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Lycium barbarum polysaccharides (LBPs) have been proved to prevent obesity and
modulate gut microbiota. However, the underlying mechanisms of LBPs’ regulating
lipid metabolism remain entirely unclear. Therefore, the purpose of this study was to
determine whether LBPs are able to modulate the gut microbiota to prevent obesity. The
results showed that oral administration of LBPs alleviated dyslipidemia by decreasing
the serum levels of total triglycerides, total cholesterol, and low-density lipoprotein-
cholesterol and elevating the high-density lipoprotein cholesterol in obese mice.
Furthermore, LBP treatment decreased the number and size of adipocytes in epididymal
adipose tissues and downregulated the expression of adipogenesis-related genes,
including acetyl-CoA carboxylase 1, fatty acid synthase, stearoyl-CoA desaturase 1,
sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor
γ, and CCAAT/enhancer-binding protein α. 16S rRNA gene sequencing analysis showed
that LBPs increased the diversity of bacteria, reduced the Firmicutes/Bacteroidetes
ratio, and improved the gut dysbiosis induced by a high-fat diet; for example, LBPs
increased the production of short-chain fatty acid-producing bacteria Lacticigenium,
Lachnospiraceae_NK4A136_group, and Butyricicoccus. LBPs treatment also increased
the content of fecal short-chain fatty acids, including butyric acid. These findings
illustrate that LBPs might be developed as a potential prebiotic to improve lipid
metabolism and intestinal diseases.

Keywords: Lycium barbarum polysaccharides, high-fat diet, gut microbiota, lipid metabolism, obesity

INTRODUCTION

Obesity is an important risk factor for many chronic diseases such as type II diabetes, cardiovascular
and cerebrovascular diseases, cancer, and so on (Shin and Yoon, 2018), and which has become
one of the top health problems in the world. It becomes a major challenge for modern societies to
decrease the incidence of obesity and its associated diseases. The pathogenesis of obesity is complex
that mainly involves genetic and environmental factors (Silventoinen et al., 2007). A wealth of
evidence has demonstrated that the gut microbiota plays an important role in regulating nutrient
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acquisition and body weight, thus serving as a key factor to
regulate obesity, and its associated disorders (Ridaura et al., 2013;
Sanmiguel et al., 2015).

The gut microbiota primarily contains Firmicutes,
Bacteroidetes, Actinobacteria, and Proteobacteria phyla, which
are composed of more than 1,000 different bacterial species,
but not all species are known to this date (Ley et al., 2005).
A high-fat diet has been reported to reshape the gut microbiota,
particularly by increasing the proportion of Firmicutes in
relation to Bacteroidetes, which plays a significant role in the
pathogenesis of obesity-induced metabolic diseases (Hildebrandt
et al., 2009). Several studies provide scientific evidence that the
gut microbiota is becoming a promising therapeutic target for
dietary interventions to protect against obesity (Ojo et al., 2016;
Zheng et al., 2018). In recent years, some plant-derived natural
bioactive compounds, including polysaccharides, were reported
to be helpful to reduce weight gain, and fat accumulation
via the modulation of the gut microbiota (Shang et al., 2017;
Sun et al., 2018).

Red-colored fruits of Lycium barbarum (Gouqizi, Fructus
Lycii, or wolfberry) are used as traditional Chinese herbal
medicine to promote health and longevity, and as a food
supplement for 1,000 of years (Qian, 2019). Lycium barbarum
polysaccharides (LBPs) are the main active constituents of
L. barbarum fruits, which possess a variety of pharmacological
effects, such as antioxidant, anti-stress, neuroprotective activities,
anti-aging, antidiabetic activities, immune regulation, protection
against liver damage, and reduction of blood glucose level
(Luo et al., 2004; Ha et al., 2005). Recent studies have
shown that LBPs play a vital role in regulating hepatic
lipid metabolism (Jia et al., 2016). Furthermore, LBPs improve
dyslipidemia, promotes energy expenditure, reduces body weight,
and alleviates non-alcoholic steatohepatitis (Xiao et al., 2013,
2014). Dysfunction of hepatic energy signaling induced by a high-
fat diet represents a key mechanism for hepatic insulin resistance
and lipid accumulation associated with non-alcoholic fatty liver
disease (Li et al., 2014). However, studies on the anti-obesogenic
activity of LBPs and the related gut dysbiosis are limited. Our
previous studies demonstrated that supplementation with LBPs
in piglet diets stimulated the growth of beneficial gut bacteria
and suppressed the growth of Escherichia coli (Chen et al., 2019).
Although numerous health benefits of LBPs have been reported,
their effects on the gut microbiota in animals with high fat-diet-
induced dysbiosis are not known. Therefore, the objectives of
the present study are to investigate the effects of LBPs on the
gut microbiota, blood lipids, and genetic factors regarding lipid
metabolism in high-fat diet-fed mice. The results will increase
our understanding of how LBPs regulate gut microbiota to exert
anti-obesogenic effects.

MATERIALS AND METHODS

Animals and Dietary Treatments
All procedures were approved by the Animal Care and
Use Committee of Hunan Agricultural University, People’s
Republic of China (permit number: CACAHU 2020-0821).

Three-week-old male ICR mice (specific pathogen-free) were
purchased from Shanghai Laboratory Animal Central (Changsha,
China). After a 1-week adaptation period, the mice were housed
in a controlled environment (temperature: 23 ± 2◦C, relative
humidity: 50± 5%, and a 12-h light–dark cycle), with free access
to food and drinking water during the experiment.

Thirty mice were randomly separated into three groups
(n = 10), including the normal chow diet group (NC), the high-
fat diet group (HFD), and the HFD-fed mice with the LBP
group (HFD + LBPs). The NC group was fed with an NC
diet (research diet D12450B, containing 10% kcal from fat, 3.85
total kcal/g, and Beijing Botai Hongda Biotechnology Co., Ltd.);
mice in the HFD and HFD + LBP groups were fed an HFD
(research diet D12492, containing 60% kcal from fat, and 5.24
total kcal/g) as model controls (Shang et al., 2017). Moreover,
mice in the HFD + LBP group drank water containing 0.2% of
LBPs from the beginning, and the other two groups received
sterile water. In the current study, LBPs (high-performance liquid
chromatography ≥ 60%) comprised D-mannose, L-rhamnose,
D-glucose, D-galactosamine, and D-xylose, purchased from
Xi’an ZeBang Biological Technology Co., Ltd. (Xi’an, China).
Throughout the experiment, the body weight and food intake
of mice were measured weekly for 10 weeks. Fecal samples were
collected and stored at −80◦C until further analysis. At the end
of the experiment, all mice were fasted overnight and killed by
cervical dislocation with sodium pentobarbital anesthesia, and all
efforts were made to minimize suffering. After killing, blood, liver,
epididymal adipose tissues, cecum, colon, and colon contents
were collected for further analyses.

Analysis of Biochemical Parameters in
Blood and Liver Samples
Blood samples were collected from the orbital venous plexus
of mice under anesthesia. The serum was obtained from blood
samples with the centrifugation at 4,000 × g at 4◦C for 10 min
and stored at −80◦C for further analysis. The levels of high-
density lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), total cholesterol (TC), triacylglycerols
(TG), and malondialdehyde (MDA) in serum and liver were
monitored by the corresponding assay kits according to the
manufacturer’s instructions (Nanjing Jiancheng Bioengineering
Institute, China).

Histology Analysis
The liver and epididymal adipose tissues were removed and
fixed in 4% formaldehyde solution, after which the fixed tissues
were paraffin-embedded and the liver and epididymal adipose
tissues blocks were cut into 5-µm sections, and stained with
hematoxylin and eosin.

RNA Extraction and Gene Expression
Analysis
Total RNA from the epididymal adipose tissues was isolated
using Trizol reagent (Invitrogen, United States) and treated
with DNase I (Promega Corporation, Germany) according
to the manufacturer’s instructions. The complementary DNA
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(cDNA) was generated from total RNA according to the
reverse transcription kit (TaKaRa Company, Dalian). The
ABI 7900HT-polymerase chain reaction (PCR) instrument
(ABI Biotechnology, United States) was used to amplify the
samples by using SYBR-Green I dye (Molecular Probes, Eugene,
OR, United States) and using the supporting software (Applied
Biosystem, SDS2.3) for data analysis. The PCR primers sequences
for the corresponding genes were listed in Supplementary
Table 1. The PCR was performed in duplicate at 95◦C for 3 min
and subjected to 40 cycles of 95◦C for 30 s, 55◦C for 30 s, and 72◦C
for 45 s. The relative expression levels of target genes cDNA to
β-actin cDNA were calculated as a ratio by the 2−11Ct formula.

DNA Extraction and High Throughput
Sequencing
Metagenomic DNA was extracted using the E.Z.N.A.

R©

Soil
DNA Kit (Omega Bio-tek, United States) according to the
manufacturer’s protocols. The V3–V4 regions of the cecal
microbiota 16S rRNA gene were amplified by using specific
primers of (338F: 5′ ACTCCTACGGGAGGCAGCAG-3′; 806R:
5′- GGACTACHVGGGTWTCTAAT-3′) by ABI GeneAmp PCR
System 9700 (Applied Biosystems, Foster City, CA, United States)
in triplicate. The PCR products were examined and purified
from 2% agarose gels and purified using the AxyPrep DNA
Gel Extraction Kit (Axygen Biosciences, United States) and
quantified by QuantiFluorTM -ST (Promega, United States). The
purified amplicons were pooled in equimolar and ligated with
300-bp paired-end adapters by TruSeqTM DNA Sample Prep
Kit (Illumina, United States), then sequenced on an Illumina
MiSeq platform (Illumina, United States) according to the
standard protocols by Majorbio Bio-Pharm Technology Co., Ltd.
(Shanghai, China).

Bioinformatics Analysis
The raw sequencing data were quality trimmed and filtered by
Trimmomatic and merged with FLASH according to the overlap
sequences. The reads were truncated at any site accepting an
average mass value less than 20 in a 50-bp sliding window
(Wang W. et al., 2019). Operational taxonomic units (OTUs)
were generated by clustering at 97% similarity using USEARCH
v7.0,1 and chimeric sequences were identified and removed
using UCHIME (Wang S. et al., 2018). The classification
of each 16S rRNA gene sequence was performed by RDP
Classifier v2.112 according to the SILVA (Release1323) 16S rRNA
database with a confidence threshold of 70%. Alpha diversity
was analyzed using MOTHUR v1.30.2,4 and beta diversity was
determined using QIIME. Alpha diversity analysis included
Shannon and Chao index. Beta diversity included unweighted
unifrac distances calculated with 10 times of subsampling, and
these distances were visualized by principal coordinate analysis.
To identify the dimensional gut bacteria and characterize
the microbial differences between different groups, the linear

1http://drive5.com/usearch/
2http://sourceforge.net/projects/rdp-classifier/
3https://www.arb-silva.de/
4https://www.mothur.org/wiki/Download_mothur

discriminant analysis (LDA) effect size analysis was performed.
The non-parametric factorial Kruskal–Wallis sum-rank test
was applied to detect features that were significantly different
between assigned taxa, and the LDA was used to quantify
the effect size of each feature. A significance alpha value of
less than 0.05 and an effect size threshold of 3 were used
for this analysis.

Analysis of Short-Chain Fatty Acids
The contents of colon and fecal samples were collected, and
a mixture of supernatant fluid and 25% metaphosphoric acid
solution (4: 1 ml) was prepared for the determination of
SCFAs (acetic acid, butyric acid, propionic acid, and valeric
acid). Samples were incubated at room temperature and
centrifuged, and the supernatants were filtered by using 0.45-µm
polytetrafluoroethylene syringe filters into chromatographic
glass vials (Agilent Technologies). Gas chromatography was
performed using an Agilent 6890 GC system with a flame
ionizable detector and an automatic liquid sampler (Agilent
Technologies, Santa Clara, CA, United States) as previously
described (Chen et al., 2018).

Statistical Analysis
One-way analysis of variance was used for statistical
analysis using SPSS 25.0 software. Any differences among
treatments were then compared using the Duncan comparison
range tests. The experimental data are expressed as the
means± SEM; P < 0.05 among different groups were considered
statistically significant.

RESULTS

Animal Weight and Food Intake
The HFD group exhibited a 14% higher final body weight as
compared with the NC group (Figure 1A) (P < 0.05). The
HFD-fed mice treated with LBPs reduced body weight by 7%
compared with the HFD group (Figure 1A) (P > 0.05). LBP
supplementation slightly decreased the body weight gain in mice
with HFD feeding (Figure 1B) (P > 0.05). Supplementation
with LBPs has no significant effect on food intake in HFD-fed
mice (Figure 1C) (P > 0.05). The weight of total cecum and
cecum in the HFD group was lower than that of the NC group
(Figures 1D,E) (P < 0.05). In addition, LBP treatment improved
the weight of the cecum in the HFD group (Figure 1E) (P < 0.05).

Serum and Liver Lipid Content
The consumption of dietary fat induces anomalous changes in
lipid content, including TG, TC, HDL-C, and LDL-C. Compared
with the NC group, HFD-fed mice had reduced HDL-C levels
along with increased TG, and TC levels in serum (P < 0.05).
Supplementation with LBPs increased HDL-C level and reduced
the levels of TG, TC, and MDA in HFD-fed mice (Figure 2A)
(P < 0.05). However, the TG, TC, and MDA contents in the liver
were decreased after LBP administration in comparison with the
HFD group (Figure 2B) (P < 0.05).
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FIGURE 1 | Effects of Lycium barbarum polysaccharides (LBPs) on (A) body weight, (B) weight gain, (C) food intake, (D) total cecum, and (E) cecum tissues in
HFD-fed mice. *P < 0.05 vs. NC group and #P < 0.05 vs. HFD group.

Lipid Accumulation and Metabolism in
Liver and Epididymal Adipose Tissues
Compared with the NC group, the HFD group increased the
weight of liver, and epididymal adipose tissues. Treatment with
LBPs reduced this parameter in the HFD + LBP group compared
with the HFD group (Figures 3A–C) (P < 0.05). Histology
analysis revealed that fat accumulation occurred in the HFD
group. LBP administration decreased the fat accumulation, and
the size and number of adipocytes in adipose tissues were near to
the NC group (Figures 3B–D).

Adipogenesis-Related Gene Expression
in the Epididymal Adipose Tissues
Administration of LBPs downregulated expression levels of
adipogenesis-related gene including acetyl coenzyme A
carboxylase 1 (ACC1), fatty acid synthase (FAS), synthesis
via stearoyl-CoA desaturase 1 (SCD1), sterol regulatory element-
binding protein 1c (SREBP-1c), peroxisome proliferator-
activated receptor-γ (PPARγ), and CCAAT/enhancer-binding
protein alpha (C/EBPα) in epididymal adipose tissue compared
with HFD group (Figure 4) (P < 0.05).

Gut Microbiota
Compared with the NC group, the Shannon index was decreased
in the HFD, whereas the administration of LBPs reversed these

indexes in HFD-fed mice (P < 0.05). LBP administration did not
significantly influence the bacterial richness compared with the
HFD group (Figure 5A) (P > 0.05). The analysis of OTU in the
fecal showed that 335 OTUs were common between HFD + LBP
and NC groups, whereas 42 OTUs were unique in the HFD group
compared with 98 in the NC group. LBP administration increased
the number of shared OTU from 335 to 358 (Figure 5B). For
unweighted unifrac distance metrics, the NC group exhibited
clustering of microbiota composition distinctly different from
the HFD group. LBP treatment increased the similarity between
the overall gut microbiota compositions of the HFD + LBP and
NC groups, indicating that LBPs improved the structure of gut
microbiota in HFD-fed mice (Figure 5C).

At the phylum level, the top six phyla in the microbial
communities included Firmicutes, Desulfobacterota,
Actinobacteriota, Bacteroidetes, Campilobacterota, and
Proteobacteria in the three groups, accounting for almost
99% of total bacteria. The HFD group reduced the relative
abundance of Bacteroidetes and increased the relative abundance
of Firmicutes (P < 0.05). After LBPs treatment, Firmicutes
was reduced by 1.07-fold, whereas Bacteroidetes was increased
by 2.73-fold in the HFD-fed mice compared with non-
treatment mice. The Firmicutes/Bacteroidetes ratio was
significantly increased by the HFD (P < 0.05). Differing
from the HFD group, LBP administration significantly
reduced the ratio of Firmicute/Bacteroidetes (Figure 6A)
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FIGURE 2 | Effects of Lycium barbarum polysaccharides (LBPs) on (A) serum and (B) liver lipids profile in HFD-fed mice. *P < 0.05 vs. NC group and #P < 0.05 vs.
HFD group.

(P < 0.05). At the genus level, Lactobacillus, Faecalibaculum,
norank_f__Desulfovibrionaceae, and Bifidobacterium were the
dominant genera in the HFD + LBP group. HFD markedly
increased the relative abundance of Lactobacillus and reduced
the relative abundance of Bacteroides compared with the

NC group (P < 0.05). After LBP treatment, the abundance
of Lactobacillus and Faecalibaculum decreased by 1.16 and
1.27-fold, respectively, whereas Bacteroides was increased by
4.19-fold compared with the non-treatment group (Figure 6B).
LDA effect size uses LDA to estimate the impact of abundance
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FIGURE 3 | Effects of LBPs on fat accumulation in liver and adipose tissues in HFD-fed mice. (A) Liver weight, (B) histology analysis of liver, (C) epididymal adipose
tissues weight, and (D) histology analysis of epididymal adipose tissue. *P < 0.05 vs. NC group and #P < 0.05 vs. HFD group.

of each component on the different effects. Fifteen taxa were
detected in the NC group. The Bacteroides, belonging to the
phylum Bacteroidetes, produced a large effect on the dominant
community, and was markedly enriched in the NC group.
The HFD group was characterized by an increased amount
of Clostridium_sensu_stricto_1, indicating a disruption of gut
symbiosis. The genera of Lachnospiraceae_NK4A136_group,
Marvinbryantia, Butyricicoccus, and Lacticigenium were the
dominant phylotypes that contributed to the differences between
the gut microbiota of HFD + LBP and HFD groups (Figure 6C).

Short-Chain Fatty Acid Production in
Colonic and Fecal Contents
Colonic propionic acid and butyric acid concentrations in the
former were reduced by 11.45 and 19.55%, respectively, in
the HFD group compared with those in the NC group. LBP
treatment increased the levels of colonic acetic acid (by 1.42%),
propionic acid (by 8.67%), butyric acid (by 11.31%) and fecal
acetic acid (by 19.80%), propionic acid (by 4.87%), and butyric
acid (by 57.95%) compared with those in the HFD group
(Figures 7A,B) (P > 0.05). The levels of fecal butyric acid were
found to be higher in the HFD + LBPs group than in the HFD
group (Figure 7B) (P < 0.05).

Correlation Between the Gut Microbiota
and Obesity-Related Parameters
To further identify the potential correlation between gut
microbiota and obesity-related parameters, a heatmap of
Spearman’s correlation between the dominant genera, and
obesity-related parameters was generated. A significant
correlation was observed between the parameters and some
specific taxa, such as Bacteroides, Clostridium_sensu_stricto_1,
and Lacticigenium (P < 0.05). Among the specific genera,
Bacteroides were negatively correlated with parameters such as
epididymal adipose tissues weight, serum TG, serum LDL-C, liver
TC, and liver MDA and positively correlated with serum HDL-C,
colon acetic acid, colon propionic acid, and colon butyric acid.
Clostridium_sensu_stricto_1 was positively correlated with serum
TC. Lacticigenium was positively correlated with SCFAs in the
colon, suggesting it may be a probiotic that produces short-chain
fatty acids (Figure 8).

DISCUSSION

Obesity is strongly associated with lipid metabolism, hepatic
manifestation, metabolic abnormalities, and the composition of
the gut microbiota (Parry and Hodson, 2017; Li et al., 2019;
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FIGURE 4 | Effects of Lycium barbarum polysaccharides (LBPs) on expression of lipid-related genes (ACC1, FAS, PPARγ, SCD1, SREBP-1c, and C/EBPα) in
epididymal adipose tissues in HFD-fed mice. *P < 0.05 vs. NC group and #P < 0.05 vs. HFD group.

Zhi et al., 2019). LBPs have been reported to play an important
role in anti-inflammatory (Wu et al., 2020), immunomodulatory
(Zhu et al., 2020), and anti-obesity (Jia et al., 2016). We have
previously shown that dietary LBP supplementation can improve
intestinal microbial populations in early-weaned pigs (Chen et al.,
2019). However, the effect of dietary LBPs on lipid metabolism
and the modulation of gut microbiota have not been fully
investigated in HFD-induced obese animal models. In the present
study, we explored how the oral administration of LBPs regulates
lipid metabolism via modulation in high-fat diet-fed mice.

In the current study, we found that HFD feeding increased
the body weight, serum lipid profile, adipose tissue, and
hepatic lipid accumulation in mice compared with the NC
group for 10 weeks. These findings were consistent with some
previous studies on the acceleration effect of HFD feeding
on body weight and fat accumulation (Duan et al., 2019;
Kong et al., 2019). We also found that LBP administration
effectively alleviated HFD-induced dyslipidemia and hepatic
lipid accumulation through decreasing TG, TC, LDL-C, and
MDA in the serum and TG, TC, and MDA levels in the liver
and increasing the serum HDL-C level in HFD feeding mice.
These results are similar to the previous reports that found

crude polysaccharide extracts (crude LBP), okra [Abelmoschus
esculentus (L.) Moench] polysaccharides, Grifola frondosa
polysaccharides, and Cipangopaludina chinensis polysaccharides
reduced the level of serum lipids in the HFD model (Luo et al.,
2004; Li et al., 2019; Liao et al., 2019; Xiong et al., 2019).
The possible mechanism of LBP supplementation alleviating
hepatic triglyceride production and accumulation is through
upregulating lipolysis-degraded enzyme, and boosting fatty acid
β-oxidation and inhibiting lipogenic enzyme production in
the liver (Xiao et al., 2013; Jia et al., 2016). Furthermore,
dysregulated lipid metabolism may induce lipid peroxidation,
directly leading to oxidative stress (Xiao et al., 2014). We
found that LBPs reduced the MDA levels in serum and liver.
These hepatoprotective effects of LBPs were partly attributed to
the activation of nuclear factor kappa B and the inhibition of the
nucleotide-binding and oligomerization domain-like receptor
protein 3/6 inflammasome pathway (Xiao et al., 2018). These
data indicated that LBPs showed a vital role in alleviating HFD-
induced anomalous changes of lipid profile and thus preventing
lipid metabolic disorders.

Adipose tissue is known as an important energy reservoir and
an essential regulator of energy homeostasis (Stolarczyk, 2017).
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FIGURE 5 | Effects of Lycium barbarum polysaccharides (LBPs) on diversity of modulation of gut microbiota. (A) Alpha diversity analysis, including Shannon, and
Chao index. (B) Venn diagram of OTUs. (C) Principal coordinate analysis plot of gut microbiota based on unweighted unifrac metric. *P < 0.05 vs. NC group and
#P < 0.05 vs. HFD group.

Obesity is characterized by increased adipose tissue mass,
which is caused by the increased number, and size of fat
cells (Yang and Kim, 2015). Our results indicated that LBP
treatment decreased the weight of adipose tissues and the
size of adipocytes in epididymal adipose tissues in HFD-fed
mice, which was consistent with the previous study that LBPs,
and fermented Momordica charantia polysaccharides decreased
fat accumulation in epididymal adipose tissues of HFD-fed
mice (Zhao et al., 2016; Wen et al., 2019). Dysfunction
and excessive accumulation of lipid in adipose tissue induce
obesity, which is associated with atherosclerosis, cardiovascular
diseases, dyslipidemia, and other metabolic syndromes (Moseti
et al., 2016). Thus, reducing fat deposit and adipogenesis in
the adipose tissue can prevent the development of obesity,
and its associated diseases. Additionally, in the current study,
LBP supplementation suppressed the upregulated expression
level of ACC1, FAS, PPARγ, SCD1, SREBP-1c, and C/EBPα

in adipose tissues of HFD-fed mice. PPARγ has been verified
to be a ligand-activated transcription factor that can mediate
the expression of fat-related genes and facilitate the process

of adipogenesis (Lee et al., 2018). C/EBPα is considered an
essential regulator that can induce adipocyte differentiation
and adipogenesis through PPARγ (Lee et al., 2019). SREBP-1c
can mediate the expression of fatty acid synthesis genes and
activates lipogenic transcription factors such as ACC-1, FAS,
and SCD1, which subsequently induces lipogenesis and the
accumulation of lipid (Linden et al., 2018; Terzo et al., 2018). In
addition, a recent study found that LBPs inhibited ACC and FAS
expression by activating the SIRT1/adenosine monophosphate-
activating protein kinase pathway and reducing lipid synthesis
(Jia et al., 2016). It is worth noting that HFD feeding decreases
PPARγ and C/EBPα expression, whereas Polygonatum odoratum
polysaccharides increase PPARγ, and C/EBPα messenger RNA
expression compared with that in HFD-fed mice (Wang Y.
et al., 2018). The reason for inconsistent results may be partially
lie in treatment conditions, diet ingredients, experimental
duration, and species. Our findings fit well with previous
studies reporting that Gracilaria lemaneiformis polysaccharides
downregulate PPARγ and C/EBPα expression in the adipocyte
tissues of HFD-fed mice (Sun et al., 2018). Therefore, the
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FIGURE 6 | Effects of Lycium barbarum polysaccharides (LBPs) on composition of gut microbiota. (A) Composition of gut microbiota at phylum level and differences
in relative abundance of Firmicutes and Bacteroidetes at phylum level. (B) Composition of gut microbiota at genus level and differences in relative abundance of
Lactobacillus, and Bacteroides. LDA score plot with LDA scores (log 10) higher than 3 (C). *P < 0.05 vs. NC group and #P < 0.05 vs. HFD group.

results showed that LBPs might be involved in decreasing fat
adipogenesis and accumulation in epididymal adipose tissue
mass by downregulating expression levels of adipogenesis-
related genes.

The gut microbiota plays an important role in regulating
energy homeostasis, glucose metabolism, and lipid metabolism in
the host (Schoeler and Caesar, 2019). A variety of polysaccharides
from plants have positive effects on modulating gut microbiota
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FIGURE 7 | Effects of Lycium barbarum polysaccharides (LBPs) on SCFAs production in (A) colonic, and (B) fecal contents. *P < 0.05 vs. NC group and #P < 0.05
vs. HFD group.

and preventing the development of obesity (Wang X. et al., 2018).
Lower diversity of bacterial is associated with the probability of
obesity and non-alcoholic fatty liver disease (Schwimmer et al.,
2019; Chen et al., 2020). In our study, the administration of LBPs
increased the diversity of bacteria by increasing the Shannon
index, appearing to be a positive effect on the structure of the
gut microbiota in obese mice. Numerous reports have shown
that an increased Firmicutes/Bacteroidetes ratio promotes more
lipid production and induces the development of abnormal
weight gain, and chronic metabolic disease (Liu et al., 2019; Lu
et al., 2019). Based on the heatmap of Spearman’s correlation,
the relative abundance of Bacteroides was negatively associated
with obesity cytokines, illustrating the potential ability to
inhibit fat deposition in obese mice. In the present study, HFD
consumption induced an increase in the Firmicutes/Bacteroidetes
ratio, which is consistent with the previous study (Li J. et al.,
2020). By contrast, oral administration of LBPs reduced the
Firmicutes/Bacteroidetes ratio in HFD-fed mice, which might
be a mechanism to explain the improvement of LBPs in HFD
induced lipid accumulation in epididymal adipose tissues and

liver. At the genus level, the HFD increased the proportions of
Clostridium_sensu_stricto_1. LBP supplementation modulated
gut microbiota and ameliorated intestinal dysbiosis by
increasing the abundance of Lachnospiraceae_NK4A136_group,
Marvinbryantia, Butyricicoccus, and Lacticigenium in HFD
fed mice. Clostridium_sensu_stricto_1 is generally perceived
as pathogenic bacteria and interpreted as indicators of
a less healthy microbiota (Huart et al., 2019; Shi et al.,
2019). Some studies have reported that the proliferation
of Clostridium_sensu_stricto_1 was correlated with obesity,
rheumatoid arthritis-associated atherosclerosis, dyslipidemia,
and necrotic enteritis (Shi et al., 2019; Yang et al., 2019; Zeng
et al., 2019). In the current study, the relative abundance
of Clostridium_sensu_stricto_1 was positively correlated
with obesity, and the administration of LBPs decreased the
relative abundance of Clostridium_sensu_stricto_1. The genus
Lachnospiraceae_NK4A136_group was generally considered
to be an SCFA producer, and its abundance was negatively
correlated to inflammation (Wang J. et al., 2018). The genera
Marvinbryantia are positively correlated to intestinal epithelial
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FIGURE 8 | Heatmap of Spearman’s correlation between dominant genera and obesity-related parameters. *Significance was set at P < 0.05.

cell energy metabolism and butyrate production (Li A. L. et al.,
2020). A butyrate-producing bacterium Butyricicoccus acts as a
biomarker to predict obesity-related metabolic abnormalities,
and the interventions of Butyricicoccus might be beneficial
to weight loss and metabolic risk improvement (Luo et al.,
2019; Zeng et al., 2019). It was reported that Lacticigenium,
a lactic acid bacterium, produced acetic acids in addition to
L-lactic acid (Iino et al., 2009). Lacticigenium showed a strong
positive correlation with the produce of SCFAs. These studies
support that supplementation of LBPs can promote the growth
of beneficial bacteria and might contribute to improving gut
dysbiosis induced by HFD.

Dietary polysaccharides can be fermented by gut microbiota
provided with SCFAs, such as acetate, propionate, and butyrate
(Shang et al., 2018). SCFAs are used as endogenous signaling
molecules that could activate the G-protein-coupled receptor
GPR43 associated with energy expenditure, leptin hormone
secretion, and lipid metabolism (Hills et al., 2019; Schoeler
and Caesar, 2019). Especially, butyric acid is able to mediate
hepatic lipogenesis and fat oxidation (Li P. et al., 2020). In the
present study, we found that LBPs increased the concentration
of butyric acid in the feces of HFD-fed mice. Similar findings
have been reported that some polysaccharides can increase SCFA
production (Wang X. et al., 2019; Gu et al., 2020). Butyrate
has the capacity to stimulate glucagon-like peptide-1 production

and activate brown fat tissue, leading to sustained satiety
and fat oxidation enhancement, thereby effectively preventing
diet-induced obesity, insulin resistance, hypertriglyceridemia,
and hepatic steatosis (Li et al., 2018; Vallianou et al., 2019).
In particular, butyrate has been demonstrated to ameliorate
insulin resistance and fatty acid oxidation, activate the adenosine
monophosphate-activating protein kinase–acetyl–coenzyme A
carboxylase pathway, and promote lipid metabolism (Mollica
et al., 2017). Interestingly, some SCFA-producing intestinal
microorganisms, such as Lachnospiraceae_NK4A136_group and
Lacticigenium, and were enriched in the LBP-treated mice. All
these results indicated that LBPs could increase SCFA production
in the gut and thus benefit gut health, and prevent HFD-
induced obesity.

CONCLUSION

Lycium barbarum polysaccharide supplementation attenuated
epididymal and liver fat accumulation and expression levels of
adipogenesis genes in adipocytes. Furthermore, LBPs increased
the relative abundance of SCFA-producing bacteria and increased
SCFA production in HFD-induced mice. It implied that LBPs
might be regarded as a potential functional food ingredient to
prevent hyperlipidemia and modulate gut microbiota dysbiosis.
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