seq dataset.

5.2.3 Low-cell-input datasets

The ULI-NChIP-seq (Brind’Amour et al., 2015) and MOWChIP-seq

(Cao et al., 2015) papers provided several datasets corresponding to

different numbers of input cells used. For each protocol, we used the

datasets with the lowest number of input cells as the noisy input

data (ULI-NChIP-seq: 103 cells for H3K9me3 and H3K27me3,

5�103 cells for H3K4me3; MOWChIP-seq: 102 cells) and the data-

sets with the highest number of input cells as the gold-standard,

high-quality data (ULI-NChIP-seq: 106 cells for H3K9me3, 105 cells

for H3K4me3 and H3K27me3; MOWChIP-seq: 104 cells). The ULI-

NChIP-seq data had matching low- and high-input experiments

only for a single cell type, so we divided it into chr5–19 for training,

chr3–4 for validation and chr1–2 for testing.

Code, data and browser track availability

Our code is available on Github at https://github.com/kundajelab/

coda, including a script that downloads pre-processed data and rep-

licates the low-sequencing-depth experiments described above, as

well as code for processing new data.

The figures of browser tracks (Figs 4–6) shown above were taken

from the Wash U Epigenome Browser (Zhou and Wang, 2012).

Links to the entire browser tracks are as follows:

• Figure 4, low-sequencing-depth experiments on LCL GM12878:

http://epigenomegateway.wustl.edu/browser/?genome¼hg19&se

ssion¼KZvYzGBt03&statusId¼107864126
• Figure 5, low-cell-count experiments on mouse HSPCs: http://epi

genomegateway.wustl.edu/browser/?genome¼mm9&session¼PJ

Ur7vAwEh&statusId¼1611801659
• Figure 6, low-enrichment experiments on LCL GM12878: http://

epigenomegateway.wustl.edu/browser/?genome¼hg19&session

¼3hDZdGiGmF&statusId¼1913128468
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