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Abstract

The microbial oxidation of metal sulfides plays a major role in the formation of acid rock

drainage (ARD). We aimed to broadly characterize the ARD at Ely Brook, which drains the

Ely Copper Mine Superfund site in Vermont, USA, using metagenomics and metatranscrip-

tomics to assess the metabolic potential and seasonal ecological roles of microorganisms in

water and sediment. Using Centrifuge against the NCBI “nt” database, ~25% of reads in

sediment and water samples were classified as acid-tolerant Proteobacteria (61 ± 4%)

belonging to the genera Pseudomonas (2.6–3.3%), Bradyrhizobium (1.7–4.1%), and Strep-

tomyces (2.9–5.0%). Numerous genes (12%) were differentially expressed between sea-

sons and played significant roles in iron, sulfur, carbon, and nitrogen cycling. The most

abundant RNA transcript encoded the multidrug resistance protein Stp, and most expressed

KEGG-annotated transcripts were involved in amino acid metabolism. Biosynthetic gene

clusters involved in secondary metabolism (BGCs, 449) as well as metal- (133) and antibi-

otic-resistance (8501) genes were identified across the entire dataset. Several antibiotic

and metal resistance genes were colocalized and coexpressed with putative BGCs, provid-

ing insight into the protective roles of the molecules BGCs produce. Our study shows that

ecological stimuli, such as metal concentrations and seasonal variations, can drive ARD

taxa to produce novel bioactive metabolites.

Introduction

During the 19th and 20th centuries, the mining industry exploited Vermont’s copper belt in

Orange County (Fig 1), after which several copper mines were abandoned and left to accumu-

late acid rock drainage (ARD) [1]. ARD is the outflow of acidic water from mining regions

containing metal-sulfide-rich rocks. When metal sulfides are exposed to water and oxygen,
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hydronium and sulfate ions are produced, lowering the pH of the water. Toxic levels of Cu, Fe,

Zn, and Pb, leaching from pyrrhotite-rich, Besshi-type sulfide deposits [2] have adversely

affected the water quality and aquatic biodiversity in the copper belt [3]. This process is further

accelerated by the presence of acidophilic, sulfur and/or iron-oxidizing bacteria, which quickly

convert insoluble sulfides to soluble sulfate ions and Fe2+ to Fe3+, the predominant, soluble

form of iron at acidic pH. Due to metals and acidic waters contaminating local streams, mines

in this region have been placed on the Superfund National Priorities List by the Environmental

Protection Agency (EPA).

Microorganisms in metal-contaminated environments evolve unique genes conferring

resistance to heavy metals [5, 6] and/or antibiotics [7–9] to maintain cellular homeostasis.

Metal resistance genes (MRGs), some of which are antibiotic-resistant based on having similar

mechanisms of action [8], can induce the biosynthesis of secondary metabolites to scavenge

metals. For example, Cupriavidus metallidurans, originally isolated from industrial sludge

[10], is both heavy metal- and antibiotic-resistant and expresses biosynthetic gene clusters

(BGCs) involved in the production of a variety of secondary metabolites, including Fe3+-bind-

ing staphyloferrin B [11, 12]. Several bioactive microbial natural products have been isolated

from mining environments [13], such as the berkeleylactones, potent fungal antibiotics iso-

lated from the copper-rich Berkeley Pit in Butte, MT [14]. MRGs and antibiotic resistance

genes have also been identified within biosynthetic gene clusters (BGCs) dedicated to second-

ary metabolism [15]. Thus, the coclustering of these resistance genes can be used to biopros-

pect metal-polluted environments for novel secondary metabolites and understand the

stressors that trigger their production, providing insight into their bioactivity.

To assess the potential of ARD to produce bioactive secondary metabolites, we character-

ized the water and sediment associated with ARD at the Superfund site Ely Copper Mine. Both

water and sediment at this mine have been affected by ARD (pH> 3) and high metal concen-

trations (e.g., up to 1,560 μg/L Cu) [3]. In 2010, dissolved Cu concentrations in the water and

Fig 1. Vermont copper belt. Map of Elizabeth Mine, Ely Copper Mine, and Pike Hill Copper Mine (represented by

stars) [4]. Circles represent nearby towns and the Ely Brook (EB-90M) study site is indicated by a red arrow. The

pictures on the right show the EB-90M study site on July 28th, 2017 and January 14th, 2018.

https://doi.org/10.1371/journal.pone.0237599.g001
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sediment at Ely Copper Mine exceeded the aquatic health criteria by 45–222 and 7–40 times,

respectively [3]. Thus, we sampled water and sediment at the Ely Brook, a confluence of clean

water and upstream tributaries that drain the mine [3], and used shotgun metagenomics and

metatranscriptomics to characterize the ARD microbiome, including community structure

and diversity, and the genes involved in secondary metabolism as well as heavy metal and anti-

biotic resistance.

Acid rock drainage sites rich in copper tailings are generally inhabited by acidophilic iron- and

sulfur-oxidizing microorganisms, such as species of Leptospirillum,Acidithiobacillus, Acidiphi-
lium, and Thiobacillus [16–18]. Based on the high acidity and metal concentrations in Ely Brook

[3], we hypothesized that similar species would dominate in Ely Brook. In this study, we aimed to

1) describe the acidophilic, iron- and sulfur-oxidizing chemolithoautotrophs and heterotrophs

that likely dominate the water and sediment at Ely Brook and 2) link the microbiome to actively

expressed genes, especially those involved in metal transport and the production of bioactive sec-

ondary metabolites in this metal-rich extreme environment. Samples were collected in summer

and winter to identify seasonal differences that inform community dynamics as well as how envi-

ronmental stimuli affect gene expression. This work represents the first metagenomic and meta-

transcriptomic study of an acid rock microbiome within the Vermont copper belt.

Materials and methods

Study site and sample collection

On July 28th, 2017 and January 14th, 2018, Ely Brook (43˚55’9” N, 72˚17’11” W), 90 m

upstream from the mouth of the brook (EB-90M), was sampled along with unsaturated sedi-

ment (10 cm deep) from the bank. Five water samples at EB-90M were filtered through Steri-

vex-GP 0.22-μm polyethanesulfone filters (MilliporeSigma; St. Louis, MO) using a varistaltic

pump to collect DNA for sequencing and frozen on dry ice. Additional water samples were

collected in HPDE Packers (Thermofisher; Waltham, MA) and a subset were filtered and/or

preserved with either sulfuric acid (for organic carbon analyses) or nitric acid (for elemental

analyses). Three sediment samples were also collected in sterile containers and frozen on dry

ice for RNA and DNA extraction. Sediment was also collected for elemental analyses, and the

physicochemical properties of samples were analyzed on-site or in a laboratory. A total of 16

samples were collected in July and January. See the supporting information (S1 Data).

DNA & RNA extraction, library construction, metagenomic and

metatranscriptomic sequencing

DNA was extracted from water (�1 L) and sediment samples (0.25 g) using the DNeasy

PowerWater Sterivex1 and PowerSoil1DNA Isolation kits (Mo Bio Laboratories, Inc.; Carls-

bad, CA) according to the manufacturer’s instructions. RNA was extracted from sediment (2.0

g) using the RNeasy PowerSoil1 Total RNA Isolation kit (Mo Bio Laboratories, Inc.; Carlsbad,

CA). Library preparation and sequencing were performed at the University of Illinois at Chi-

cago Sequencing Core (UICSQC). Details on nucleotide extraction and library preparation,

sequencing, and quality assessment can be found in the Supporting Information. DNA and

RNA library sequencing were performed on Illumina NextSeq500 and NextSeq500 high-out-

put kits, respectively, with paired-end 150 base sequencing reads.

Taxonomic annotation and quantification

Reads were mapped to the NCBI nucleotide database (nt) via Centrifuge [19] using nucleotide

BLAST (v2.2.29+), retaining alignments of at least 500 bp and an E-value < 10−4 [20, 21].
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Taxonomic annotations per DNA fragment (read pair) were obtained and summarized across

all read pairs to create counts per taxon. MEGAN’s Least Common Ancestor (LCA) algorithm

(i.e., blast2lca tool) [22] was used to determine the taxonomic annotation for each read pair

and taxonomic summaries were generated from the superkingdom to species levels. Raw

counts were normalized to fractional counts for relative abundance.

Differential analysis of microbial taxonomic summaries

To assess seasonal microbial differences, taxonomic summaries were split into the following

superkingdoms (sk) and kingdom (k), respectively: sk_Bacteria, sk_Archaea, and k_Fungi. Rare

or sparse taxa with<1000 total sequence counts across all samples and ten counts in at least three

samples were filtered from each “kingdom-specific” table. Data were normalized to the total

sequence counts prior to filtering, and differential analyses on each taxonomic summary were per-

formed separately in edgeR [23]. Differential statistics (log2fold-changes and p-values) were com-

puted for each taxon comparing season and sample type separately using the raw counts from the

taxonomic annotation and quantification. In all cases, p-values were adjusted for multiple testing

using the false discovery rate (FDR) correction (q-values) of Benjamini and Hochberg [24].

Metagenomic assembly and annotation of open reading frames

Metagenomic assembly was performed using the Spades assembler v3.11.1 [25] on raw Illu-

mina reads from all DNA samples with the multiple metagenomics “—meta” option specified.

Default parameters were used unless specified. Coverage levels were assessed by mapping raw

Illumina reads to the contigs with BWA-MEM v0.7.15 [26] using default parameters and com-

puting the coverage as the number of reads aligning per contig times the length of each read

divided by the length of the contig. Contigs were filtered to have a minimum length of 1000

bp, containing non-repetitive sequences (2-base Shannon entropy > 0.85) as well as greater

than zero (0) coverage from an independent alignment of raw reads. Putative taxonomic anno-

tation was performed using a local blastn search, v2.2.29+, with default parameters against

NCBI “nt”, retaining alignments of at least 500 bp and an E-value < 10−4 [20, 21]. BLAST anal-

yses were then summarized using MEGAN’s blast2lca tool [22] using default parameters.

Prokka [27] was used to detect and annotate functional genes/open reading frames (ORFs)

present in contigs using the parameter of the most dominant kingdom, “bacteria”. The result-

ing gene feature file was later used during the quantitation of gene expression. The predicted

amino acid sequence for each ORF was used to determine Kyoto Encyclopedia of Genes and

Genomes (KEGG) orthology (KO) annotations (www.kegg.jp) [28, 29]. Predicted amino acid

sequences were searched against the Swiss-Prot database [30] using DIAMOND in blastp

mode [31]. KO annotations were determined for each predicted ORF in a consensus fashion

(i.e. agreement of>50% of matched references) using KOs reported in the Uniprot ID map-

ping database [32]. Higher-level KEGG summaries were also generated for KEGG pathway

and module annotations as well as BRITE levels 1–3.

Quantification of ORF expression

Active gene expression in sediment was quantified by comparing the abundance of RNA tran-

scripts relative to that of DNA from the metagenomic assembly. Quantitative information for

Prokka-annotated ORFs was determined by mapping raw Illumina reads for both the DNA

and RNA samples to contigs with BWA-MEM v0.7.15 [26] using the default parameters -k 19,

-w 100, -d 100, -r 1.5, -y 20, -c 500, -D 0.50, -W 0, and -m 50. Raw read counts (i.e., expression

levels) of each ORF in each sample were quantified using FeatureCounts [33] using default

parameters, and a gene feature file (GFF) was created during annotation of the contigs via
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Prokka. Genes were filtered to retain those with a total of 100 counts across all samples and

had at least 10 counts in three or more samples. Data were normalized using counts per mil-

lion normalization with the total aligned counts for each sample as the sample size.

Regarding KO analyses, normalized counts for each annotated KO were summed across all

annotated ORFs belonging to a particular pathway, module, or BRITE category. First, data

were filtered to retain individual KOs with a total of�100 counts across all samples and ten

counts in at least three samples. Pathways, module, and BRITE summaries were subsequently

filtered to have a total of�1000 sequence counts across all samples and ten counts in at least

three samples. KO count data were normalized using counts per million with the total aligned

counts for each sample as the sample size.

Statistical comparison of microbial communities, DNA, and RNA

The alpha diversity of read-based taxonomic results was assessed via the Shannon Diversity

Index [34] by 1) rarifying kingdom-specific tables to depths based on total sequence counts, 2)

generating taxonomic summaries for each rarified/sub-sample table, 3) evaluating each sum-

mary separately, and 4) testing for statistically significant differences via the Kruskal-Wallis

test [35]. Beta diversity was evaluated via Bray-Curtis measure of dissimilarity [36] using

default parameters in R in the vegan library [37]. Prior to analysis, data were log10(x+1) trans-

formed and resulting dissimilarity indices were modelled and tested for the significance of sea-

son using the Adonis test. Heat maps and hierarchal clusters were generated in Partek Flow

v8.0 using the following, respectively: 1) normalized counts of taxa from the metagenome and

predicted open reading frames (ORFs) across samples and 2) the Euclidean dissimilarity index

and average linkage method to cluster similar expression patterns and taxon abundances.

Differential analysis of ORF expression data

Differential expression statistics (log2fold-changes and p-values) were computed for each

Prokka-annotated ORF [27], Kyoto Encyclopedia of Genes and Genomes (KEGG [28]; www.

kegg.jp) summary, and KEGG orthology (KO) using normalized count data for sediment

DNA (abundance) and RNA (expression) from each taxonomic group (i.e., bacteria, archaea,

and fungi). Using edgeR [38], expression data were fit to a linear model, assuming a negative

binomial distribution, that included season (i.e., winter versus summer), molecule type (i.e.,

RNA versus DNA), as well as the interaction of season and molecule type (p-interaction). Sig-

nificance was determined by performing a pairwise comparison tests of season within and

between each data type and p-values were FDR-corrected [24]. A p-interaction� 0.05 indi-

cated significant differential gene expression between seasons based on the interaction of sea-

son and molecule-type count data and not solely a change in season or molecule-type. Data

were then further filtered by an FDR-corrected p-value (q-winter/summer RNA-value)� 0.05

associated with the difference between winter versus summer RNA transcript levels.

Increases or decreases in transcript abundance relative to that of taxonomically unanno-

tated DNA were referred to as differentially abundant in the winter or summer, respectively, if

the following criteria was met: p-interaction value was�0.05 followed by a q-winter/summer

RNA value� 0.05. We also defined the differential expression of KOs as an increase or

decrease in the expression of an orthologous gene function relative to that of quantitated

sequence counts for the respective orthologues in winter or summer DNA samples, respec-

tively, such that p-season� 0.05. A stringent pairwise p-value was not used in this instance in

order to get an idea of gene expression of entire KEGG pathways. However, significantly dif-

ferentially expressed KOs met the following criteria: p-interaction� 0.05 in combination with

a q-winter/summer RNA� 0.05, respectively.
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Analysis of genes involved in natural product biosynthesis, metal

resistance, and antibiotic resistance

Contigs were mined for secondary metabolite biosynthetic gene clusters (BGCs) in the bacterial

and fungal version of antiSMASH 5.0 [39]. Default parameters and the following features were

used to identify BGCs: knowncluster blast, subcluster blast, and active site finder. Annotated

BGCs were then filtered such that there were a total of�100 counts across all samples and�10

counts in at least three samples. Raw counts corresponding to Prokka-annotated ORFs relative

to those of DNA were then filtered to determine differential gene expression, such that p-inter-

action followed by q-winter/summer RNA� 0.05. The BacMet database was used to mine

DNA and RNA for experimentally validated metal resistance genes (MRGs) [40]. The raw

counts of ORFs were filtered in the same manner as BGCs. Gradient plots were generated in

Partek Flow v8.0 for differentially expressed BGCs and those co-expressed with MRGs. Contigs

were also mined for antibiotic resistance genes that were within close proximity or colocalized

with BGCs using the Antibiotic Resistant Target Seeker (ARTS) version 2 [41] using default

parameters. Duplication and BCG proximity, resistance model screens, and genomes that

mapped to the following phyla were selected: Actinobacteria and Alphaproteobacteria.

Data sharing and nucleotide accession numbers

Raw sequence data and metadata files were submitted in the Sequence Read Archive of the

National Center for Biotechnology Information (BioProject identifier, PRJNA540505). Raw

data used for all analyses have been deposited in Figshare; DOI: 10.6084/m9.figshare.c.

4864863. URL– https://doi.org/10.6084/m9.figshare.c.4864863). See reference [42] for addi-

tional data analysis.

Results and discussion

Physicochemical characterization

The physicochemical properties of all samples varied between seasons (S1 Table). The water

temperature was -0.36˚C in January (winter) and 16.4˚C in July (summer), with a pH of 3.86

and 3.59, respectively. The sediment pH was within the pH range of water, but more acidic in

winter (pH 3.56) than summer (pH 3.78), possibly due to how the sediment accumulated pro-

tons [43], reducing their dissociation rates. While there was variable pH among samples from

different seasons, more data has to be collected to evaluate the significance of this difference.

High redox potentials (423–451 mV) were measured, indicating that EB-90M water was oxi-

dized (aerobic environments have redox potentials�-100 mV; [44]). Water sulfate levels (95–

126 mg/L) were within EPA-recommended concentrations (<250 mg/L) and consistent with

former Ely Brook geological studies [3] but less than those reported in other ARD studies [45].

Most nutrients, including nitrate and nitrite (<0.02 mg/L), total Kjeldahl nitrogen (<0.7 mg/

L), and reactive and total phosphorus (<0.15 mg/L) in water were below the detection limit.

Low levels of total and dissolved organic carbon (1.4–3.1 mg/L) were also detected in water,

which is characteristic of ARD due to competition between species and the inability of the

environment to retain nutrients [46, 47].

High metal concentrations were detected in all EB-90M samples. The most abundant ele-

ments in water were Mg, Al, and Fe (3.07–5.89 mg/L; Table 1), and the amounts of total and

dissolved elements were the same across water samples. Silica (SiO2, 49%), Fe2O3 (27%), and

Al2O3 (13%) were the major components of sediment (Table 2), which is also supported by the

high levels of Si, Al, and Fe detected by ICAP-MS (Table 1). The weight percent of Fe and Al

has increased by 17% and 4%, respectively, since the EPA last analyzed the geochemical
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properties of EB-90M sediment in 2006 [4, 48], underscoring the long-term detrimental effects

of ARD on un-remediated sites.

Microbial community diversity and composition

Approximately 25% of paired-end reads from 11 out of 16 samples (S2 Table) were taxonomi-

cally annotated via Centrifuge and 141 phyla [42], including candidate phyla, were detected

across all domains. Data from winter water samples were excluded, as there was considerably

lower sequencing coverage due to low DNA yields. All taxonomic annotation data from Cen-

trifuge are available at https://doi.org/10.6084/m9.figshare.c.4864863 (FigShare 1). Of the

annotated taxa, Bacteria dominated the entire EB-90M community followed by Eukaryota and

Archaea (Fig 2A), respectively, and viruses were also detected. Proteobacteria (50 ± 4%) was

the most dominant phylum followed by Actinobacteria (19 ± 4%), Chordata (7.6 ± 0.2%),

unclassified sequences (19 ± 2%), and Streptophyta (3.4 ± 1%). When only considering micro-

organisms, Proteobacteria represented 61 ± 4% of the community followed by 23 ± 3% Actino-

bacteria (Fig 2B). Proteobacteria commonly dominate ARD [49, 50] due to their metabolic

plasticity [51] and they include iron and sulfur oxidizers that grow under metal-rich and less-

Table 1. Chemical composition of samples.

Sample Na Mg Al Cr Mn Fe Co Ni Cu Zn As Cd Ba Pb Sb

July water

(D)

1.73 (0.04) 4.17 (0.08) 4.93 (0.12) <0.01 0.404

(0.003)

5.22 (0.15) 0.0882

(0.0022)

0.0243

(0.0002)

1.85 (0.01) 0.369

(0.006)

<0.01 <0.01 0.0170

(0.0002)

<0.01 <0.01

July water

(T)

1.76 (0.02) 4.24 (0.08) 5.03 (0.05) <0.01 0.403

(0.004)

5.62 (0.06) 0.0918

(0.0010)

0.0253

(0.0003)

1.87 (0.02) 0.360

(0.003)

<0.01 <0.01 0.0172

(0.0002)

<0.01 <0.01

January

water (D)

1.33 (0.01) 3.19 (0.02) 4.31 (0.25) <0.01 0.286

(0.001)

5.80 (0.01) 0.101

(0.001)

0.0230

(0.0002)

2.27 (0.01) 0.321

(0.004)

<0.01 <0.01 0.0119

(0.0002)

<0.01 <0.01

January

water (T)

1.31 (0.02) 3.07 (0.06) 4.33 (0.08) <0.01 0.278

(0.003)

5.89 (0.08) 0.0982

(0.0014)

0.0223

(0.0004)

2.22 (0.00) 0.305

(0.004)

<0.01 <0.01 0.0113

(0.0001)

<0.01 <0.01

July

sediment

14.3 × 103 � 11.3 × 103 � 66.1 × 103 � 137

(1)

852� 194 × 103 � 20.2 (0.2) 28.5 (0.3) 2.21 × 103

(26)

323 (5) 2.99

(0.21)

0.195

(0.027)

471 (1) 54.6

(0.2)

4.23

(0.09)

January

sediment

17.4 × 103 � 10.7 × 103 � 64.3 × 103 � 118

(3)

1.04 × 103 � 181 × 103 � 15.2 (0. 2) 25.6 (0.6) 1.90 × 103

(32)

609 (10) 2.44

(0.38)

0.211

(0.045)

806 (4) 52.9

(0.3)

6.49

(0.65)

Selected elemental analysis for water and sediment at EB-90M collected in July 2017 and January 2018 in mg/L and mg/kg, respectively. (D) and (T) represent dissolved

and total elements in water samples, respectively. Values with an asterisk (�) were determined by X-ray fluorescence, a more accurate method for the analysis of selected

elements in sediment. All other values were determined in triplicate by ICAP-MS.

https://doi.org/10.1371/journal.pone.0237599.t001

Table 2. Chemical composition of EB-90M sediment in weight percentages.

Chemical composition, wt % (mg/kg) Summer sediment Winter sediment

Na2O 1.88 (14.3 × 103 Na) 2.11 (17.4 × 103 Na)

MgO 1.98 (11.3 × 103 Mg) 1.85 (10.7 × 103 Mg)

Al2O3 12.9 (66.1 × 103 Al) 12.2 (64.3 × 103 Al)

SiO2 48.0 (230 × 103 Si) 51.7 (241 × 103 Si)

P2O5 0.156 (697 P) 0.168 (748 P)

K2O 2.17 (17.5 × 103 K) 2.25 (18.7 × 103 K)

CaO 1.56 (122 × 103 Ca) 1.93 (137 × 103 Ca)

TiO2 0.763 (4.68 × 103 Ti) 0.803 (4.87 × 103 Ti)

MnO 0.0870 (852 Mn) 0.132 (1.04 × 103 Mn)

Fe2O3 28.4 (194 × 103 Fe) 26.0 (181 × 103 Fe)

Values in the parentheses represent concentrations of selected elements in units of mg/kg.

https://doi.org/10.1371/journal.pone.0237599.t002
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restrictive pH conditions. Similarly, Actinobacteria have been reported in other ARD environ-

ments, including 90 microbial communities in a copper tailing impoundment in Anhui Prov-

ince, China [50, 52, 53]. Both Proteobacteria and Actinobacteria thrive in diverse sediments

and have evolved mechanisms to inhabit metal-rich environments [54].

Shannon diversity indices (H) of taxa were similar for species of bacteria (H = 6.8–7.0),

archaea (H = 4.0–4.9), and fungi (H = 5.4–5.5) regardless of sample type (S3–S5 Tables) and

indicated greater bacterial diversity. The beta diversity of bacteria, archaea, and eukaryota in

samples was significant between summer water and sediment (p< 0.05). However, there was

no significant dissimilarity between sediment from different seasons (S6–S8 Tables). Non-met-

ric multidimensional scaling (NMDS) plots and principal component analyses (PCAs) of DNA

in water and sediment also showed no clear difference at the genus level between taxa in winter

and summer sediment [42]. Season explained 66–92% of the dissimilarity of species between

sediment, but the p-value was 0.1 at an alpha level of 0.05 (S6–S8 Tables). Thus, more samples

need to be evaluated to confirm this dissimilarity, as season can impact ARD taxonomic diver-

sity due to changes in temperature, pH, and metal concentrations [55–57]. Nevertheless, the

beta diversity of organisms in summer sediment and water differed at all taxonomic levels

(p< 0.05), with high variation (70–87%) based on sample type (S9–S11 Tables).

Pseudomonas (2.6–3.3%), Bradyrhizobium (1.7–4.1%), and Streptomyces (2.9–5.0%) were

the most abundantly annotated microbial genera in all samples (Fig 3). Although not consis-

tent with our hypothesis, acid-tolerant bacteria from these genera have been isolated from

other mines [17, 58–64], producing nutrients and mediating the flux of metal ions [65, 66].

Species of Leptospirillum, Acidithiobacillus, Acidiphilium, and Thiobacillus were also present in

the metagenome but at significantly lower abundance (<0.7%). Considering not all paired-

end reads were taxonomically annotated, other sulfur and iron oxidizers may dominate this

site.

Fig 2. Taxonomic annotation. Seasonal profile of A) all phyla and B) microbial phyla across all samples at EB-90M. Taxa are annotated by superkingdom

followed by phylum. “Other” represents phyla that are less than 2% and 1% percent of the data for all organisms and microorganisms, respectively.

https://doi.org/10.1371/journal.pone.0237599.g002
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Most microorganisms were differentially abundant between seasons. For example, of the

1177 annotated bacterial genera, 660 were differentially represented between seasons (p-

season< 0.05). Data for the differential analyses of annotated bacteria, archaea, and fungi are

available at https://doi.org/10.6084/m9.figshare.c.4864863 (FigShare 2). Bradyrhizobium,

nitrogen-fixing plant endophytes, were slightly more abundant in the summer regardless of

sample type (p-season < 0.05). Archaea were also present but less abundant, as Euryarchaeota

represented 1.3 ± 0.03% of the observed microbial phyla (Fig 2B). Euryarchaeota have also

been identified in low abundance in the Baiyin open-pit copper mine in China [18]. The most

abundant archaeal genus was ‘CandidatusNitrosotalea’, an acidophile involved in nitrification,

oxidizing ammonia to nitrite in acidic sediment [67]. This genus was also more prevalent in

the summer regardless of sample type (Fig 3). Of the 93 annotated archaeal genera, 55 were dif-

ferentially represented between seasons (p-season < 0.05).

Chordata was the most abundant eukaryotic phylum (Fig 2A) in the EB-90M metagenome.

Within the eukaryotic microbial community, the fungi Ascomycota followed by Basidiomy-

cota were the most abundant eukaryotic phyla (Fig 2B). The following genera were the most

represented: Aspergillus, Rhodotorula, and Colletotrichum, with Rhototorula being slightly

more abundant in the summer (p-season < 0.05) (Fig 3). Ascomycota have been found at min-

ing sites [68], particularly in biofilms at the Richmond Mine at Iron Mountain [69–71], where

fungal hyphae provide a surface for symbionts to attach to pyrite sediment [72, 73]. Further-

more, several phyla were algae that inhabit ARD or metal-rich environments (i.e., Bacillario-

phyta [74], Xanthophyceae [75], and Euglenida [76]). However, all subsequent analyses

focused on prokaryotes and fungi, the largest population of unicellular eukaryotes in this data-

set. Of 174 fungal genera identified, 89 were differentially represented between seasons (p-

season< 0.05).

Fig 3. Seasonal microbial diversity. Relative abundances of the most abundant genera of archaea (top twelve), microbial eukaryota (top eleven), and viroid/

viruses (top eleven) as well as the 24 most abundant genera for bacteria per sample. The most abundant taxa per sample varied within each grouping (archaea,

eukaryota, viroid/viruses, and bacteria). Red and blue represent high and low abundance, respectively. Incertae sedis corresponds to a taxonomic group with

unknown broader relationships to other taxa.

https://doi.org/10.1371/journal.pone.0237599.g003
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Seasonal metabolic and functional activities of taxa

In addition to seasonal variations among taxa, significant seasonal differences in gene expres-

sion were observed at EB-90M based on the relative abundance of predicted ORFs. PCA dem-

onstrated uniform but distinct molecular phenotypes across sample type (DNA) and season

(ORFs) [42]. Active gene expression in sediment was quantified by comparing the abundance

of Prokka-annotated ORFs (S12 Table) to that of the DNA used to assemble the metagenome

(S13 Table). All differentially expressed, functionally annotated ORF data are available at

https://doi.org/10.6084/m9.figshare.c.4864863 (FigShare 3). Approximately 104,772 out of

296,476 genes were significantly differentially expressed based on a p-interaction� 0.05.

Many predicted ORFs (35,037) had a p-interaction value and an FDR-corrected p-value (q-

winter/summer RNA-value)� 0.05, indicating several genes were differentially expressed

between seasons, which is consistent with other ARD studies in which physicochemical prop-

erties were found to impact gene expression [77].

The predicted functions and relative abundance of RNA transcripts provided insight into

the roles of taxa, as many contigs did not align to NCBI “nt” sequences in our assembly-based

taxonomic annotation pipeline. In the future, additional taxonomic classifiers should be used

to increase the taxonomic annotations of functionally annotated genes. Most differentially

abundant transcripts encoded hypothetical proteins. Table 3 lists the top ten differentially

expressed annotated genes between seasons as well as their producing taxa. These genes were

involved in amino acid and cofactor metabolism, protein synthesis, transport, virulence [78],

cell wall homeostasis/organization, nucleotide, carbohydrate, and lipid metabolism, cell signal-

ing, and transcription, which are important for survival and have been reported in ARD [45,

49, 79]. Interestingly, comEC, a gene involved in horizontal gene transfer (HGT), was highly

expressed in winter. HGT or DNA uptake via cellular membranes is involved in the evolution

and adaptation of species, which is largely driven by environment and community composi-

tion [80] and likely plays a significant role in adaptation to this harsh environment. Further-

more, most genes in Table 3 were expressed by species of Bradyrhizobium, Streptomyces,
Aromatoleum,Methylococcus, and ‘Candidatus Solibacter’, which are common to polluted

environments [81–84]. The most abundant gene in the entire dataset, especially in winter, was

stp, encoding a spectinomycin tetracycline efflux pump belonging to the major facilitator

superfamily [85], which Acidimicrobium has been reported to express in wastewater [86].

Efflux pumps aid in cellular detoxification and homeostasis, and their expression can be trig-

gered by heavy metal ions, which are abundant at EB-90M (Tables 1 and 2) [87, 88].

Functional analysis of metagenome and metatranscriptome

KEGG annotated 1,048,574 protein-coding reads with KOs, providing insight into the ecologi-

cal and metabolic roles of active taxa in sediment. All KEGG annotation data are available at

https://doi.org/10.6084/m9.figshare.c.4864863 (FigShare 4). While the function of most ORFs

were unknown, 442,447 annotated ORFs were assigned to 6,997 KOs, which were then

assigned to KEGG pathways, BRITE hierarchies, and modules. KEGG reference pathway maps

and BRITE reference hierarchies are applicable to any organism by functional orthologs being

defined by K numbers, which can be used to reconstruct pathways from explicitly incomplete

datasets [89]. The most abundant RNA transcripts were involved in BRITE hierarchies and

metabolism [42]. Four hundred and fifteen metabolic pathways were identified and mainly

involved in carbohydrate metabolism, energy metabolism, and amino acid metabolism, similar

to Prokka-identified ORFs in EB-90M sediment as well as those in other ARD sites [45, 90].

Out of 6,997 KOs, representing annotated ORFs, 2,532 were differentially expressed

between seasons based on a p-value related to the significance of season (p-season) < 0.05. In
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the winter, some of the most differentially expressed KEGG pathways were related to protein

digestion and absorption as well as phenazine biosynthesis [42]. While KOs can belong to sev-

eral pathways, modules, and BRITE hierarchies, most differentially expressed KOs were related

to protein families: signaling and cellular processes (BRITE Level 2, 09183). Most transcript

levels decreased in winter/increased in summer, possibly due to summer temperatures in-

creasing the metabolic demands of the community, as shown in model ARD biofilms grown

at different temperatures [91]. Several pathways, including those involved in sulfur (Fig 4),

nitrogen, and carbon metabolism (see FigShare 5–6; https://doi.org/10.6084/m9.figshare.c.

4864863), were differentially expressed (p-season < 0.05) [42]. Experimental investigation of

these orthologous functions and individual genes is required to confirm the level of gene

expression with respect to season.

Actively expressed genes involved in iron and sulfur cycling

While common iron and sulfur oxidizers did not dominate EB-90M, several ORFs from EB-

90M sediment were involved in iron and sulfur cycling. The expression data for differentially

expressed KOs involved in iron and sulfur metabolism are available at https://doi.org/10.6084/

m9.figshare.c.4864863 (FigShare 7–8). KOs associated with key iron oxidation and reduction

Table 3. Seasonal gene expression.

Protein function, Gene Biological process Organism

Highly expressed in Winter

Malto-oligosyltrehalose trehalohydrolase, treZ Trehalose/glycan biosynthesis, virulence Aromatoleum aromaticum
tRNA-2-methylthio-N(6)-dimethylallyladenosine synthase,miaB tRNA methylation

Macrolide export protein,macA Antibiotic resistance Methylococcus capsulatus
Multidrug resistance protein, stp Regulation of EF-tu, virulence, cell wall synthesis, and multidrug

resistance

Acidimicrobium
ferrooxidans

dITP/XTP pyrophosphatase, rdgB Purine nucleoside catabolism

Toxin, fitB Virulence, stress response

Enamidase, Ena Cofactor catabolism Bradyrhizobium sp. S23321

ComE operon protein, comEC Competence for transformation

Putative sugar transferase, epsL Cell wall organization

Sensor histidine kinase, tmoS Two component regulatory system

Underexpressed in Winter

Leucine-, isoleucine-, valine-, threonine-, and alanine-binding

protein, braC
Amino acid transport

6-Oxocyclohex-1-ene-1-carbonyl-CoA hydrolase, bamA Benzoyl CoA catabolism

Putative phosphoserine phosphatase 2, pspB Serine biosynthesis

Coenzyme PQQ synthesis protein, pqqD Cofactor biosynthesis

UDP-N-acetyl-D-glucosamine 6-dehydrogenase, wbpA Cell wall organization

Ferric uptake regulation protein, fur Transcription regulation Streptomyces avermitilis
Glycerophosphodiester phosphodiesterase, glpQ Glycerol and lipid metabolism

ABC transporter permease, ytrF ABC transporter involved in acetoin utilization

3-Dehydroquinate dehydratase, aroQ Aromatic amino acid biosynthesis

Succinate-acetate/proton symporter, satP Acetate-uptake transporter Candidatus Solibacter
usitatus

Top ten Prokka-annotated differentially expressed genes in winter sediment paired with taxonomic annotations. Data were sorted by a p-interaction value� 0.05

followed by q-winter/summer RNA value� 0.05, respectively. All RNA transcripts were at least 8 to 20-fold higher or lower compared to DNA in samples. No taxon

was annotated if a contig did not align to sequences in “nt”.

https://doi.org/10.1371/journal.pone.0237599.t003
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genes, such as cox andmtr genes, were identified. Unique ORFs (584) mapped to KOs encod-

ing coxABC genes (K02274, K02275, and K02276) involved in Fe2+ oxidation were slightly

more expressed in winter. These data are consistent with the presence of Fe3+ reducers, such as

species of Granulicella, in sediment. While a total of 483 transcripts were involved in reducing

Fe3+ to Fe2+, specificallymtrCAB (K03585, K07670, and K07654), the KOs were not differen-

tially expressed. However, Prokka-annotatedmtrCABORFs were differentially expressed in

the summer. Some acidophiles reduce iron under suboxic conditions [92], are facultative

anaerobes (e.g., Bradyrhizobium), or inhabit anoxic microzones in sediment where biotic Fe3+

reduction occurs.

Several organisms were involved in sulfur cycling, a process involving the movement of sul-

fur between rocks, water, and organisms. Fig 4 shows the differentially expressed KOs associ-

ated with the sulfur metabolism KEGG pathway. KOs (24 out of 104) were differentially

expressed in the summer, specifically those involved in dissimilatory sulfate reduction and oxi-

dation pathways, such as aprBA (68 ORFs mapped to K00394 and K00395). Organisms

expressing these genes could be used for bioremediation by removing excess toxic sulfate from

the environment via this reversible pathway [93]. Dissimilatory pathways generate energy and

either produce sulfides anaerobically or sulfate aerobically, whereas assimilatory pathways can

reduce inorganic sulfate to sulfide to synthesize sulfur-containing amino acids and metabolites

in the presence of oxygen. KOs involved in assimilatory sulfate reduction, such as cysH (184

Fig 4. Sulfur metabolism gene expression. Sulfur metabolism KEGG reference pathway map diagram (https://www.

kegg.jp/pathway/map00920) with color gradation highlighting KEGG-annotated gene expression that changes

between seasons. Blue and red colors denote decreased and increased abundance of RNA transcripts in the winter,

respectively. Genes that did not change are light gray and undetected genes are white. Significantly differentially

expressed genes are indicated by a star and met the following criteria: p-interaction� 0.05 in combination with a q-

winter/summer RNA� 0.05, respectively.

https://doi.org/10.1371/journal.pone.0237599.g004
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ORFs mapped to K00390), were differentially expressed in the winter. Seventy-five sox genes

(i.e. soxAB; K00301, K00302, and K00303) were involved in sulfur oxidation and differentially

expressed in the summer. sox genes oxidize thiosulfate, a product of metal sulfide dissolution,

to a sulfate intermediate to generate energy or reduce carbon. Thus, the sox gene may be

expressed in species that thrive in warmer temperatures, as other variables, such as pH and

metal levels, were similar between seasons. Altogether, these KO data demonstrate that while

common iron and sulfur oxidizers did not dominate EB-90M, organisms are actively involved

in iron and sulfur cycling.

Actively expressed genes involved in nitrogen metabolism

The abundance of transcripts involved in nitrogen metabolism is consistent with nitrogen-fix-

ing Bradyrhizobium being the most abundant microbial taxa detected at EB-90M. The expres-

sion data for all KOs involved in nitrogen metabolism are available at https://doi.org/10.6084/

m9.figshare.c.4864863 (FigShare 7–8). Species of Bradyrhizobium fix nitrogen in root nodules

for plant growth, especially in acidic [94] and pyrite-rich [63] soil. In summer sediment, spe-

cies of Bradyrhizobium differentially expressed the nitrogenase gene nifH (K02588; 28 ORFs),

a biomarker for nitrogen fixation, the conversion of molecular nitrogen to ammonia [42].

Given that a subset of RNA transcripts annotated as nifH lacked taxonomic annotation, nifH
may also be expressed by plants detected in our dataset, which require more nitrogen for

growth at this time of year [95].

Ammonia can also be made from or assimilated via the reduction of nitrate. Assimilatory

genes, such as narB/1.7.7.2 (K00367) and NR (K010534) (52 ORFs in total), which convert

nitrate to nitrite, were differentially expressed [42]. Transcripts encoding narB (K00367) were

differentially abundant in winter, whereas those encoding NR (K010534) were differentially

abundant in summer. Thus, selected microorganisms along with other plants likely regulate

nitrate levels in sediment between seasons. This differential expression may be related to the

abundance of nitrogen-fixing bacteria and the abundance of transcripts encoding nifH, result-

ing in the production of excess ammonia in the summer.

Actively expressed genes involved in carbon metabolism in photosynthetic

organisms

Carbon fixation can occur via the Calvin-Benson-Bassham cycle in plants, algae, and phyla of

bacteria, such as Cyanobacteria, Chlorobi, Proteobacteria, Firmicutes, Acidobacteria, and

Chloroflexi. Some of these bacterial phyla were dominant at EB-90M and reduced the expres-

sion of key genes in this cycle, such as rbcL and rbcS (RuBisCo, 4.1.1.39 [42]) as well as prkB
(2.7.1.19 [42]), in winter likely due to less sunlight [96]. The expression data for all KOs

involved in carbon fixation are available at https://doi.org/10.6084/m9.figshare.c.4864863 (Fig-

Share 7–8). In the summer, there were significantly more transcripts of RuBisCo (144 ORFs)

and prkB (51 ORFs), encoding enzymes that fix carbon dioxide to ribulose-1,5-bisphosphate

to form 3-phosphoglycerate and phosphorylate ribulose-5-phosphate [97], respectively.

Other carbon fixation pathways were also represented in EB-90M ARD. For example,

organisms expressed reductive tricarboxylic acid genes belonging to the C4-dicarboxylic acid

pathway [42], which converts carbon dioxide to acetyl-CoA. ORFs (271 ofmdh, 1.1.1.82)

encoding malate dehydrogenase, an enzyme that converts oxaloacetate to malate in this path-

way [42], were expressed in the summer to convert oxaloacetate into glucose for energy.

Methanogens, prokaryotes that reduce carbon dioxide to produce methane, were also identi-

fied based on the expression of the methanogenic genesmcrA [98] (five ORFs; K07451) and

mcrB (11 ORFs; K07452) in both seasons.
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Secondary metabolic pathways

A total of 1589 BGCs were annotated by antiSMASH 5.0 [39], but only 449 met the filtering

criteria [42]. The antiSMASH annotation and associated expression data are available at

https://doi.org/10.6084/m9.figshare.c.4864863 (FigShare 9–10). Most BGCs were involved in

the biosynthesis of nonribosomal peptides (33%) followed by terpenes (27%) (Fig 5). Since

Actinomycetes are present in this dataset, particularly Streptomyces, which are prolific produc-

ers of secondary metabolites [99], we expected to find BGCs dedicated to secondary metabo-

lism. However, most BGCs were found in contigs without taxonomic annotation. A subset of

BGCs is identical to those involved in producing carotenoids, anabaenopeptin NZ 857/nosta-

mide A, rhizomide A–C (cytotoxic [100]), xenotetrapeptide, n-acyl alanine, alkyl resorcinol,

1-heptadecene, bicornutin, patellazole (cytotoxic [101]), micromonolactam, geosmin, and

phomopsin (tubulin polymerization inhibitor [102]). These data are consistent with our

hypothesis that EB-90M can be a source of bioactive metabolites, as there are BGCs involved

in producing bioactive compounds. Notably, there is the potential to find more, as many BGC

products are unknown.

Within the metatranscriptomic datasets, 65 out of 449 transcripts encoding genes within

BGCs were differentially abundant in summer (39 genes) than winter (26 genes) based on p-

interaction and q-winter/summer RNA values < 0.05 (Fig 6). The expression of the phytoene

synthase gene, crtB, in the summer increased in some organisms and decreased in other organ-

isms (S14 Table), suggesting that selected microorganisms may alter their metabolism based

on the presence of other taxa and ecological factors that require specific metabolites. Overall,

there were more annotated terpenes and nonribosomal peptides produced in the summer.

Fig 5. Percentage of genes dedicated to producing various classes of secondary metabolites. Pi chart of antiSMASH-

annotated BGCs involved in secondary metabolite production in all EB-90M DNA samples (sediment and water). Classes

that represent<2% of 449 BGCs are classified as “Other”.

https://doi.org/10.1371/journal.pone.0237599.g005
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Metal resistance genes (MRGs)

Of the 285 experimentally validated MRGs in the BacMet database, 133 were identified in the

metagenome, representing 7,021 unique ORFs out of 161,984. All BacMet annotation and

expression data are available at https://doi.org/10.6084/m9.figshare.c.4864863 (FigShare 11).

These data are consistent with our hypothesis, as microorganisms conferring metal resistance

are commonly found in ARD for the sequestration or chemical conversion of toxic heavy met-

als. Eight of the 133 BacMet genes were not expressed [42] and 719 of the 7,021 ORFs were dif-

ferentially expressed in the summer [42]. Mostly transcripts without taxonomic annotation

and Proteobacteria of the genus Burkholderia conferred heavy metal resistance to Cu, Cd, Co,

Zn, Fe, Ag, Pb, Hg, As, Sb, and Ni. Proteobacteria have expressed MRGs in acidic environ-

ments [103–106] and been explored for the bioremediation of metal-contaminated environ-

ments via efflux pumps, bioabsorption, and transforming metals into less toxic forms [107].

Some of the most differentially expressed MRGs were involved in Cu (dnaK) [104], Cu/Te

(actP) [108], Cd/Co/Zn/Cu (czcA/B; actP) [105, 109], Cu/Zn/As (pstA) [110, 111], Mn/Zn/Fe/

Cd/Co (mntH) [112], and Zn (zraR) [113] resistance. Genes related to As- and Sb-containing

compound (pgpA; acr3) resistance were differentially expressed, even though Sb and As were

nearly undetectable (Table 2). Based on the large number of genes without functional annota-

tion, more proteins with unique mechanisms and metal-binding properties likely exist at EB-

90M.

Fig 6. Seasonal expression of terpene BGCs terpene- and NRP-annotated BGCs. Gradient plot demonstrating the expression of BGCs in winter (light blue) and

summer (orange) sediment samples. NRP, nonribosomal peptide; PK, polyketide. All data met the following criteria: p-interaction� 0.05 followed by q-winter/summer

RNA� 0.05.

https://doi.org/10.1371/journal.pone.0237599.g006
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Resistance mechanisms and secondary metabolism

Metal-rich environments select for MRGs and also co-select for antibiotic resistance genes

based on having similar genetic mechanisms [8]. These resistance genes can be used to bio-

prospect metal-polluted environments for new chemistry and bioactivity. Strategies for priori-

tizing antibiotic-producing BGCs are based on finding BGCs containing duplicated essential

genes, resistance genes, or genetic evidence for HGT [114]. Additionally, there are MRGs

encoding proteins (e.g., resistance-nodulation-division family transporters, such as CzcA) that

catalyze the efflux of antibiotics and chemotherapeutics [115], and a subset also function as

antibiotic resistance genes that can be exploited to find new bioactive compounds [114]. Using

the ARTS web server [41], a platform that prioritizes antibiotic-producing BGCs based on

these hypotheses, a range of essential (6358–8289) and duplicated (5595–7395) genes, as well

as known resistance models (8501), mostly resistance to biotin-lipoyl domains (1585 out of

8501), were annotated [42]. The ARTs annotation data are available at https://doi.org/10.6084/

m9.figshare.c.4864863 (FigShare 12). Some duplicated genes colocalized with BGCs, mostly

(5–12 out of 258–325) RNA polymerase sigma factor 70 and trigger factor, demonstrating the

potential of the ARD microbiome to be a source of antibiotics.

MRGs can colocalize with BGCs and play a role in antibiotic resistance [116]. We identified

six BGCs that colocalized with BacMet-annotated MRGs on contigs (Fig 7) [42]. Fig 7 shows

the colocalization and coexpression of phosphate transport gene pitA with a homoserine lac-

tone-nonribosomal peptide-annotated BGC in summer (Fig 7). PitA transports phosphate

Fig 7. Colocalization and coexpression of metal resistance and secondary metabolite genes. Gradient plot of the differential coexpression of pitA, an MRG encoding

a phosphate-uptake transport protein, with genes annotated to be involved in the biosynthesis of a secondary metabolite, homoserine lactone-nonribosomal peptide in

contig 4689 (20406 nucleotides long), in summer (orange) and winter (blue). All data met the following criteria: p-interaction� 0.05 in combination with a q-winter/

summer RNA� 0.05, respectively. Nucleotide positions in contig are shown in parentheses.

https://doi.org/10.1371/journal.pone.0237599.g007
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with other cations, such as toxic metal ions [117], and may be differentially expressed in the

summer in response to excess phosphate or metal. Excess metal ions can trigger the produc-

tion of secondary metabolites, such as metal-binding homoserine lactones [100] or nonriboso-

mal peptides called siderophores [118]. The Cu- and Zn-expressed antibiotic resistance gene

mdtA, encoding a membrane fusion protein of the multidrug efflux complex MdtABC, also

colocalized and coexpressed with the polyketide synthase gene, ppsE [42]. Both genes were dif-

ferentially expressed in the summer; however, both MRG and BGC did not meet q-winter/

summer RNA� 0.05 for, but they met a p-winter/summer RNA� 0.05 [42]. A subset of

ARTS-annotated resistance genes were also MRGs (i.e., metallopeptidases, HflB [119] and

RseP [120]) that colocalized with BGCs. Thus, colocalization and coexpression of MRGs and

BGCs could be used to prioritize antibiotic-producing BGCs (e.g., ppsE) and find new regula-

tory mechanisms of secondary metabolism.

Conclusions

The present study is the first seasonal characterization of a metagenome and metatranscrip-

tome at the Ely Copper Mine Superfund site, providing insight into the microbial community

as well as the genes and metabolites they use to adapt to ARD in Ely Brook. Acid-tolerant Pro-

teobacteria were the dominant annotated taxa, varying with season and sample type. Several

RNA transcripts were differentially abundant between seasons and the most abundant tran-

script was involved in antibiotic resistance. KO analysis of Prokka-annotated ORFs identified

several differentially expressed genes involved in iron and sulfur, nitrogen, and carbon metab-

olism, providing insight into seasonal gene function, as taxonomy could not be assigned to

many ORFs using our pipeline. Genes involved in metal resistance and secondary metabolism

were also annotated and differentially expressed. Future work will involve using additional tax-

onomic classifiers to assign taxonomy to functionally annotated transcripts as well as experi-

mentally validating the differential expression of selected genes. Importantly, several resistance

genes (metal and antibiotic) colocalized with BGCs and, in some instances, were coexpressed,

revealing putative antibiotic-producing BGCs and their ecological roles that can be exploited

for bioremediation or pharmacological purposes.
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